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Maŕıa [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

iv



Learning two-variable functions using 3D dynamic geometry, Trigueros Maŕıa [et
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INDRUM2022 Editorial  
María Trigueros1, Berta Barquero2, Reinhard Hochmuth3, Jana Peters3 

1Benemérita Universidad Autónoma de Puebla, México, trigue@itam.mx    
2Faculty of Education, Universitat de Barcelona, bbarquero@ub.edu  

3Leibniz Universität Hannover, Germany,  
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INDRUM2022 was the fourth conference of the International Network for Didactic 
Research in University Mathematics. Initiated by an international team of researchers 
in didactics of mathematics in 2014, INDRUM aims at contributing to the development 
of research in didactics of mathematics at all levels of tertiary education, with a 
particular concern for the development of new researchers in the field and the dialogue 
with mathematicians. After three very successful conferences in 2016 (Montpellier, 
France), 2018 (Kristiansand, Norway), and 2020 (Bizerte, Tunisia, online) the 
INDRUM Network Scientific Committee (INSC) decided to continue the cycle of 
biennial conferences with a fourth INDRUM conference to be held in Hannover, 
Germany, on October 19th-22nd 2022. 
The INSC nominated the INDRUM2022 International Programme Committee (IPC) 
and the Local Organising Committee (LOC), with an intersection to facilitate the 
coordination of both committees. The IPC was composed of María Trigueros (Ciudad 
de México, México) Chair; Berta Barquero (Barcelona, Spain) Co-chair; Rolf Biehler 
(Paderborn, Germany); Marianna Bosch (Barcelona, Spain); Laura Branchetti (Milan, 
Italy); Viviane Durand-Guerrier (Montpellier, France); Alejandro González-Martín 
(Montreal, Canada); Thomas Hausberger (Montpellier, France); Reinhard Hochmuth 
(Hannover, Germany); Barbara Jaworsky (Loughborough, United Kingdom); Rafael 
Martínez–Planell (Mayagüez, Puerto Rico); Chris Rasmussen (San Diego, United 
States). The LOC was composed of Reinhard Hochmuth (Hannover, Germany) Chair; 
Christine Bessenrodt (Hannover), Rolf Biehler (Paderborn), Andreas Eichler (Kassel), 
Sarah Khellaf (Hannover), Michael Liebendörfer (Paderborn), Jana Peters (Hannover), 
Johanna Ruge (Hannover), Hanh Vothi (Hannover) and Johannes Wildt (Bielefeld). 
The first announcement, published in September 2021, communicated the structure of 
the conference. Similarly to the two previous INDRUM conferences, themes to be 
addressed at INDRUM2022 covered teacher and student practices and the teaching and 
learning of specific mathematical topics at undergraduate and postgraduate level, as 
well as across disciplines. Accepted scientific contributions were to be discussed in 
four to six thematic working groups (six hours each) after their presentation in two 
parallel sessions of short communications (two sessions of 1h 30min). The programme 
also included a poster exhibition and a workshop for early-career researchers. It was 
announced that Andreas Eichler (University of Kassel, Germany) had accepted to give 
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the plenary lecture and that an expert panel discussion on tertiary education on 
“Innovation in teaching at the university based on research in mathematics education” 
chaired by Rafael Martinez-Planell (Universidad de Puerto Rico at Mayagüez) was in 
preparation. Although the primary language of the conference was English, the 
linguistic characteristics of the host country were considered, as in previous INDRUM 
conferences. Therefore, authors were offered the opportunity to write and present a 
paper in German, provided that the presenter considered how to address the conference 
audience in its linguistic diversity through slides or a handout in English. Besides, 
INDRUM2022 was the fourth INDRUM conference to be accepted as a Topic 
Conference by the European Society for Research in Mathematics Education (ERME). 
The second announcement was published in October 2021 with further details on the 
submission. Authors were provided with a list of 15 keywords or topics as a means to 
classify their submission (using two keywords from the list and three optional 
additional keywords) and also to help us in the subsequent process of allocating papers 
to different working groups after the review process. 
In response to the call, 76 papers and 20 posters were received. The review process 
was organised by the chair and co-chair according to principles that were discussed 
among the IPC. Thus, each paper was reviewed by a member of the INSC and by an 
author of another paper; posters were reviewed by the chair or the co-chair and by an 
author of another poster. Final decisions, in cases where both reviewers had diverging 
opinions, were made after discussion among the IPC. At the end of the reviewing 
process, 56 papers and 20 posters were accepted for presentation at the conference. 
Authors of rejected papers that fell within the scope of the conference were offered the 
opportunity to resubmit their contribution as a poster. This last step increased the 
number of accepted posters to 39 in total. 
Given the number of accepted contributions and the keywords provided by the authors, 
it was considered possible and appropriate to organise six balanced thematic working 
groups (TWG). The allocation of papers and posters was proposed by the chair and co-
chair, and approved by the IPC. The appointment of TWG co-leaders from among the 
INSC members was made with a view to geographical diversity, gender balance, and 
the involvement of colleagues who had not previously or recently served as leaders. 
We were grateful that the appointed INSC members were able to accept our invitation. 
The third announcement was published in September 2022 with the following list of 
groups (TWG) and names of co-leaders: 

TWG1: Transition to, across and from university mathematics. Chairs: Thomas 
Hausberger (France), Heidi Strømskag (Norway) 
TWG2: Teaching and learning of analysis and calculus. Chairs: Erik Hanke 
(Germany), Rafael Martínez-Planell (Puerto Rico) 
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TWG3: Teaching and learning of linear and abstract algebra, logic, reasoning 
and proof. Chairs: Viviane Durand-Guerrier (France), Melih Turgut (Turkey-
Norway) 
TWG4: Teaching and learning of mathematics for engineers, and other 
disciplines. Chairs: Ignasi Florensa (Spain), Ghislaine Gueudet (France),  
TWG5: Teacher education in university. Chairs: Marianna Bosch (Spain), Carl 
Winsløw (Denmark)  
TWG6: Students’ practices and assessment. Chairs: Nicolas Grenier-Boley 
(France), Frank Feudel (Germany) 

The third announcement also included the names of the panel chair and panelists, who 
were appointed by the IPC from among the conference participants on the basis of their 
expertise in the topic of the panel. Rafael Martinez-Planell (Universidad de Puerto Rico 
in Mayagüez, Puerto Rico) accepted to chair the panel on “Innovation in teaching at 
the university based on research in mathematics education” with Ignasi Florensa 
(Universidad Salesiana de Sarrià-Universitat de Barcelona, Spain), Max Hoffmann 
(Paderborn University, Germany), Avenilde Romo (CINVESTAV, México) and 
Michelle Zandieh (University of Arizona, USA) as speakers. Finally, Elena Nardi 
(University of East Anglia, United Kingdom) and Megan Wawro (Virginia Tech, USA) 
prepared a workshop for INDRUM early career researchers on “Starting to write 
journal articles” for INDRUM early career researchers based on two of their published 
papers. The purpose of the workshop was to share experiences and stimulate discussion 
on what constituted the challenges –and ways to overcome them– of preparing a 
manuscript for submission to a mathematics education research journal, with a 
particular focus on university mathematics education.  

The third announcement included the conference timetable 
and the conference pre-proceedings. In parallel, the LOC was 
getting ready to welcome delegates in Hannover, Germany. 
118 participants from 20 countries registered for the 
INDRUM2022 conference (see Table 1). The opening and 
closing sessions were lively thanks to the work of the LOC. 
Work in the TWG was also lively with interesting exchanges 
and interaction between delegates. The TWG’s leaders 
encouraged rich interaction among participants. They also 
prepared a summary which was presented at the closing 
session.  
Papers and posters appear in these Proceedings in a version 
chosen by the participants, following the optional possibility 
to upload a final version of their paper. 
Last but not least, we would like to thank the IPC, chaired by 
Maria Trigueros and Berta Barquero, and the LOC, chaired 

Country Participants 

Canada 4 
Croatia 6 

Denmark 2 
Finland 3 
France 12 

Germany 39 
Greece 2 

Hungary 1 
Italy 6 
Israel 4 
Japan 6 

Mexico 3 
Norway 6 

Puerto Rico 1 
Spain 7 

Sweden 5 
The Netherlands 4 

Tunisia 1 
United Kingdom 2 

United States 4 

Table 1. Participants and countries 
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by Reinhard Hochmuth and his entire team (especially Mrs. Krampe), for their tireless 
work over many months to organise the conference. We are also grateful for the support 
provided by Jana Peters for her work on both the pre-proceedings and these 
proceedings. Many thanks to all TWG co-leaders for your support and help in making 
INDRUM2022 a fruitful and enjoyable experience for the participants. 
FOLLOW-UP 
The INDRUM2022 closing ceremony was the occasion to announce some additional 
interesting news. We are delighted to announce that authors of an accepted contribution 
(paper or poster) in the INDRUM2022 proceedings will be offered the opportunity to 
publish an expanded, updated or reworked version of their contribution to match the 
requirements of a special issue in IJMEST (International Journal of Mathematical 
Education in Science and Technology) Special Issue guest-edited by the 
INDRUM2022 Chair, co-Chair and LOC Chair. We invite papers of 15-20 pages, 
written in English, with the aim of publishing approximately ten papers among the best 
research represented in the INDRUM2022 Proceedings. While we aim to reflect the 
thematic richness of the INDRUM2022 programme, we will not commit to a strict 
representation of the conference structure. We particularly welcome proposals that 
substantially elaborate and expand the content of the INDRUM2022 submissions. 
The deadlines for this Special Issues have been fixed as follows: April 23rd, 2023: 
deadline to submit papers; July 28th, 2023: decision letters sent to authors; September 
29th, 2023: deadline for revised manuscripts; December 5th, 2023: final decisions and 
February 2024 Publication. The official call for contributions has been sent to the 
authors of INDRUM2022 accepted contributions through the INDRUM mailing list. 
The Call for papers is available at the INDRUM2022 webpage 
(https://indrum2022.sciencesconf.org/); as well as in the IJMEST website: 
https://bit.ly/INDRUM2022_Conference. 
Finally, we are delighted to spread the news that INDRUM2024 will be held in 
Barcelona, Spain in June 2024 from 10th to 14th June 2024. The final dates will be 
decided in September 2023. The local Chair is Ignasi Florensa, with Alejandro 
González Martín (Canada) as Chair of the IPC and Ghislaine Gueudet (France) as co-
Chair. The INDRUM2024 website https://indrum2024.sciencesconf.org/, which is 
currently under construction, will open with updated information as soon as possible. 
We now invite you to carry on reading this volume and we hope that the promise of its 
contents will encourage you to consider joining or continuing to be part of the 
ambitious and stimulating INDRUM network. 
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Developing digital networks for learning and teaching mathematics  
in introductory courses 

Andreas Eichler1, Michael Liebendörfer², Mirko Schürmann² and Franziska 
Sommerlade1 

1University of Kassel, Institute for Mathematics, Germany, eichler@mathematik.uni-
kassel.de; ² University of Paderborn, Germany 

In recent years, there has been increased development of digital tools designed to 
improve teaching and learning in university mathematics. Such tools can now better 
accommodate student heterogeneity, different learning speeds, or individual feedback. 
However, embedding digital elements into coherent teaching approaches is 
challenging. In particular, digital tools are rarely developed and used in a multi-
university system to actively involve students and faculties from different departments. 
We report on the ongoing LLV.HD project that addresses these challenges. Our main 
goal is to develop a coherent system of digital elements that facilitates the teaching 
and learning of mathematics at different universities and in different courses, and that 
meets the needs of the specific courses, faculty, and students at the different 
universities. We outline the main goals of the project, and the challenges in developing 
shared digital tools and establishing the aforesaid networks. 
Keywords: Digital elements, instructional videos, STACK. 
INTRODUCTION 
An overarching goal for all levels of education in the digital age is to accelerate digital 
change in teaching and learning (e.g. European Commission, 2020). The Covid-19 
crisis, in particular, emphasised the need to increase efforts to develop approaches for 
digital teaching and learning (Carrillo & Flores, 2020; Sánchez Ruiz et al., 2021). 
Fostering participation, collaboration or communication are crucial demands for 
developing approaches of digital teaching and learning (e.g. European Commission, 
2020), avoiding isolated application and instead establishing coherent teaching and 
learning concepts across universities (KMK, 2016). These demands form the basis for 
the project LLV.HD  (Lehr-Lern-Verbünde in mathematikhaltigen Studiengängen – 
hochschul-übergreifend und digital, translated as “Teaching-learning alliances in 
mathematics-containing degree programmes - cross-university and digital”; www.uni-
kassel.de/go/llv-hd). LLV.HD is a project within the Competence Centre for Higher 
Education Mathematics (khdm; www.khdm.de/en/). 
The main goal for LLV.HD is to develop digital tools for teaching and learning 
mathematics that fit the specific demands of university teachers in different 
mathematical study programmes of at least two universities. The study programmes 
are BA mathematics, engineering, economics and mathematics teacher education. 
Developing digital tools, not only for one specific course but for at least two courses 
at different universities, is more complicated than one might think. Therefore, this 
project results in an extensive need for communication. For example, LLV.HD depends 
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on the collaboration between mathematicians and mathematics educators, lecturers, 
developers and students, lecturers in different study programmes or lecturers and 
students of different universities. Collaborating with students and lecturers as well as 
integrating the needs of both stakeholders in the development of those tools calls for 
participation as one characteristic of digital teaching and learning. 
In this paper, we refer to different challenges and questions that shape the process of 
collaboration, communication and participation in LLV.HD during the development of 
shared digital tools for teaching and learning mathematics at university level. Thus, in 
the following section, we highlight seven central questions. These questions should not 
be viewed as typical research questions but can rather be seen as central aspects that 
arose during the agile development of our project. In the following section, we 
highlight seven central aspects of our project by addressing these seven questions: 

1. Which circumstances have to be considered when trying to develop digital 
materials that should be integrated into mathematics courses of different 
universities and different disciplines? 

2. What may be an appropriate way to organise a project aiming to promote 
collaboration between lecturers, developers and students from different study 
programmes and universities? 

3. How can the development of common digital elements for mathematics courses 
in different universities and study programmes be organised? 

4. What are the requirements for LLV.HD concerning students’ needs and 
lecturers’ beliefs? 

5. What are the pre-conditions for developing a common mathematical language 
and notation? 

6. What are the challenges concerning the collaboration of lecturers and students? 
7. How can we support practice courses based on students’ needs? 

CIRCUMSTANCES FOR THE DEVELOPMENT OF LLV.HD (ASPECT 1) 
In Germany, about 40% of all students are enrolled in degree programmes that include 
some higher mathematics (Statistisches Bundesamt, 2016). This percentage does not 
include statistics courses. Related study programmes are, for example, the 
undergraduate degrees in mathematics, teacher education for mathematics teachers, 
computer sciences, engineering, economics or sciences. Traditionally, most 
mathematics courses follow a common structure consisting of a lecture of two or four 
hours a week, a practice course partly in small groups of students supervised by student 
assistants, and students’ weekly assignments (Liebendörfer, 2018).  
In Germany, the transition from school to university is often difficult, with similar 
issues to those exemplarily described by Gueudet (2008). For example, students 
experience the organisation of learning in universities and particularly in mathematics 
courses as challenging (cf. also Fleischer, 2019; Guzmán et al., 1998). As a possible 
consequence, large-scale studies show that study programmes with a strong 
mathematical component have drop-out rates ranging from 40% to 50% (e.g. Heublein 
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& Schmelzer, 2018). The problem of high drop-out numbers in mathematical study 
programmes is also discussed internationally (e.g. Troelsen et al., 2014; Wolter et al., 
2014). 
Although there are a variety of reasons for students dropping out, research findings 
suggest that problems with performance and motivation in the first years of a study 
programme are particularly responsible (e.g. Fleischer et al., 2019). One possible 
reason for a lack of motivation could be that students experience a discrepancy between 
their own needs and the reality at universities or the standards of their university 
teachers (Geisler & Rolka, 2020; Eichler & Isaev, 2022). 
As a consequence of the situation in higher education mathematics, there is a strong 
focus on measures to improve students’ motivation and achievement, particularly in 
the first years of a related study programme. The approach in the  LLV.HD project is 
to develop digital tools or digital elements as a basis to potentially improve students’ 
motivation, participation and achievement. By doing so, LLV.HD follows the 
recommendations of various research reports which reveal that digital tools seem to 
have the potential to support mathematics students' learning (Kerres, 2018). For 
example, instructional videos have the potential to improve understanding and to 
facilitate learning of mathematics (Bersch et al., 2020; Kay, 2012). Audience response 
systems foster participation and commitment of students in mathematics courses 
(Schmidt, 2011; Kempen, 2021), quizzes also support mathematical learning (Martins, 
2018) and digital exercises such as STACK tasks facilitate self-regulated learning and 
can provide individual feedback as for a contribution to successful learning (Sangwin, 
2013; Speer & Eichler, 2022). 
Such digital tools seem to provide an appropriate basis to help students with their 
difficulties in mathematics courses in the transition from school to university. 
Nevertheless, despite the overwhelming number of digital elements available on 
internet, these tools are hardly used yet as part of regular teaching, and their 
implementation faces some challenges. For example, there is a huge number of slightly 
structured resources, such as instructional videos in Youtube channels, repositories 
with STACK tasks (e.g., https//db.ak-mathe-digital.de) and collections of audience 
response resources (Quibeldey-Cirkel, 2018). However, it is very time consuming to 
find a digital element in these resources that fit the demands of a specific mathematics 
course.  
As a consequence, state institutions in Germany (particularly) try to establish 
repositories of structured materials for teaching and learning mathematics (e.g. 
https://www.vhb.org; https://www.dh.nrw/). Lecturers from different universities are 
asked to contribute with digital resources for these repositories. However, these 
resources are developed for specific teaching or learning trajectories in specific courses 
and thus, it might be difficult to integrate related materials into other courses.  
As a consequence of these circumstances, the following main aims for the development 
of digital tools in our project LLV.HD state that the digital tools in LLV.HD have  
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- to fit the aims of at least two mathematics courses at different universities, 
- to be meaningful for mathematics courses in different study programmes (for 

example, teacher education and economics) 
- to be integrated into the structure of a coherent teaching and learning 

environment 
- be at least partly based on students’ needs. 

ORGANISATION OF LLV.HD (ASPECTS 2 AND 3) 
The project LLV.HD is located at the universities of Paderborn and Kassel and refers 
to four study programmes: undergraduate mathematics, engineering mathematics, 
economics and teacher education. In each of the four study programmes, teams of both 
universities including mathematicians and mathematics educators work together.  
Furthermore, different individuals at both universities manage specific tasks including 
the coordination, the development of STACK tasks and instructional videos, the setup 
of a digital drop-in centre, and the transfer, evaluation and media pedagogy. 
Referring to organisation of the content, an early decision was made to concentrate on 
introductory analysis courses that are common for all study programmes. In the teacher 
education programme, both the introductory analysis course and a mathematics 
education course concerning teaching analysis in school are regarded. 
The main structural element in LLV.HD is a digital network. A digital network in 
LLV.HD is shown in Fig. 1 and consists of two analysis courses at the two universities 
in the different study programmes including lectures, practice courses and students’ 
homework.  
 

 
Figure 1: Digital network in LLV.HD 

Each course has themes or topics that are specific to one university. Nevertheless, we 
expected that two parallel courses share common themes and subjects which could 
provide the basis for developing common digital elements (e.g. instructional videos, 
quizzes for the lectures or digital tasks for the practice courses). Discovering common 
themes or subjects forms the basis of the networking idea. Only if a theme or subject 
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is taught at both universities is it qualified for developing corresponding and content-
related digital elements. Student participation and commitment should be improved by 
digital drop-in centres that offer mentoring, provide support concerning learning 
strategies and organise students’ feedback on digital tools or requirements for digital 
tools. 
In advance, a preliminary image of a possible outcome of LLBV.HD after three years, 
consisting of a structure of digital elements, is shown in Fig. 2: There are different 
topics in an analysis lecture such as sequences, convergence etc. that might be common 
to different mathematics courses of different universities and study programmes. 
Within these topics, specific content might be common such as definitions, theorems, 
proofs, applications or examples. For common content, it is possible to develop 
common digital elements. However, we expected that there would be topics and 
content for which it is not possible to identify common digital elements. The elements 
could be appropriate in a specific manner for the different study programmes. Thus, 
lecturers or students of undergraduate mathematics may use mainly one certain 
element, while other lecturers or students may focus on other elements. However, some 
elements are not developed particularly for interdisciplinary use but are accessible for 
all study programmes. Ideally, a digital element is meaningful for lecturers and students 
of different universities and different study programmes. 

 
Figure 2: Possible matrix of digital elements in LLV.HD 

The main structural elements of LLV.HD are knots that are defined by a theme or topic, 
such as convergence. Besides the topics, these knots comprise three further levels or 
dimensions: (1) the study programme, (2) the kind of a digital element, such as 
instructional video or quizzes and (3) the content, such as definitions or examples. 
The initial ideas for LLV.HD are not final. The project follows an agile approach to 
development. That means that it is possible and desirable to adjust, reconsider or 
develop goals of the project within the process. In this agile development, a principle 
goal of LLV.HD is to integrate every group of individuals who participate in analysis 
courses such as students, student teachers (tutors), professors or lecturers (cf. Fig. 3). 
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Figure 3: Students, tutors and lecturers as agents in the agile development in LLV.HD 

STUDENTS’ NEEDS AND LECTURERS’ BELIEFS (ASPECT 4) 
To gain knowledge about students’ needs and lecturers’ beliefs as a fundamental aspect 
for developing common digital tools, data were collected in both universities and the 
different study programmes. In this paper, we refer to the data of four study 
programmes at the two universities. Data were collected in 2021 through an online 
survey, and resulted in answers provided by 168 students from analysis and 
engineering courses at both universities. Further data were collected by interviews with 
groups of students from student councils and lecturers. We here present some 
statements from six student interviews and eight lecture interviews. A detailed report 
on the results of this multi-perspective analysis of students’ needs is in preparation and 
will be published separately.  
First, the interviews with the students of the student councils confirmed published 
research findings (e.g., Gueudet, 2008). These students reported the excessive demands 
with which mathematics students are faced at the beginning of their study programmes. 
For example, one student mentioned: 

Student:  “Just an incredible amount of material per week with incredibly difficult 
tasks.” 

As a main challenge, another student referred to the difficulties with the mathematical 
language.  

Student:  “All these new notations are overwhelming for Bachelor freshmen.” 

Finally, a third student referred to unfulfilled expectations (cf. Eichler & Isaev, 2022; 
Geisler & Rolka, 2021) caused by the gap between school mathematics and university 
mathematics:  

Student: “There are different ideas about mathematics. This applies above all to 
students in the first semesters, because mathematics at university has a 
completely different approach from that of school lessons. Many students 
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come with different expectations of studying and are then faced with a 
different reality.” 

A lecturer in the economics courses agreed, in some points, with the students’ views. 
For example, he/she stated that, particularly at the beginning of study programmes,  the 
organisation of learning and the amount of new content is demanding: 

Lecturer:   “The content of the lecture has been overloaded up to now […] And that 
was, I think, too much for the students.” 

Another lecturer stated that students’ challenges were caused by language difficulties, 
referring also to native speakers: 

Lecturer:  “Students can hardly speak German, cannot articulate themselves correctly, 
especially in writing. Students have a problem with language in general and 
with the language of mathematics.” 

In contrast to the students, a lecturer also referred to students’ lack of knowledge when 
entering universities: 

Lecturer: “Students do not know elementary arithmetic rules such as fractions, term 
transformations, bracketing, dissolving parentheses.” 

The latter belief of a lecturer refers to a controversial debate in Germany, where 
stakeholders of schools and universities discuss what can be learned in school, and 
what has to be learned in school, as prerequisite for a potentially successful study of 
mathematics. 
The students of the student council further commented on possible effects of digital 
tools for facilitating mathematical learning for students in the first year of their studies. 
For example, one student mentioned: 

Student:  “I think that learning videos can help a lot; calculus, especially, is not only 
heard from pure mathematicians, but also from teacher trainees, computer 
science students, who perhaps find it more difficult to work on something 
like this with a script.” 

In this student’s opinion, digital tools can particularly help students with difficulties. 
In this regard, it is noteworthy that students in a student council (in Germany) often 
run their study programme successfully. 
Another student mentioned that digital tools are not helpful per se, but must be 
integrated within an overarching and meaningful structure: 

Student:  "So I don't think that a pure ‘Here you have 20 videos on every topic. If you 
have a question, you can take a look at it’ is the best way to go, but rather to 
integrate them into the learning path or to consider where it might make sense 
to refer to a video and perhaps only make it available at certain points in 
time." 
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Again, the lecturers agreed to the considerations made by students with regard to the 
facilitating effect of digital tools. Thus, one lecturer agreed that digital tools such as 
videos can be of support especially for students with difficulties: 

Lecturer: “One should first consider for whom one wants to offer digital support; 
probably best for underperformers who have difficulty passing the exam.” 

Another lecturer agreed that a digital element is not, in itself, helpful for a specific 
course with its specific purposes: 

Lecturer:  “An overview of definitions could help, but every lecturer defines something 
differently, so there are problems of transferability between semesters and 
universities.” 

Additionally, we gained knowledge about students’ needs from a bigger sample of 169 
students from analysis and engineering courses. These students, amongst others, were 
asked which digital tools they are actually using to receive support for mathematics 
courses. The majority of students referred exclusively to instructional videos. The most 
popular Youtube channels were “Mathe-Peter” (math-peter) or “Daniel Jung”. Both 
channels are German-speaking and focus on several topics of school mathematics and 
introductory courses at universities. However, these kinds of instructional videos are 
criticised for some reasons. The videos, for example, provide mostly isolated 
explanations, they include some errors, and they often use only a vague mathematical 
language although language seems to be crucial for beginner mathematics students 
(Bersch et al., 2020). Also, these videos often refer to procedural aspects of 
mathematics and seldom explain connections of concepts as a basis of conceptual 
knowledge (Bersch et al., 2020). In the survey, students also mentioned that they desire 
videos addressing corresponding examples and counterexamples of terms, 
explanations of sentence formulations or strategies for mathematical problem solving, 
thus addressing conceptual knowledge. 
DEVELOPING A COMMON MATHEMATICAL LANGUAGE (ASPECT 5) 
Mathematical language is a crucial topic of teaching and learning mathematics at 
university level (Berger, 2004; Körtling & Eichler, 2022; Morgan, 2005). Accordingly, 
mathematical language issues have been found to be a key aspect in lecturers’ and 
students’ beliefs. Moreover, language is also crucial for the development of digital 
networks in LLV.HD, because common digital elements must include a common 
language for different courses. Thus, the main question regards the pre-conditions for 
developing a common mathematical language and notation. 
Before the project started, based on a search in different textbooks (e.g. Forster, 2016) 
and recommendations for the use of language (e.g. Alcock, 2013; Gillman, 1987; 
Halmos, 1970), different uses of mathematical language and different notations were 
identified as a main obstacle for developing common digital elements. For example, 
Lew and Mejía-Ramos (2019) reported differences in language preferences of different 
mathematicians that potentially hinder the development of common digital tools.  
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As a first step in LLV.HD, we investigated differences in the notation or the use of 
mathematical language by analysing the lecture notes of analysis lecturers of the two 
universities and the four study programmes, since common notations are a prerequisite 
for common digital elements. As a first result and against our expectations, only slight 
differences in the use of mathematical language were found. Table 1 shows some 
examples concerning the topics sequences, convergence and differentiability. 
Table 1: Differences in mathematical notations at two universities 
Topic Mathematics 

(University of 
Kassel) 

Mathematics 
(University of 
Paderborn) 

Economics 
(University of 
Kassel) 

Sequences … function 
𝜑: 	𝑁 → 𝐴 with 
𝑎! = 𝜑(𝑛) 

… mapping 𝑎: 	𝑁 →
𝑋 with 𝑎! = 𝑎(𝑛) 

… function 𝑓: 	𝑁 →
𝑅 with 𝑎! = 𝑓(𝑛) 

Convergence It exists 𝑁𝜖𝑁… It exists 𝑛"𝜖𝑁… It exists 𝑁𝜖𝑁… 
(partly only as a 
heuristic) 

Differentiability m exists with  
𝑔(𝑥) = 𝑔(𝑐) +
𝑚(𝑥 − 𝑐) +
𝑟(𝑥)	and #(%)

%'(
= 0	 

and 

… )(%)')(()
%'(

	 exists. 

… )(%*+)',(%)
+

	 
exists. 

m exists with  
𝑓(𝑥) = 𝑓(𝑥") +
𝑚(𝑥 − 𝑥") +
𝑟(𝑥)	and #(%)

%'%!
= 0	 

and 

… ,(%)',(%!)
%'%!

	 exists. 

… ,(%*+)',(%)
+

	 
exists. 

… ∆.
∆%
(𝑥) 	=

,(%*∆%)',(%)
∆%

 

                
Differences in the definition of sequences, for example, refer to the name of the object, 
i.e., function or mapping, the symbol for the function or mapping (𝜑, 𝑎, 𝑓) and the 
codomain (𝐴, 𝑋, ℝ). In the definition of convergence, we only found a difference 
concerning one symbol (𝑁 vs. 𝑛"). Differences in defining the derivative refer to the 
number of equivalent definitions. However, common definitions only differ in the use 
of specific names of variables.  
To conclude, there are slight differences in naming variables or objects such as 
functions. Nevertheless, some slight differences in comprehension were identified: 
codomain, for example, is any metric space in one course and a specific metric space 
in another course. In one course, three equivalent definitions are introduced, in another 
course only one. Finally, in the economics course some mathematical objects are only 

14



  
used with a vague heuristic description instead of a rigorous definition. We believe that 
all these differences can be addressed well in common digital elements, for example, 
by giving additional information to raise awareness of a different variable use and 
naming according to different study programmes. 
CHALLENGES FOR COLLABORATION: THE CASE OF INSTRUCTIONAL 
VIDEOS (ASPECT 6) 
The development of instructional videos can reveal possible challenges in the 
collaboration of lecturers and students. We provide an example of such a challenge, 
regarding a video that focuses on linear approximation as the basis for defining 
differentiability. In this video – Figure 4 shows a screenshot of this video – two people, 
an expert and a novice, develop an understanding in a conversation. The video focuses 
partly on a visual illustration of ideas of a linear approximation and partly on a 
symbolic representation of this linear approximation. The whole video lasts about 3.5 
minutes. 
 

 
Figure 4: Screenshot of an instructional video addressing linear approximation as the 
basis for defining differentiability 

During the video development, we made an observation that resulted in a new aspect 
of video development. The observation was that lecturers and students evaluated the 
same video differently using different perspectives: whereas the lecturers focused on 
the logic of a mathematical theme, the students focused on their learning in a sense of 
increased understanding that may extend beyond mathematical logic and include 
visualisations, for example. It emerged that mathematical rigour and the psychology of 
learning value some elements in precisely opposite ways. We may more generally 
experience this tension when reflecting on mathematics and mathematics education as 
scientific disciplines.  
Another disagreement between lecturers’ demands and students’ needs regarded the 
length of the video and, subsequently, the number of topics discussed in the video.     
For lecturers, an instructional video such as the one illustrated in Fig. 4 provides too 
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many topics. Lecturers claimed their explanations to be sufficient and therefore 
preferred illustrating their explanations. In contrast, students desired further 
explanations as an alternative and supplementary support to explanations from their 
own lecturers. 
As a consequence, a new development in LLV.HD was to create a tool that allows 
lecturers to control the explanation used when introducing visualisations. We therefore 
use specific parts (for example, the animations) of a video and adapt these to a specific 
situation. Whereas the full video is provided for students, lecturers are able to use parts 
of the video and adapt these parts to their own requirements. The related tool is created 
using python code. Fig. 5 illustrates three steps of this tool: 

- Step 1 refers to a part of the linear-approximation video illustrated in Fig. 4. 
After showing the graph of the function with the tangent, in the video a zoom to 
the intersection point of the graph and the tangent is given (Fig. 5, left side). This 
animation is selected as an isolated digital element for the following steps. 

- Step 2 shows the python code (Fig. 5, middle, without comments), where the 
function term was changed from – (𝑥 − 1)/ + 1 to 𝑠𝑖𝑛(𝑥) and, also, the scale of 
the axes, the point of observation and the colour of the graph were changed. A 
user may indicate these settings at the very beginning of the code. 

- Step 3 includes the compilation process of the modified python script resulting 
in a modified animation of which the starting image is shown in Fig. 5 (right 
side).  
 

 

# function and derivative 
function = lambda x : np.sin(x) 
derivative = lambda x : np.cos(x) 
 
# axes and x_0 
x_axis = [-0.2, 4] 
y_axis = [-1.1, 1.1] 
x_0 = 1.5 
 
# colors 
color_funcrion = `red` 
color_tangent = `#00205b` 

 

Figure 5: Illustration of an animation tool for selected sequences of an instructional 
video 

SUPPORT OF PRACTICE COURSES (ASPECT 7) 
The final challenge we present from the development of digital elements in the project 
LLV.HD refers to STACK tasks. STACK represents one solution to the question of 
how practice courses could be supported to better address students’ needs. 
STACK is the abbreviation of “System for Teaching and Assessment using Computer 
algebra Kernel” and was developed by Chris Sangwin (Sangwin, 2013). It uses the 
computer algebra system Maxima in the backend, which evaluates inputs algebraically. 
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We consider the following task: “Find the limit of the sequence 𝑎! =
(0!*1)
1"!

 for 𝑛 →
∞”.  

 
Figure 6: Screenshot of a STACK task 
The answer can be entered into the white field below the sequence. Any input by a 
student needs to fit the form of a specific number representing the limit. Below this 
field, STACK interprets the input, in this case identifying the input as the fraction 2

3
. 

Below the interpretation, there are hints for a user, referring to possible inputs. STACK 
is especially noted for its ability to implement feedback. In this case, a simple and 
evaluative feedback, stating simply “correct answer”, can be seen in the orange field 
(Narciss, 2013). 

Evaluating an input algebraically means that every expression that equals 2
3
 is 

interpreted as a correct solution of the tasks. Thus, it is possible to describe 2
3
 via the 

limit for 𝑛 → ∞ of the arbitrary term !
"

!#
+ 4

/1
	. STACK also allows a randomisation of 

task parameters (Sangwin, 2013). In the case of the sequence in Fig. 6, the numbers 
in the term of the sequence were randomised. After restarting the task, a modified 
sequence appears, for example 𝑎! =

(3!*0)
1"!

. Not only the numbers, but also the 
exponents of the variables, can be randomised in this task. Thus, with randomisation, 
one task represents a class of similar tasks. Another very important feature of 
STACK is that if, for example, typical errors of students are known, STACK allows 
individualised feedback using potential response trees (Sangwin, 2013). Moreover, 
STACK allows tasks with graphical elements and also graphical feedback. 
From research, it is known that users – for example, prospective teachers developing 
STACK tasks in a seminar – are enthusiastic when introduced to STACK tasks. The 
enthusiasm decreases only to some extent, and beliefs about STACK become more 
differentiated, when these prospective teachers use STACK tasks with school students 
(Speer & Eichler, 2022). However, a goal of LLV.HD is to gain knowledge about 
students' evaluation of the use of STACK tasks in different study programs and 
different scenarios within an analysis course. A further ongoing goal is to include 
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common STACK tasks in different mathematics courses and have the opportunity to 
analyse possible inputs, including errors of students in different universities and 
different study programs. For the students’ acceptance of STACK tasks, we use the 
tool STACKrate (Lache & Meißner, 2022). This allows you to simply evaluate a task 
with a Likert-like scale after finishing a task (see Fig. 7). In this case, the student is 
asked to rate the task concerning task difficulty, usability, processing and feedback, 
allocating from one to five stars. 

 
Figure 7: Screenshot of STACKrate as a brief evaluation at the end of a STACK task 

With STACKrate, it is possible to collect data about STACK tasks that allows users to 
match performance in a task and students’ acceptance. 
Although STACK tasks offer a lot of possibilities to enrich self-directed learning of 
students, STACK may result in some problems. For example, we observed that the 
majority of tasks are procedural tasks. Conceptual tasks are rare and the development 
of substantial feedback for conceptual tasks is a complex challenge. A further problem 
is that conceptual tasks must allow an algebraic expression as an input, or something 
that could be interpreted as an algebraic expression. A possible example for a 
conceptual task concerning sequences is given in Figure 8, where a sequence must be 
found that satisfies designated limits.  
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Figure 8: Example of a task triggering conceptual knowledge 

It is also possible to pose more complex tasks referring to conceptual knowledge 
focusing, for example, on proofs using the input type “equivalence reasoning”. 
However, in this case, potential response trees that allow individual feedback can 
display an increased complexity, resulting in correct feedback for every possible input. 

 
Figure 9: Complex task using the input type “equivalence reasoning”  

 
CONCLUDING REMARKS 
The main aim of the project is to develop digital elements that satisfy the demands and 
needs of at least two analysis courses at two universities. Such an aim results in some 
challenges and open questions that were addressed in this paper.  
Actually, it seems possible to detect themes in introductory mathematics courses of 
different universities and different study programmes that enable us to develop 
common digital elements. This finding is the basis for all the work done up to now and 
the work that should be accomplished in the near future. Moreover, differences in 
notation and approaches are, so far, smaller than expected. This is a crucial result, since 
we can therefore develop digital elements based on common notations used in different 
analysis courses, different universities and study programmes. If agreement on a 
common notation is not possible or slight differences about the notation emerge, 
remarks about notation differences are included in those digital elements either directly 
in the element itself or given as further information about it on the platform of our 
project. By doing so, the project aims to provide an interdisciplinary overview of 
notation use and facilitate students’ ability to adapt to different notation systems.  
There are, nevertheless, challenges for collaboration and communication between 
lecturers and students. For example, the perspectives of mathematics lecturers and 
mathematics students are fundamentally different. Concerning lecturers and students, 
LLV.HD observed opposing evaluations between rigorous mathematics and the 
psychology of learning mathematics, which proved similar to the differences between 
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mathematics and mathematics education. As a consequence, digital elements that use 
the same notation for the same course must be different for lecturers and students. 
Students do not favour digital elements per se, but favour digital elements that are 
connected to their mathematics courses. Thus, a half-structured matrix of digital 
elements that was planned in LLV.HD could fit the needs of the students at the 
universities that are engaged in LLV.HD. However, it is still an open question whether 
students embrace further digital elements such as podcasts or quizzes since, so far, we 
have collected feedback only on instructional videos. 
Furthermore, a lesson has been learned from the videos and STACK tasks: There is a 
need for digital elements that address conceptual knowledge instead of exclusively 
focusing on procedural knowledge. 
Finally, following an agile project development shifted the goal of LLV.HD from 
producing a huge number of digital elements to developing elements that satisfy the 
demands and needs of lecturers and students from different universities and study 
programmes and, thus, could be integrated into digital networks as the central idea of 
LLV.HD. These digital elements do not replicate the concepts of analogue teaching, 
but require new conceptions raising, to some extent, fundamental questions of 
mathematics education. 
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We report on a variety of innovative projects that are at different stages of development 
and implementation. We start by presenting a project still in development to help 
address Klein’s second discontinuity problem, that is, the perception of pre-college 
teachers that the advanced mathematics courses they took at the university are of little 
use in the practice of their profession. Then we briefly discuss the study and research 
paths (SRP). This is the proposal from the Anthropological Theory of the Didactic 
(ATD) to foment a move from the prevailing paradigm of visiting works to that of 
questioning the world. This is followed by the discussion of an online course for in-
service teachers, designed to help them experience, adapt, and class-test a modeling 
intervention, as well as reflect on institutional issues that might constrain the future 
application of modeling in their teaching. We end with a discussion of a project based 
on the idea of guided reinvention, to design and study the implementation of inquiry-
oriented linear algebra.  
Keywords: Study and research paths, Klein’s second discontinuity, modeling, inquiry-
based mathematics education, linear algebra. 
INTRODUCTION 
What do we mean by innovation in university teaching? Century and Cassata (2016) 
define innovations as “programs, interventions, technologies, processes, approaches, 
methods, strategies, or policies that involve a change for the individual end-users 
enacting them.” We add that innovation should help students learn a particular 
mathematical content better than traditional teaching, and the innovations considered 
in the panel must be based on mathematics education research. The first part of this 
definition underscores that the innovation does not have to be new to the field at large; 
rather, the practice should require that users change what they are doing, so what is 
emphasized is that the practice of interest is different from current practice. This way 
of viewing innovation stresses concern for change in teaching practices beyond the 
classroom of the individual researcher.  
With this in mind, we have chosen four projects that propose teaching innovations at 
the university level and that are at different stages of implementation: one project, the 
Geometry Capstone course for pre-service teachers, has so far been implemented 
several semesters by the researcher in his own classroom; another project, the design 
and implementation of study and research paths (SRP), that has been implemented in 
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different classrooms by different instructors and universities but that still is not widely 
adopted;  a project dealing with an online MS program in mathematics education for 
in-service teachers that includes a modeling component that has been fully 
implemented in a university, and a project for an inquiry-oriented linear algebra course, 
that aims to attain national dissemination.  
The following sections discuss each of the four highlighted innovations. Each is 
presented by the respective panelist Max Hoffmann, Ignasi Florensa, Avenilde Romo 
Vázquez, and Michelle Zandieh. 
A CAPSTONE COURSE "GEOMETRY FOR STUDENT TEACHERS" AT 
PADERBORN UNIVERSITY 
In this section, we present an innovation that we implemented in the context of a course 
named Geometry for Student Teachers at Paderborn University in Germany. The 
course is scheduled in the curriculum for upper secondary math teachers in the third 
year of study. Like other German universities, the subject-related part of this study 
program consists of courses on academic mathematics and on didactics of mathematics. 
While student teachers attend most of their mathematics courses jointly with 
mathematics major students, this course is taken exclusively by student teachers. 
Innovation goals 
In the project SiMpLe-Geo we develop and study innovations to increase professional 
orientation in the course Geometry for Student Teachers. In this way, we want to 
counteract the second discontinuity in teacher education. The course concept's theory-
based development and initial research are part of the Ph.D. thesis of Hoffmann (2022). 
In addition, various other publications have been produced as part of the project (e.g., 
Biehler & Hoffmann, 2022; Hoffmann & Biehler, 2022), from which some text 
elements have been taken verbatim for this overview. 
As a basis for the course concept, we have worked out the following three design 
principles for academic math courses for student teachers with a particular focus on 
professional orientation: 

1. Orientation to the scientific systematics of mathematics: The course aims to treat 
an area of academic mathematics in a systematic and structured way. The course 
follows the usual scientific standards of mathematics. These can be 
prototypically described by the three steps: definition - theorem - proof. The 
necessary level of detail in the argumentation must be adapted to the students' 
level of knowledge and experience. 

2. Orientation to the math-specific presentation- and communication methods: The 
study of mathematics uses methods common in scientific practice for gaining 
and exchanging knowledge. Accordingly, the three-step process described in 1. 
is supplemented by other elements, e.g., examples and non-examples, heuristics, 
and historical backgrounds. 
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3. Implicit professional orientation: The professional orientation should be 

considered in every decision to be made in the context of the course conception 
(e.g., selection of content). The basic credo should be: In any conceptual decision 
with several similarly suitable options, the one that can best be related to the 
future teaching profession should be chosen. 

4. Explicit professional orientation: At appropriate points of the course, activities 
in which the mathematical knowledge and skills acquired are explicitly used 
functionally as a disposition for acting in profession-oriented situations. This use 
must also be explicitly reflected upon. 

Overview of the innovations 
We take a holistic approach to implementing professional orientation in the course, 
using innovation at both the content level and the level of teaching/learning methods. 

Content structure of the course 
A significant part of the course deals with axiomatic plane geometry. The careful 
selection of the axiom system represents an important aspect of implementing 
professional orientation. We use one based on the work of Iversen (1992), in which 
neutral plane geometry is built upon metric spaces and later is supplemented by the 
parallel axiom. Two major advantages of this approach are that it is productively 
interconnected with the fundamental analysis and linear algebra courses the students 
already have taken (e.g., we use the real numbers right from the beginning) and the fact 
that many definitions and proofs can be didactically reduced for school geometry. 

Interface weeks  
Interface-Weeks are one of the two main innovations on the level of teaching/learning 
methods. The idea is, to shift the course focus from a mathematical theory to discussing 
and reflecting on connections between the academic mathematics learned and the 
aspired profession. Therefore, lectures, exercise groups, and home assignments are 
designed according to the principle of explicit professional orientation and differ 
substantially from the other weeks. As the main focus of the interface weeks, we have 
chosen the central geometric concepts of congruence and symmetry. For both topics, 
first, essential characteristics of their rigorous mathematical treatment are detached 
from the particular axiomatic approach of the lecture. We do this by explicating so-
called interface aspects, which result from inductive subject-specific-didactical 
analyses (Biehler & Hoffmann, 2022; Hoffmann & Biehler, 2022). Using such 
interface aspects, typical approaches to the concepts (e.g., from textbooks) are 
discussed from a professional perspective. In addition, various focal points of the 
instructional treatment of these concepts will be located from a mathematics 
perspective, with special consideration given to intellectual honesty. In the exercise 
groups, students work on corresponding, discussion-oriented tasks and collaboratively 
use the mathematical knowledge they have learned in contexts relevant to their 
profession. The homework consists exclusively of tasks for the interface-ePortfolio. 
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Interface-ePortfolio 

The course-accompanying interface-ePortfolio is the second main innovation at the 
level of teaching/learning methods. In this learning activity, we combined the idea of 
a course-accompanying ePortfolio (see, e.g., the project dikopost (Siebenhaar et al., 
2013)) with the use of profession-oriented tasks, so-called interface-tasks (e.g., Bauer, 
2013). The use of this innovation is organized in such a way that in some weeks, 
ePortfolio-tasks replace some of the ordinary homework tasks. In addition, the students 
got feedback on their work from a student tutor. Those suggestions for improvement 
could be used for optional revision. The ePortfolios are technically realized so that only 
the student tutor can see the students' real names; the lecturer can only see them in 
pseudonymized form. This was done to keep the interface-ePortfolio as an ungraded 
learning opportunity with a high amount of (honest) reflection. 
We used four different task formats to work on the ePortfolio:  

• Competence Grids for Self-Assessment: Using these grids, students must self-
assess their competencies in mathematical backgrounds of school geometry 
concepts and theorems and their skills in dealing with math-containing job-tasks. 
This activity is used at the beginning and the end of the semester, which allows 
the students to reflect on their competence growth during the course. 

• Interface Tasks: In these tasks, students use their mathematical knowledge and 
skills as dispositions to look at and analyze profession-oriented situations (e.g., 
a real or fictional student contribution or a textbook page). 

• Reflection Tasks: In the context of their interface-ePorfolio, students have to 
work on reflection tasks on different levels. This includes activities in which 
students reflect on how the competencies acquired in the course influence their 
work on interface tasks, occasions for reflection on their prior knowledge of the 
central geometric concepts, activities that generally refer to which sense students 
see geometry as relevant content in school mathematics, and self-perceptions 
about the ability to teach geometry. 

• Fact-Sheets for Geometric Mappings: During the semester, students study 
different geometric mappings (orthographic projections, reflections, rotations, 
central dilations, reflections at circles) and their properties. In this fourth type of 
task, students summarize their stepwise growing knowledge of those geometric 
mappings in a pre-structured way. This consists of a formal definition, an 
explanation of all possible variants of the formalization (e.g., as a term or as a 
matrix), and a detailed written example calculation. 

Current interim status of the project 
We have already taught the course according to this concept four times and researched 
and further developed it within a design research approach. Initial results show that 
students substantially contribute to overcoming the second discontinuity (related to 
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plane geometry), at least from a subjective perspective. We are currently evaluating 
further data to gain insights into the objective impact. 
STUDY AND RESEARCH PATHS: THE ATD PROPOSAL  
SRPs: an ATD-founded device 
Study and research paths (SRP) are inquiry-based teaching formats framed in the 
Anthropological Theory of the Didactic (ATD). SRPs are long teaching and learning 
processes, lasting from some 8-10 sessions (2h) to an entire course, that start with the 
consideration of an open generating question that student(s) address under the guidance 
of the teacher(s).  Describing and analyzing the SRP proposal cannot be done without 
explicitly mentioning some of the ATD principles and theoretical developments that 
are in the inner heart of the proposal.  
The first aspect that is undetachable from the SRP proposal is the notion of didactic 
paradigm. SRPs are conceived as didactic devices fostering a shift in the prevailing 
didactic paradigm in our societies, from the paradigm of visiting works (PVW) to the 
paradigm of questioning the world (PQW) (Chevallard, 2015). Teaching and learning 
processes in undergraduate mathematics courses are particularly experiencing this 
crisis of the old PVW, where content organizations are presented for students to “visit” 
them, which contrasts with the emergence of the PQW, where the study of questions 
becomes the center of the study process. The implementation of an SRP is a way to 
analyze the conditions needed for the paradigm shift. Diverse experiences at the 
undergraduate level show relevant results of this evolution (e.g., Barquero et al., 2018; 
Florensa et al., 2018a).  
A second point that is necessary to consider when describing the SRP proposal is its 
link to the didactic engineering methodology (Barquero & Bosch, 2015; García et al., 
2019). In other words, SRPs are also research artifacts allowing the research 
community to generate empirical material to conduct didactic and epistemological 
analyses. In fact, the strong relationship between the conception of the knowledge to 
be taught and the didactic phenomena emerging in the teaching and learning processes 
assumed as a founding principle of the ATD, turns SRPs into key elements of didactic 
research. An illustrative example of the role of the SRPs as artifacts allowing 
researchers to modify and study specific didactic phenomena are the works of Berta 
Barquero when describing, analyzing, and modifying the phenomenon of 
“applicationism” in mathematics courses in applied sciences degrees (Barquero, 
Bosch, & Gascón, 2014). An important aspect of SRPs is this twofold nature: a 
teaching proposal and a research artifact that inevitably fosters a change on the activity 
existing in school (or university) institutions.  
The institutional approach of the ATD is the third aspect that defines the SRP proposal. 
On the one hand, as mentioned before, SRPs have the capacity to modify teaching and 
activating activities in school institutions. On the other hand, the implementation and 
viability of SRPs are undetachable from the study of the institutional ecology, that is, 
the set of conditions needed and restrictions hindering their viability in different 
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institutions. The ecology of SRPs has been studied in some research works at the 
university level (Barquero, Bosch, & Gascón, 2013; Barquero, 2018) using the scale 
of levels of didactic codeterminacy (Chevallard, 2015). It allows researchers to identify 
restrictions that appear outside the level of the classroom and, at the same time, make 
explicit the changes that the change of paradigm (and in particular the SRP 
implementation) would cause in the organization of subjects and contents.  
Finally, the study and analysis of SRPs cannot be detached from the notion of 
Herbartian schema. The Herbartian schema is a model of inquiry processes. It considers 
didactic system as formed around a question (and not a specific work as usual in school 
institutions): 

[𝑆(𝑋; 𝑌; 𝑄!)	Ì	𝑀]Ê𝐴♥ 
In this context, the group of students X with the help of a group of teachers Y must 
provide an answer to Q0: A♥. The process of inquiry of Q0 leads the community of study 
(X, Y) to meet different pre-existing answers A♢, derived questions Qi, other works Wn 
needed to interpret A♢, and empirical data Dj. The set of these elements constitutes the 
milieu M of the inquiry: 

𝑀 = {𝐴"♢, 𝐴#♢, … , 𝐴$♢ ,𝑊$%", …𝑊&, 𝑄&%", …𝑄', 𝐷'%", …𝐷(	} 

The Herbartian schema pinpoints the fact that putting the questions at the center of the 
inquiry process fosters the transition between didactic paradigms but not in terms of 
“substitution”: the works and pre-existent answers are still relevant and are studied. 
However, its new role is subordinated to the generation of an answer A♥ to a question 
𝑄!, which remains in the heart of the study process. This capacity of SRPs to enable 
moments of study of previously existing works and moments of research during the 
same inquiry process contrasts with other proposals where the study activity is not 
present. The Herbartian schema highlights another commonality in the different SRPs 
implementations: the responsibility of enriching the milieu during the inquiry is shared 
by X and Y. While in other proposals the teachers often assume the role of enrichers 
and validators, in an SRP the evolution of the process is taken by the whole community 
of study.  
SRPs: from the first implementations to the transposition to lecturers 
From the first implementations of SRP at undergraduate level in 2005 with the thesis 
of Berta Barquero, the way SRPs have been integrated and their role has very much 
evolved. We can describe this evolution in terms of integration to the courses, role of 
the teacher or inquiry guide, domains of intervention, and dissemination to teachers.  
Regarding the integration to the courses, the first SRPs were implemented as modelling 
workshops running in parallel to the mathematics courses. This evolution is closely 
related to the ecological conditions in the institutions where the SRPs were 
implemented. According to Barquero et al. (2021), the different settings require 
different levels of change in the previous organization. This flexibility in the SRP 
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organization facilitates its implementation in very different institutions with different 
pedagogical conditions and constraints. 
Another relevant aspect is the SRP’s teacher or guide (Y, in the didactic system). In the 
first experiences, researchers were those in charge of the design and management of 
the SRPs. This situation led to very fragile environments. In other words, the first SRPs 
lasted while the researcher kept the position of guide of the study. Once the researcher 
left the institution, the SPRs tended to disappear or significantly reduce their time 
dedication.  
The first SRPs implemented at the undergraduate level were implemented in 
mathematics courses for applied sciences and in business administration degrees. 
However, this past decade, SRPs have spread in different domains. One of the first 
domains that adopted SRPs outside mathematics education was mechanical 
engineering (with subjects such as elasticity and strength of materials) (Florensa et al., 
2018a, Bartolomé et al., 2019) and applied statistics (Markulin et al., 2021). In the last 
two years SRPs have also been adopted in Chemical and ICT courses for engineers and 
accounting courses in Business Administration degrees.  
This spreading of SRPs cannot be understood without two factors that foster SRP 
dissemination as a research-based teaching innovation device. First, is the explicit 
training of university teachers (Florensa et al., 2018b). The implementation of diverse 
teacher development courses has enabled teachers to start collaborating with 
researchers to design and implement SRPs, overcoming the fragility of the researcher-
teacher positions concentrated in a sole person. 
Second, the diffusion of SRPs has been done in parallel with the transposition of 
different tools and devices that have helped both teachers and students to deal with the 
new organization and conception of knowledge around questions. The incorporation of 
questions-answers maps, logbooks or weekly reports and final reports addressed to the 
receiver of the answer seem to facilitate the inquiry management and assessment. 
A final aspect that remains open is the (inquiry) contract that needs to be established 
around the generating question. What characteristics does it need to fulfill? Even if 
there is still a lot of research to do in this field, some of our last analyses seem to 
indicate that the existence of an external instance receiving the answer to the generating 
question facilitates the implementation of a rich inquiry process and a shared 
assumption of responsibilities within the community of study. 
MATHEMATICAL MODELLING COURSES IN AN ONLINE 
PROFESSIONAL DEVELOPMENT PROGRAM 
In 2000, Mexico’s National Polytechnic Institute created a master's program for in-
service mathematics teachers in the virtual modality. The groups formed could include 
teachers from different educational levels: secondary school, high school, and 
university, and from different geographical locations in Mexico and Latin America. 
This heterogeneity made it necessary to design courses that could contribute to the 
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analysis, innovation, and regulation of diverse teaching practices. In 2010, some 
courses were designed to focus on designing mathematical modelling activities 
specifically for the study of non-mathematical contexts, such as engineering. One 
objective was to offer tools to aid in designing didactic proposals for training non-
specialists at the university level. In the framework of these courses, professors 
implemented mathematical modelling activities that related math to other disciplines 
and encouraged reflection on the minimum conditions necessary for integrating 
mathematical modelling into teaching. Some examples of these courses and the work 
carried out by the teachers will illustrate this professional development proposal, its 
scope, and its limitations. 
A Mexican professional development program for in-service mathematics 
teachers: ProME 
Currently in Mexico, there is training for future teachers for elementary and secondary 
school, but no specific training for high school and university mathematics teachers. 
Most mathematics teachers and professors at these levels are mathematicians, 
engineers, or professionals with a four-year undergraduate degree in an area with a 
specific mathematical-scientific orientation who have a vocation and interest in 
teaching. Many in-service teachers feel a significant need for specific training. Several 
master’s programs have been created in Mexico to meet the professional and didactic 
needs of high school and university mathematics teachers and professors. These are 
two-year programs that include several courses and the elaboration of a master’s thesis. 
Most are offered at universities in the in-person modality. Some are full-time and 
research oriented. Most students in those programs have scholarships. Other programs 
are part-time and oriented more towards professional development. However, teachers 
who live far from universities cannot register in these programs. For this reason, the 
program for the professional development of mathematics teachers (ProME) was 
created in 2000 at the National Polytechnic Institute in the online modality with two 
goals, one academic, the other social: 

Academic: To introduce groups of mathematics teachers into the practices, theories, 
and languages of Mathematics Education by connecting research with practice. 

Social: To modify, as far as possible, the scenario of social exclusion that many in-
service teachers experience because the opportunities for training in 
Mathematics Education do not provide them with any space. 

The Study and Research Path: a theoretical tool for analyzing ProME’s 
educational model 
In general, the courses in this master’s program can be analyzed by considering a 
didactical system composed of students (X), educators (Y), and courses (Q):  

• The teacher-students (X) are in-service mathematics teachers and professors 
from Mexico and other Latin American countries with diverse professional 
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backgrounds, and different teaching experiences who were working at distinct 
educational levels: secondary school, high school, and university. 

• The educators (Y) are researchers in Mathematics Education with experience as 
math teachers.  

• Courses/SRP-TE (Q). Three types of courses are offered: theoretical, theoretical-
practical, and seminars. The first focus on specific theoretical frameworks. The 
second analyze elements of research in Mathematics Education in relation to 
teaching practices in mathematics, while the seminars guide the students in 
writing up their theses. 

The design of the theoretical-practical courses identified two types of questions:  
• Professional questions that arise in practice, such as how to integrate technology 

into mathematics teaching and how to design mathematical modelling activities. 
• Research questions analyzed in the context of math education, such as how to 

identify the nature of obstacles –didactical, epistemological, etc.– in teaching 
mathematics.  

In other words, we identify objects of study and outcomes of Mathematics Education 
related to professional issues that math teachers and professors may not be aware of. 
Mathematical modelling courses 
There are two kinds of mathematics modelling courses, discussed here as a Study and 
Research Path for teacher education (SRP-TE). They were designed after 2013. The 
generating questions that motivated these courses were Q0-TE (professional questions): 

• How can a learning process related to mathematical modelling be analyzed, 
adapted, developed, and integrated into our teaching practice? 

• How can long-term learning processes based on modelling be sustained 
institutionally? What difficulties need to be overcome? What didactic tools are 
needed? What new questions arise and how can they be addressed?  

In general, these generating questions are integrated using the methodology proposed 
by Ruiz-Olarría (2015) and adapted to the online modality by our team of educators 
(see, for example, Barquero et al. (2018)). The strategy developed has four steps: 

1. Allow teachers to experience an SRP like mathematicians or apprentice 
mathematicians. 

2. Analyze the SRP using didactic tools: 
- Mathematical analysis (reference epistemological model) 
- Didactic analysis: changes in didactics (and pedagogy) contracts, dialectic 

media-milieu, questions and answers, etc. 
- Ecology and sustainability of the SRP: institutional conditions 
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3. Adapt the SRP experienced (in step 1) so it can be implemented with a given 

group of students 
4. Implement an a posteriori analysis of the SRP experienced with their students. 

The small difference between the two types of SRP-TE is the way in which the SRP 
proposed in step 1 is designed. For the first type, the design of the SRP does not require 
an analysis of a non-mathematical context, but in the second type this is necessary. The 
first SRP-TE proposed, for example, analyzing and solving ‘Forecasting sales for 
Desigual (a Spanish fashion brand)’. An epistemological dimension is considered by 
addressing several questions, such as What is modelling? How can the modelling 
process be described? and What is inquiry? These SRP-TE have been implemented in 
several editions by a large team of educators from Mexico and Spain to make the 
institutional conditions that drive –or constrain– the integration of mathematical 
modelling activities in the classroom visible to math teachers and professors (see 
Barquero et al., 2018; Romo et al., 2016). The second type of SRP-TE integrates the 
SRP that originated in non-mathematical contexts; for example, the Blind Source 
Separation method (BSS) used in acoustics, geophysics, and biosignal analysis. The 
BSS is an exciting method as it constitutes a case of inverse modelling that makes it 
possible to separate mixes without knowing the components or how they were mixed. 
One of the algorithms involved is based on the matrix model, Ax=b (Vázquez et al., 
2016). Using this approach, Camilo Ramírez designed an SRP in his Ph.D. thesis–in 
progress– that was implemented in an SRP-TE, as discussed below. 
An example of a mathematical modelling SRP-TE: the case of the BSS method 
The SRP-TE lasted four weeks (September 28-October 23, 2020) and was composed 
of three activities. Six members of the group (two secondary school teachers, two high 
school teachers, two university professors) and three educators participated (an 
engineer-researcher who was an expert in the BSS method and two researchers in 
Mathematics Education). In activity 1, two teams of students develop an SRP using the 
BSS method and then analyzed the process followed to answer the generating question: 
what is the mathematical technique that makes it possible to separate a mixture of 
sounds? The main media for this activity was an online resource that showed three 
different mixes of the same sounds. The mixes differed in terms of the distance between 
the sources (sound instrument) and the observations (recorders). Various elements 
were provided to analyze these mixes, including a geometric representation of the 
sources (sounds) and observations (recordings) and the hearing and tabular 
representations. In addition, we proposed identifying the derived questions and their 
answers to analyze the modelling process followed in this activity. 
Activity 2 consisted in adapting the SRP developed in Activity 1 so that it could be 
implemented with students in an online modality (due to the conditions of the Covid-
19 pandemic). To this end, three elements were given: 1) a BSS-praxeology ; 2) a 
school BSS-praxeology obtained from a didactic transposition performed on the BSS 
praxeology; and 3) an SRP designed for first-year university students that included four 
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activities and elements to integrate a milieu: two free online resources (designed by 
one of the educators) that allowed them to listen to two mixtures of pure tones and 
explore different geometrical configurations between the sources and observations, 
such that they could identify the distance between them, which represented the 
coefficients of the system of linear equations; that is, a mathematical model of the 
mixtures. The other variables considered were frequency and amplitude. The student-
teachers could use two of these four activities in their adapted SRP and had to modify 
the other two activities. Likewise, they had to perform an a priori analysis that showed 
the questions and answers that the students proposed. Activity 3 consisted in carrying 
out the a posteriori analysis. One of the most exciting adaptations of the SRP was made 
by a university professor with a background in engineering who adapted it for a group 
of volunteer high school students who had begun their first year of university. He 
modified the online resource proposed in Activity 1 and proposed quadratic signals and 
several activities to study three variables– distance, frequency, and amplitude– and the 
relations among them. His analysis of the students’ activities showed the elements of 
the milieu associated with his SRP and affirmed that managing the SRP had proven to 
be: “Students had a clear difficulty in identifying that the modelling of the system is 
performed through a system of equations. Here, a series of activities that ask for 
different configurations to lead to the conclusion is probably required because giving 
them freedom to modify the scenario [online resource] was ineffective during 
implementation.” 
The other adaptions revealed the need to modify Activity 2 to analyze the milieu more 
deeply and determine how it can be extended or adapted with respect to the 
characteristics of the math class where the SRP will be implemented. Despite these 
issues, the student-teachers recognized that the SRP made it possible to perform a 
modelling activity in math class that allowed them to resolve challenging tasks. 
PROJECT IOLA: INQUIRY ORIENTED LINEAR ALGEBRA 
The Inquiry-Oriented Linear Algebra (IOLA) curriculum has been developed over the 
past 15 years and is continuing to evolve. The materials have been developed based on 
a set of design principles taken from Realistic Mathematics Education (RME; 
Freudenthal, 1991; Gravemeijer, 2020) and the design process is implemented through 
a series of teaching experiments and other mechanisms as described by our design 
research spiral (Wawro et al., 2022). The project began with a National Science 
Foundation (NSF) grant on student learning during which the initial tasks were 
developed (Rasmussen & Zandieh, 2007). This work continued with a grant focused 
specifically on the IOLA curriculum (Wawro, Zandieh, & Rasmussen, 2013). An 
additional grant (still in progress) is extending the IOLA materials (Wawro, Zandieh, 
Andrews-Larson, & Plaxco, 2019).  
By the end of the 2013-2018 grant period, we had completed three Units, each with 
teacher support materials posted to our IOLA website (http://iola.math.vt.edu; Wawro, 
Zandieh et al., 2013). Each unit consists of a series of activities on a specific topic that 
typically takes 3-5 class periods. Figure 1 lists the units developed for the 2013 grant 
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as well as the units that we are developing currently as part of the 2019 grant. The title 
of each unit refers to the experientially real setting (Gravemeijer & Doorman, 1999) in 
which the task sequence takes place. Below the title is a short description of the 
mathematical emphasis of the unit.  

Figure 1. IOLA curriculum units completed and under development.   

We begin Unit 1 with vectors because we see vectors themselves, linear combinations 
of vectors, and vector equations as the most fundamental aspects of a beginning linear 
algebra course. We have also found that starting with a travel metaphor for exploring 
initial vector ideas works well as a starting point for students (Wawro et al., 2012). 
Research on the completed units and initial results regarding the new units can be found 
in various publications: Unit 2 (Smith et al., 2022), Unit 3 (Andrews-Larson et al., 
2017), Unit 4 (Wawro et al., in press), Unit 5 (Andrews-Larson et al., 2021), Unit 6 
(Zandieh et al., 2017; Plaxco et al., 2018), Unit 7 (Lee et al., 2022).  
How do we design the units? 
The development of all seven units has followed a design research cycle (Cobb et al., 
2003) in which we engaged students with the activities, documented this process and 
used the results of this research to rewrite or refine the activities. In developing the four 
new units we have been particularly intentional in following the design research spiral 
shown in Figure 2 (Wawro et al., in press).  

 
Figure 2. Design Research Spiral as shown in Wawro et al. (in press). 
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The initial task design is developed by a subgroup of the project team with other project 
team members working through the tasks in front of the development team to give 
initial feedback. The developers then conduct a PTE, paired teaching experiment, 
(similar to Steffe & Thompson, 2000) that allows for a detailed focus on the 
progression of the reasoning of the two students as they work through the tasks. We 
typically use pairs of students instead of individual students as this allows for students 
to learn from interacting with each other's ideas, much like we intend students to 
engage in a classroom setting. An analysis of the PTE allows for refinement that feeds 
into the CTE, classroom teaching experiment (Cobb, 2000).  
The CTE is conducted by an IOLA project team member in an introductory level 
university linear algebra course that is part of his or her regular teaching load. Data is 
collected about how the students interacted with the activity in class, the role of the 
teacher in the classroom and student written work regarding the task. This data is 
analyzed and revisions to the unit are completed in preparation for the (OWG) online 
working group.  
For the purpose of the development of the four new units, our online groups were 
designed to be composed of experienced IOLA instructors, i.e., instructors who had 
used the initial three units multiple times in the classroom. This included project team 
members but was intended to focus on getting feedback from outside of the project 
team. These groups met once per week for 6-8 weeks to prepare to implement the new 
unit, discuss reactions, questions, and feedback during the implementation, and then 
finally to reflect back on student and instructor interaction with the task sequence and 
how the unit may be improved.  
Design Heuristics  
The units are designed using three RME heuristics: didactical phenomenology, 
emergent models, and guided reinvention (Gravemeijer & Terwel, 2000; Gravemeijer, 
2020). Didactical phenomenology is a way of determining a context that is well suited 
for the learning of a particular set of mathematical ideas. The context should be 
experientially real for the students; in other words, it is a setting that the students can 
immediately interact with and engage in. Given an appropriate task, students organize 
and structure aspects of that context in ways that create the mathematical ideas intended 
by the curriculum designers. The emergent models heuristic highlights how 
instructional designers can support students in transitioning from less formal to more 
formal ways of reasoning with and about these mathematical ideas.  
Gravemeijer (1999) elaborated the development of emergent models as a progression 
through four levels of activity: situational activity, referential activity, general activity, 
and formal activity. Wawro, Rasmussen, et al. (2013) describe the transition across 
these levels of activity that occurs in Unit 1 of the IOLA curriculum. Students start 
working with two modes of transportation (a magic carpet and a hoverboard) each 
given by vectors in two dimensions. Initial exploration about what locations can be 
reached lead students to create ideas that the instructor can label as span, with further 
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tasks (in three dimensions) leading to a formal definition of linear independence, and 
theorems about when a set of vectors will be linearly independent or dependent. 
Student initial activity in the task setting is organized or mathematized by the students 
in ways that the instructor can notate in terms of standard mathematical definitions and 
theorems. The process of students reinventing these ideas through their organizing 
activity, combined with the role of the instructor in guiding this process, is called 
guided reinvention.   
Role of the Instructor 
Given the important role of guided reinvention in the RME design heuristics, it is 
necessary to reflect on what instructional strategies can be implemented to support 
students in this process. Our project, IOLA, is called inquiry-oriented because we 
believe in both the importance of student inquiry into mathematical ideas and the 
importance of instructor inquiry into students’ emerging mathematics (Rasmussen & 
Kwon, 2007). Johnson et al. (2015) created the TIMES (Teaching Inquiry-Oriented 
Mathematics: Establishing Supports) project to provide instructors with opportunities 
to implement inquiry-oriented curricula. As part of that process, they studied what is 
involved in inquiry-oriented instruction (IOI).  
Kuster et al. (2017) characterize inquiry-oriented instruction around “four instructional 
principles: generating student ways of reasoning, building on student contributions, 
developing a shared understanding, and connecting to standard mathematical language 
and notation,” (p. 14). The instructor generates students’ ways of reasoning by 
engaging them in goal-oriented activity with their classmates, usually in small group 
work. As student reasoning is generated, the instructor finds ways to build on student 
contributions with the goal of guiding students toward a reinvention of the 
mathematical ideas. To develop a shared understanding across students, the instructor 
acts as a broker between small groups and between small groups and the whole class 
(Rasmussen et al., 2009). The instructor also acts as a broker between the local 
classroom community and the broader mathematics community by helping the students 
connect their emerging mathematics to standard mathematical language and notation.  
More specific ways of accomplishing these principles include what Rasmussen and 
Marrongelle (2006) refer to as pedagogical content tools. Generative alternatives are 
examples given by the instructor to elicit student reactions to possible alternative 
solutions or strategies. A transformational record is a way of notating student thinking 
that a student agrees captures their idea, but that the instructor knows is also a 
steppingstone to the standard mathematical notation. In these ways, an instructor may 
support guided reinvention by encouraging students to make explicit their ways of 
reasoning and by building on these through a transformational record toward a shared 
understanding that uses standard mathematical language and notation. 
Implementation of IOLA 
There are various ways that IOLA is being currently implemented in classrooms in 
varied instructional settings. Most recently there were over 700 accounts on the IOLA 
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website (http://iola.math.vt.edu). Of course, not all accounts represent people who 
teach with the materials. In 2018 we conducted a survey of the then 328 faculty with 
accounts and found that of the 94 who responded to the survey 61 (65%) had adopted 
and integrated at least some of the existing IOLA materials in their classrooms. In 
addition, there is anecdotal evidence that some instructors who do not have accounts 
on the website use versions of the materials adopted from published sources like 
journal articles.   
Over the years we have provided a variety of types of support to instructors who would 
like to use the IOLA materials. For account holders, the website has the full set of 
activities (for the initial three units) as well as instructor resources and examples of 
student thinking when using the materials. We have written articles for researchers and 
practitioners highlighting the progression of student thinking possible with the tasks as 
well as papers that explore the role of the instructor (e.g., Andrews-Larson et al., 2017; 
Zandieh et al., 2017). We have presented at research conferences and have provided 
workshops for instructors. Of particular note, the TIMES project (Johnson et al., 2015) 
recruited and worked with instructors using three inquiry-oriented curriculum 
materials, including IOLA. They leveraged the web-based instructional support 
materials provided by IOLA, provided summer workshops, and instituted Online 
Working Groups (OWG) that met to discuss implementation on a weekly basis. These 
OWG functioned to allow instructors new to IOLA, and perhaps new to any inquiry-
oriented instruction, to have a place to get feedback, support, and exchange ideas with 
other instructors as they implemented something new to them.  
To summarize, over the past 15 years the IOLA project has benefitted from a growing 
network of researchers and instructors contributing to this work. The project is centered 
around principles for curriculum design (RME) and research-based feedback on the 
design process (design research spiral). Implementation strategies include online 
instruction support materials as well as workshops and OWGs to aid instructors in 
implementing inquiry-oriented instruction (IOI).  
CONCLUSION 
The projects presented in the panel offer different views of inquiry in mathematics 
education. These projects can be positioned in different places on the continuum from 
open to directed inquiry; The more radical and open proposal is that of the SRPs. It can 
be expected to face institutional constraints in its quest to challenge the didactical 
paradigm that is prevalent at universities. This is followed by the inquiry fostered by 
the online modeling projects for in-service teachers, which can also be viewed as a 
special type of SRP (for teacher education). The openness of these modeling projects 
varies depending on the type of problem and the resources made available to students. 
Then, the guided reinvention of project IOLA may be thought to be within the paradigm 
of visiting works as it does not depart from a standard curriculum while following its 
instructional principle of connecting students’ productions and ways of thinking to 
standard mathematical language and notation. The more directed modality of inquiry 
is that of the geometry capstone course for pre-service teachers. Students here inquire 
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while working on interface tasks to relate the advanced viewpoint of the geometry 
course to their future careers. Nevertheless, it is in large part a lecture-based course 
that follows the definition-theorem-proof format. 
Klein’s second discontinuity problem, study and research paths, modeling, and inquiry-
based mathematics education are all well-known approaches in the mathematics 
education community. They are actively researched, and the implementation and 
dissemination of their different proposals present a challenge. The projects discussed 
in the panel propose different ways to attend to this challenge. In the SRPs, this is the 
focus of their research; the modeling projects for in-service teachers include their 
adaptation and implementation at different educational levels thus providing a rich 
ground for the study of institutional constraints as well as for reflection on what it may 
take to implement modeling in these different contexts; and project IOLA facilitates its 
dissemination with their web page, articles, workshops for instructors, and online 
working groups. The geometry for pre-service teachers’ project is in its development 
phase and can only start to envision what its approach will be to implementation and 
dissemination, a challenge we all share in the mathematics education community. 
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INTRODUCTION 
A specific thematic working group dedicated to the topic of transitions first appeared 
at the INDRUM conference in 2018. To attend to the growing number of papers, the 
programme committee introduced this theme—in line with increasing research on 
transitions in mathematics education research (Gueudet et al., 2016)—as a new TWG 
transversal to mathematical domains, alongside students’ and teachers’ practices. 
Although it disappeared in 2020, it continued to thrive through a dedicated chapter in 
the ERME volume on INDRUM research from the first two conferences (Hochmuth et 
al., 2021). The INDRUM2020 keyword “transition to and across university 
mathematics” was then modified in the INDRUM2022 call for papers to encompass a 
larger spectrum of transitions and TWG1 was named accordingly. 
In fact, the school to university transition (Klein’s first discontinuity) is still dominant: 
it is the focus of 5/8 papers and 3/4 posters which were assigned to our group. Dually, 
2 papers and 1 poster deal with the transition from university to secondary education 
(Klein’s second discontinuity). A single paper considers the “across university” 
transition (with a focus on the teaching of a mathematical concept throughout the 
Bachelor in the Abstract Algebra track). To complete the perspective, papers assigned 
to other TWGs but mentioning transitions as a keyword shall also be counted; hence 
there are 2 additional papers on the school-university transition in TWG3 (focusing on 
proof), 2 in TWG6 (on students’ learning), as well as 3 papers on Klein’s second 
discontinuity attached to the new TWG5 on teacher education. It is worth noting that 
papers which investigate the case of engineering students do not use the lens of 
transitions, so that the transition from university to the workplace remains under-
researched except in the context of pre-service teacher education. 
Altogether, the theme of transitions overlaps with several TWGs and the core of the 
idea of transition that grants the unity to our TWG is still an open research question. 
Moreover, various facets of transitions may be studied using a diversity of 
theoretical/methodological frameworks. In what follows, we restrict our account to the 
8 papers and 1 poster which have been presented and discussed during the group 
sessions, hence the figures in parentheses. We thus note the following facets: 
epistemological (7), cognitive (2), affective-emotional (1), socio-cultural, institutional 
(7); and the frameworks used: the Anthropological Theory of the Didactic, ATD (6), 
Commognition (1), concept image/concept definition (1), person-environment fit (1), 
and mathematical content analysis (3). 
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As Hochmuth et al. (2021) already pointed out, a large number of authors use the 
institutional perspective of ATD to study transitions, which led us to group those papers 
in the first parallel presentation session. By contrast, a diversity of perspectives (facets 
of transitions and theoretical/methodological tools) were offered in the second 
presentation session. After an in-depth discussion of each paper, discussions opened 
up to examine the topic of transitions in the light of all the papers and finally envisage 
opportunities for collaborations and avenues for further research. We will begin with 
an account of the contributions and then highlight some of the main points raised during 
our discussions. We conclude with a few ideas on the topic of transitions that may 
inspire future research. 
HIGHLIGHTS FROM THE CONTRIBUTIONS 
We asked authors to produce a highlight of their research in the form of a 
question/problem and its answer. In this section, we use these highlights—which were 
communicated in the group report at the conference—as a means to summarize striking 
features of the contributions and introduce readers to these works. 
The school-university transition 
Sarah Khellaf and Jana Peters raise the following questions: In what way can 
praxeological analysis inform the creation of study materials for first-year mathematics 
(teacher) students, that aim to make apparent to them differences between the 
institutions of school mathematics and university mathematics? What type of empirical 
questions about the implementation of these tasks could be asked and answered in the 
framework of ATD? As an answer, a task-design rationale has been explained in the 
paper. The reference model discussed can be used to identify ‘unusual’ (personal) 
praxeologies in student solutions. These can be compared with known dominant 
epistemological models from school and university, to generate hypotheses about their 
possible origin. 
Tobias Mai and Rolf Biehler put the following problem in the foreground: School 
textbooks tend to introduce vectors as a mixture of the notions of n-tuples, translations, 
and sets of arrows—there is a need to explicitly and mathematically work out and 
integrate these settings in order to analyse and untangle interwoven approaches in 
school textbooks. As an answer, in the reference model presented in the paper, all three 
approaches to vectors are explained and finally discussed regarding their isomorphy. 
In the end, the most ostensive (illustrative) approach via arrows turns out to be the most 
complex approach of the three. 
Jelena Pleština and Željka Milin Šipuš ask: How do polynomial-related praxeologies 
develop and differentiate through secondary school and a first-year bachelor 
programme in mathematics? In secondary school textbooks, the algebraic and 
analytical approaches to polynomials induce two disjoint praxeological organizations. 
In a first-year bachelor programme, specific and reduced praxis blocks align with the 
general logos blocks of praxeologies whose object of knowledge is the notion of 
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polynomial. As a consequence, the relation first-year undergraduate students have to 
formal polynomials is marked by almost empty logos blocks. 
Sarah Schlüter and Michael Liebendörfer explore: Which strategies do students use to 
cope with difficulties in “borderline cases” when their concept image seems to 
contradict the definition? Even if students apply the definition correctly, they do not 
trust the formal argumentation and tend to rely on intuition and their concept image. In 
addition to strategies based on informal reasoning, they manage to argue on a meta-
level themselves, for instance by using transfers to similar “borderline cases”. 
Katharina Kirsten and Gilbert Greefrath ask: What are the characteristics of university 
students who choose on-campus or distance learning courses? Students with weaker 
connections to mathematics (e.g., in terms of self-efficacy and final math grade) and a 
higher digital readiness are more likely to choose a distance learning course. By 
contrast, students with strong math prerequisites tend to choose an on-campus course. 
Learning types based on self-regulation and peer learning do not play a significant role 
in course decision—at least in preparatory courses. 
Finally, the poster by Ana Katalenić, Aleksandra Čižmešija and Željka Milin Šipuš 
tackles the following question: How can the discourses on asymptotes change and 
develop in the transition from upper secondary to university education? As a result, 
discourses can develop from colloquial narratives supported by iconic representation 
through working on techniques of evaluating function values and finding asymptotes, 
towards the formal definition using distance between points on a curve and the line and 
expressions with a function limit.  
Other transitions 
Thomas Hausberger and Julie Jovignot investigate: How can students’ difficulties in 
acquiring a structural sense be understood in terms of institutional gaps in the Abstract 
Algebra track throughout the bachelor programme in mathematics? As a result, the 
study of structuralist levels of structuralist praxeologies and the values of their didactic 
variables in relation to the dialectic of contextualisation and decontextualisation points 
towards a huge gap at the 3rd year of the bachelor programme in France. It seems to 
be reinforced by the compartmentalisation of knowledge in small teaching units that 
hinders the vitality of the dialectic. 
Heidi Strømskag and Yves Chevallard examine: What transformations has the notion 
of concavity of functions undergone during the didactic transposition process from the 
knowledge taught at university to the knowledge to be taught in upper secondary 
school? Praxeological analyses of a university textbook and a Grade 12 textbook show 
that while in the university presentation, the graphical notion of concavity is 
mathematised, in the school presentation, it remains non-mathematised: concavity is to 
be seen on the graph of the function—where the theorem proved at university becomes 
now a mathematically unfounded definition of concavity. 
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Finally, Max Hoffmann and Rolf Biehler study the following question: What prior 
knowledge do student teachers have on the geometric concept of congruence before 
taking a geometry course at university? As a fact, this multi-faceted concept is treated 
rather “one-dimensionally” in German schools. Taking at university the resulting pre-
formal and superficial prior knowledge not into account to focus on formal aspects is 
likely to perpetuate Klein’s second discontinuity. There is a risk that prior 
mathematical knowledge from school will coexist with the academic mathematics 
learned, rather than being studied, corrected, and updated. 
HIGHLIGHTS FROM THE DISCUSSIONS 
Common themes emerging 
Definitions in mathematics were debated in relation to their role in acquiring concepts, 
solving problems, and proving theorems. The notion of borderline/challenging cases 
was treated as such examples play an important role in complementing an incomplete 
predominant concept image. Polynomials in school mathematics, in abstract algebra, 
and in analysis appeared as examples in the considerations. Another aspect that came 
up was that of theorems and examples used as definitions in school mathematics, most 
notably in textbooks—possibly with the intention of making the knowledge at stake 
available to a larger group of students—, a transformation that likely simplifies and 
distorts the mathematical knowledge.  
Attention was also given to the various transitions that occur in the education of 
teachers and that teacher education should address. Studying mathematics in view of 
teaching it requires developing other, new relations to mathematics compared to 
relations a mathematics student must develop. The topos changes, for instance, a 
mathematics teachers will have to choose examples and design tasks related to 
particular mathematics content in order to create opportunities for others to study it. 
Theoretical frameworks and methodologies 
The concept of praxeology—an analytic tool provided by ATD to model any human 
activity in terms of praxis (the type of tasks and the technique to solve them) and logos 
(the way to explain the technique and the theory to justify the explanation)—was used 
in six papers. Praxeological analysis was discussed on a general basis and linked to the 
notion of reference epistemological model (REM) to be used, for example, in didactic 
design, trying to remedy ruptures identified in dominant epistemological models, as 
well as overcoming didactic phenomena caused by such dominant models.  
In ATD, Klein’s double discontinuity can be expressed in terms of transpositive 
processes: When one goes from a level n to a level n + p in a curriculum (e.g., from 
secondary school to university), one generally faces an increasing rate of 
mathematisation, and conversely, in the opposite direction, there is generally a 
demathematisation of the mathematical content. This was discussed and related to the 
formalization developed by Winsløw and Grønbæk (2014). 
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On methodology, the problem of standardized methods for elaboration of REMs was 
raised and related to three dimensions of the questioning of any object: its structure, its 
functioning, and its utility. Networking of theories, ATD and Commognition or ATD 
and Stoffdidaktik (subject matter didactics), was mentioned as a promising research 
methodology to cross perspectives and promote collaborations but not really discussed 
in depth due to lack of time. Finally, an understanding was reached that when 
communicating research to non-specialists of ATD (especially in oral presentations), 
it is appropriate to avoid excessive formalism.  
CONCLUSION 
With a focus on transitions, researchers are aiming at the investigation of didactical 
phenomena in terms of continuities/discontinuities/ruptures. They may be pursuing 
different goals: their endeavour may be to identify difficulties related to 
epistemological/cognitive/institutional discontinuities, to suggest ways to smoothen 
ruptures or assess existing measures (to respond to institutional and societal demands), 
to contribute to teacher education (since most researchers are teacher educators), to 
refine theoretical constructs (such as models of transitions), or to study the effects of 
the didactic transposition. 
Avenues for further research are wide. At the level of the school-university transition, 
collaboration among researchers should entitle a shift from small-scale local studies 
(centred on a concept or a single institutional context) to wider perspectives and 
contexts, including comparative or longitudinal studies. Research on ruptures across 
university studies, in particular towards advanced mathematics, is still rare. With the 
intensification of research on Klein’s second discontinuity, we expect reports on 
curricular innovation to account for strategies developed to tackle institutional 
constraints and to provide means to cooperate with mathematicians. Finally, transitions 
from university to the workplace for other careers than teachers (e.g., engineers) need 
also greater attention. INDRUM looks forward to receiving contributions in these 
directions at the next conference. 
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We present a qualitative study on student teachers' knowledge on the geometric 

concept "congruence". The study is part of a design research project in which we 

develop and study a 6th-semester geometry course for upper secondary student teachers 

with a particular focus on profession orientation. Based on theoretical analysis of how 

congruence is introduced and used in textbooks, we use qualitative content analysis to 

evaluate student teachers' answers on an ePortfolio-task where they have to complete 

definitional sentences for congruence of different types of plane figures. 
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INTRODUCTION 

As an innovation to overcome the second discontinuity in teacher education (cf. Klein 

1967, p. 1), we developed, implemented, and researched a geometry capstone course 

for upper secondary student teachers (Hoffmann & Biehler, 2020; Hoffmann, 2022). 

Our course concept's two essential design elements were replacing two semester weeks 

with so-called "interface weeks" (dealing with the topics congruence and symmetry) 

and implementing a semester-accompanying so-called "interface ePortfolio". Both 

design decisions intend to support a stronger and more explicit professional orientation: 

Explicit connections between the course content and the intended profession (teaching 

mathematics) are addressed in the interface weeks. The ePortfolio-activities allow 

students to practice typical mathematics-related professional job tasks (e.g., judge 

textbook materials or analyze and respond to student contributions, see Ball and Bass 

(2002, p. 11), Prediger (2013, p. 156)). In this way, situation-specific skills focusing 

on mathematical dispositions are to be promoted. Hence, the learning activities 

contribute to acquiring professional competence in the continuum model from 

Blömeke, Gustafsson, and Shavelson (2015).  

We develop and study our interface activities within a design research approach (van 

den Akker et al., 2006), adapting the particular methodology of Prediger et al. (2012). 

For our project, this means following the cycle (Hoffmann & Biehler, 2020, p. 341): 

Specifying and structuring the interface topic (Step 1), (re)designing interface learning 

activities (Step 2), using, and studying interface activities (Step 3) and developing and 

refining (local) theories (Step 4). Specifying and structuring the interface topic (step 1) 

includes, in particular, analyzing the learner's perspective on the topic. Initially, this 

can only be formulated based on existing literature and theoretical considerations. We 
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continuously refine the learner's perspective based on empirical data during the design 

research project. For this purpose, we use special ePortfolio activities. In this paper, we 

present results obtained on the interface topic of congruence. These provide interesting 

insights into the learning requirements of student teachers on this topic, even 

independently of our specific project, and are thus valuable both for research and 

university teaching practice. The study presented is part of the first author's PhD-

project (Hoffmann, 2022, p. 212) and is embedded there in a larger theoretical 

framework. In the following, we focus on the presentation of relevant results.  

THEORETICAL BACKGROUND TO THE CONCEPT OF CONGRUENCE 

Before describing the research design, we will give an overview of the mathematical 

background knowledge of the concept of congruence and summarize our literature- 

and textbook review on congruence as a topic in secondary school. 

Congruence from a Mathematical Perspective 

From a mathematical perspective, there are several ways to formalize congruence. The 

decisive factors here are, first, the role isometries play in the theory building and, 

second, the generality of the congruence concept concerning the figures (subsets of the 

geometric space used) that can be handled with it. In our course, we build up the plain 

geometry on the definition of metric spaces. Thus the concept of isometries is naturally 

available as an essential tool for definitions and proofs. In this approach, congruence 

can be defined for any two figures F, G via the existence of an isometry φ with the 

property φ(F) = G. Instead of using a general concept of isometry (in the sense of an 

arbitrary mapping that leaves distances invariant), one can also use special isometries 

(without necessarily naming them as such) like just reflections or reflections, rotations, 

and translations. The Three Reflections Theorem provides the equivalence of the three 

approaches. Alternatively, congruence can also be defined entirely without the use of 

isometries. For example, Hilbert (1902) explains with axioms what congruence means 

for line segments and angles and then postulates the congruence theorem SAS. In a 

final step, the concept is extended to any finite set of points and thereby implicitly 

extended to any infinite set of points uniquely specified by a finite set of points. 

However, congruence for more complicated figures cannot be described this way (in 

contrast to the approach described first). 

For teacher professionalization, it is necessary that important mathematical concepts 

are carefully embedded axiomatically but also considered detached from a specific 

axiomatic structure. In this sense, we refer to essential characteristics of mathematical 

concepts found through inductive subject-specific-didactical analyses as interface 

aspects. For congruence, we have worked out the following four interface aspects 

(refined compared to Hoffmann and Biehler (2020, p. 343)): 

1. The aspect of quantities with identical sizes: Congruent figures match in several 

geometric quantities. This emphasizes the static-comparative character of 

congruence. 
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2. The aspect of mapping: This aspect describes a dynamic perspective on 

congruence: For every two congruent figures, a mapping (bijective isometry) 

exists, which transfers the figure into the other. 

3. The aspect of relation: Congruence is an equivalence relation on the power set 

of the geometric space used. The statement delivers characteristics connected 

intuitively with the concept of congruence as a kind of "geometric equal sign". 

Furthermore, the congruence relation divides the plane figures into equivalence 

classes, so-called congruence classes. 

4. The aspect of classification: This aspect brings together the previous aspects. 

The aspect of relation provides a disjunctive division of all figures into 

congruence classes. All figures of a congruence class correspond in different 

geometric sizes (the aspect of quantities with identical sizes) and can be 

transformed into each other in pairs by isometries (the aspect of mapping). 

Congruence in German Mathematics School Classes 

Congruence is a central concept in German lower secondary geometry teaching 

(Holland, 2007, p. 65). It appears mainly in the form of the congruence theorems for 

triangles. Those are used on the one hand as a theoretical background for construction 

problems (e.g., because the theorem SSS holds, all triangles constructed from three 

lengths are congruent) and, on the other hand, as a method for geometric reasoning 

(Weigand et al., 2014, p. 202). The main question underlying the construction of 

triangles is when a triangle can be uniquely (except for congruence) constructed from 

a subset of size specifications. Therefore, it is a question of which subset of size 

specifications a congruence class of triangles is already uniquely determined. Thus 

congruence is used in the sense of the aspect of classification described above. 

Geometric reasoning with congruence is about identifying congruent figures (usually 

triangles) and then taking advantage of the fact that the equality of corresponding 

quantities follows from congruence (aspect of quantities with identical sizes). In 

addition, the aspect of classification also plays an important role here, as it allows to 

deduce congruence of partial figures of the proof figure based on incomplete 

information. 

In an analysis of several current relevant textbooks, we were able to determine that, in 

addition to the emphasis above on congruence theorems and triangles, there was always 

a preformal-illustrative definition of a general congruence concept. However, this did 

not play a role in the rest of the chapter in the sense that neither the congruence 

theorems were justified regarding the definition, nor were there tasks in which one had 

to work with the definition (details of this textbook analysis: Hoffmann, 2022, p. 170). 

Overall, it can be stated that congruence in Germany is a topic of lower secondary 

geometry that usually does not play any further role in mathematics teaching at the 

upper secondary level. Also, at university, congruence is usually not a topic of the 

standard courses in teacher education. Thus, the prerequisites of student teachers result 

from the skills and abilities that are still available from geometry lessons they attended 
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in lower secondary school. We have made the experience that this includes a 

conceptual idea of congruence and a rough remembrance of the congruence theorems 

SSS, SAS, and ASA in connection with construction tasks. Knowledge of a precise 

definition of congruence cannot be assumed. 

RESEARCH QUESTION AND STUDY DESIGN 

We present a qualitative study that contributes to answering the following research 

question, which we already outlined in the introduction: What knowledge do German 

student teachers have on the geometric concept of congruence before taking a 

university course on geometry? 

The data basis are pseudonymized responses to an ePortfolio-activity that the students 

completed directly at the beginning of the semester. The students' knowledge about the 

concept of congruence was mainly acquired in the context of their mathematics classes 

in secondary school. Some students may have "refreshed" their knowledge in the 

meantime through internships or private tutoring, but congruence was not a compulsory 

component of other courses in their studies. Thus, when dealing with congruence in 

the course (both as mathematical content and as an interface topic), it cannot be 

assumed that students have sound prior knowledge, let alone common learning 

prerequisites. This is exactly where the following ePortfolio activity comes in: 

Please write down how you would complete the following definitions. Please do not look 

them up in a book or online, and please do not exchange ideas with your fellow students 

but answer as if you were asked these questions in a conversation. It is not necessarily 

about a "formal definition." Just write what is on your mind now: (1) Two triangles are 

congruent if …, (2) Two quadrilaterals are congruent if …, (3) Two circles are congruent 

if …, (4) Any two figures of the plane are congruent if …. 

With the aim of better understanding what concepts and misconceptions students have 

at the beginning of the course, they are asked to complete congruence definitions for 

different geometric figures: The first subtask is about triangles which are the central 

objects for congruence considerations in mathematics teaching. Next, congruence is to 

be defined for quadrilaterals. These are much more complex from a congruence 

perspective (e.g., Laudano & Vincenzi, 2017). The third subtask is on defining 

congruence for circles, which is a step away from considering n-gons. Finally, the 

students should give a general congruence definition for arbitrary figures in the plane 

and thus think about a concept of congruence that is detached from the unique 

geometric properties of individual object classes.  

The task is designed to make it as easy as possible for the students to complete. On the 

one hand, this shows up in that the task is not to write down a perfect, "formal 

definition" but to answer as spontaneously as possible. On the other hand, sentence 

starters are already given to encourage the students to answer based on their previous 

knowledge and not to research in books or online. In this way, the data collected should 

provide a sample as realistic as possible of the students' concepts of congruence. 
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However, this procedure has the disadvantage that the students are not explicitly asked 

to reflect on their answers' precision and mathematical content. At the end of this paper, 

we will discuss how the methodological design can be optimized for this purpose in 

subsequent studies. In addition to the usefulness for research, the task also supports 

students' professionalization as it provides a starting point for them to reflect on their 

learning progress. 

We used the activity in the winter semester of 2019/2020 (cycle 2) and the summer 

semester of 2020 (cycle 3) after the heterogeneity of prior knowledge of the concept of 

congruence became very apparent in the practical experiences in the summer semester 

of 2019 course (cycle 1). A total of 44 students' texts are available for analysis (cycle 

2: n = 12, cycle 3: n = 32). We analyzed them using the method of structuring 

qualitative content analysis (QCA) (Kuckartz, 2018, p. 97) to describe typical concepts 

and (mis)conceptions of the concept of congruence.  

 

SELECTED RESULTS OF THE QUALITATIVE CONTENT ANALYSIS  

To develop an initial category system, we did an a-priori-analysis based on the 

summarized theoretical background described above to develop hypotheses on the 

student's possible answers. As it is not possible to present the QCA in all its details 

within this paper, we have decided on the following structure: In the subsequent 

subsections, sorted by the subtasks of the ePortfolio activity, we first present a 

summary of the a-priori analysis and then selected results of the QCA. The fully 

documented content analysis (including the complete system of categories) can be 

found at Hoffmann (2022, p. 212). 

Congruence of Triangles 

As mentioned, triangles are the central class of objects for congruence considerations 

in school mathematics. In this context, the congruence theorems have much greater 

importance than working with the actual definition of congruence. For this reason, we 

assume that most students define the congruence of triangles via congruence theorems 

and, conversely, almost no one chooses a definition using isometries (e.g., via "rotate, 

reflect, translate" or via "cover one triangle exactly with the other"). In fact, from a 

purely mathematical perspective, there is nothing wrong with using one of the 

congruence theorems as a definition for the congruence of triangles since all 

congruence theorems are equivalence statements. This means: If one uses one of the 

congruence theorems as a definition, the others can be concluded from it. As mentioned 

above, Hilbert also argues in this way. In the context of this study, however, it is 

essential to note that it does not automatically follow from the use of a congruence 

theorem when completing the sentence in this subtask that the person is aware that all 

other congruence theorems can be deduced from the chosen one. Mainly when students 

write down several congruence theorems simultaneously, this tends to indicate that 

they do not have a concept of a concise definition for triangular congruence. In 
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addition, it can also be expected that some students will complete the definition 

mathematically incorrectly. 

The analysis of the student responses confirmed these hypotheses. As expected, most 

students used one or more of the congruence theorems to complete the sentence (SSS, 

26 codings; SAS, 22 codings; ASA, 17 codings; SsA, 10 codings). Most students who 

mention a congruence theorem refer to several congruence theorems (24 codings). Six 

students use exactly one congruence theorem. Furthermore, five students correctly 

define the congruence of triangles by the correspondence of all side lengths and all 

angles. Eight Students define the congruence of triangles via "exact covering" and/or a 

colloquial formulation referring to explicit geometric mappings (e.g., "rotate, reflect, 

translate"). 15 students give incorrect statements about the congruence of triangles. It 

becomes apparent that many students know the congruence theorems in principle but 

not their exact prerequisites (e.g., the position of the given sizes in relation to each 

other. This leads to the formulation of false congruence theorems for triangles. The 

following quotes from Romy and Jason are examples of the two most frequent mistake 

patterns in this category. Jason mentions the incorrect congruence theorem AAA. The 

problem with Romy's completion is more subtle: "Two triangles are congruent if […] 

one side and two angles are equal." Romy obviously aims at the congruence theorem 

ASA but does not consider that the two angles and the side must each be in the same 

position to each other; without this precondition, the statement is incorrect. 

In summary, it can be stated that a reference to the congruence theorems characterizes 

a large part of the students' answers. Many students make correct statements about the 

congruence of triangles, but often no distinction is made between a congruence 

theorem and the definition of congruence for triangles; in some cases, this cannot be 

decided with the available data. 

Congruence of Quadrilaterals 

The congruence of quadrilaterals is a topic that is treated at most as an excursus in 

school mathematics, but in no case systematically. Therefore, it is not to be assumed 

that the students have substantial prior knowledge here. There are at least two plausible 

strategies for completing the sentence: On the one hand, students could try to generalize 

a congruence theorem for triangles; on the other hand, students could try to use a 

general, quadrilateral-unspecific congruence definition. Due to the dominance of the 

congruence theorems in mathematics lessons, we assume that the first approach will 

dominate. Because finding congruence theorems for quadrilaterals is not trivial, correct 

and incorrect formulations are expected in the congruence statements for quadrilaterals 

generalized from triangle congruence theorems. In addition, one has to consider the 

role of convexity as an essential precondition for the validity of certain congruence 

theorems. However, since non-convex quadrilaterals do not play a designated role in 

mathematics teaching, we do not expect students to consider this case when working 

on the task. Accordingly, we evaluate the correctness of the statements made assuming 

that it is only about convex quadrilaterals. 
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Based on the analysis results, it can be stated that, as expected, convexity was not 

mentioned by any of the students. Overall, the picture is more heterogeneous than in 

the case of triangular congruence. This is consistent with the a priori analysis. The 

heterogeneity may be a consequence of the fact that the students cannot use prior 

knowledge here but have to make independent mathematical considerations. As 

suspected, many students make congruence statements for quadrilaterals analogous to 

the congruence theorems for triangles. The correct congruence theorems for 

quadrilaterals mentioned by the students are SASAS (7 codings), ASASA (4 codings), 

and SSSSD (1 coding). The most frequently coded correct category for the congruence 

of quadrilaterals is the equality of the sizes of all corresponding angles and sides (11 

codings). This is similar to the described congruence sentences in that congruence is 

also defined here via the specification of matching sizes. The difference is that no 

attempt is made (as is usual for a congruence theorem) to describe congruence by a 

minimal subset of these quantities. Furthermore, six students chose a formulation that 

refers to isometries and would be transferable to other figures. 

However, incorrect congruence statements for quadrilaterals were found most 

frequently (19 codings). The mistake patterns are more diverse than the statements 

concerning the congruence of triangles. The inadmissible generalization of the 

congruence theorem SSS to SSSS occurs several times. The other incorrect statements 

on the congruence of quadrilaterals cannot be summarised under a common 

description.  

Overall, the analysis results confirm that most students have no systematic prior 

knowledge about the congruence of quadrilaterals and seem to make their own 

considerations when answering the task. In addition, many students try to generalize 

their knowledge about congruence theorems to triangles, which only some of the 

students succeed in doing.  

Congruence of Circles 

The question of the congruence of circles is almost certainly new to nearly all students. 

Assuming again that most students associate congruence with the congruence theorems 

for triangles, a logical transfer of the idea of specifying sizes is to define two circles as 

congruent if they have the same radius, diameter, or circumference, for example. 

The results of the analysis support this hypothesis. Practically all students succeeded 

in making a congruence statement for circles. Almost exclusively, the equality of the 

radii was used as a criterion (40 codings). Some students (11 codings) list several 

properties simultaneously (e.g., radius, diameter, circumference). For these students, it 

is plausible to assume that defining congruence (as required in the task) is not 

distinguished from stating congruence theorems (which must be proved based on a 

definition). This problem has also been identified with triangles. 
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Congruence of two Arbitrary Figures 

In completing the fourth sentence, depending on how congruence was treated in one's 

school lessons, aspects from all the approaches to the concept of congruence identified 

in the textbook analysis can occur. These include the idea of "exact covering," the 

approach of "reflect, rotate, translate," the formulation of "same shape and size," as 

well as a reference to geometric constructions. In addition, a further generalization of 

the congruence theorems in the sense of "equality of the sizes of all corresponding 

angles and sides" is conceivable. 

The results of the analysis confirm the hypotheses in the sense that all different 

approaches could be identified: Congruence as "exact covering" (17 codings), 

congruence as mappable by "reflect, rotate, translate" (10 codings), and congruence as 

"same shape and size" (9 codings). The "equality of the sizes of all corresponding 

angles and sides" also be coded (11 codings). Apparently, the students whose 

explanations were coded in this category, understand by "arbitrary figures" only n-gons 

since this approach does not work for curvilinear bounded figures. 

Some students refer to the existence of a transferring congruence mapping or isometry. 

This is striking from the perspective of the school textbook analyses because isometries 

play only a minor role in German mathematics teaching at school. Two possible 

explanations are that the students are attending the course for the second time or have 

learned the terms in the context of a non-obligatory seminar. However, not all students 

who recur abstractly to the existence of a certain mapping succeed in correctly 

specifying the necessary properties of this mapping. (3 codings). Instead of the 

isometry property, only affine linearity, bijectivity, or equality of aspect ratios is 

formulated as a requirement. 

Finally, we would like to present a result of the analysis that was not included in the 

conception of the study but was so striking in the analysis of the students' texts that it 

is briefly described here. Even though the assignment did not explicitly ask for a 

"formal definition", the lack of language precision in the statements of many students 

is worth mentioning. Often, it is clear to a reader who already knows the subject what 

is meant, but many formulations are problematic as a satisfactory mathematical 

statement, even or in particular for school students, because they contain unnecessary 

redundancies, are ambiguous, and/or lack necessary conditions. 

DISCUSSION AND OUTLOOK 

The qualitative study presented in this paper aims to gain insights into student teachers' 

knowledge about the concept of congruence, which must be considered as prerequisites 

for teaching geometry in a university course. Taking this previous knowledge not into 

account and teaching just on a university mathematical level is likely to perpetuate 

what Klein described as the second discontinuity. Previous school mathematical 

knowledge is expected to coexist with university mathematical knowledge instead of 

correcting and updating it. For researching this, we analyzed student work on an 

ePortfolio activity. The results presented in this paper have to be interpreted 
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considering the research methodology's limitations. First, the results are not 

generalizable but show a spectrum of possible student perspectives. Furthermore, the 

task is designed so that the students are asked to answer as spontaneously as possible 

and without external support. This procedure has the disadvantage that it is not possible 

to ascertain whether the students, at a second glance, may correct their own statements. 

In particular, the observed mention of different congruence statements for a figure 

raises the question of whether these students have clear ideas about the difference 

between a definition of a concept and theorems about that concept. It would make sense 

to try a more elaborate research design in a subsequent course cycle. One option is to 

send the students their own statements after a short time, e.g., via an activity in the e-

learning system, with the task to look at them again, reflect on their function as a 

definition, and, if necessary, revise them. With a view to the professional orientation 

of the event, it would be helpful here to let the students develop and compare both a 

definition at the university level and a definition at the school level. 

A key result of our study is the confirmation of the hypotheses made in the a priori 

analysis: The study results confirm the strong connection between the concept of 

congruence and the congruence theorems for triangles in students' minds. This leads to 

congruence statements being linked to the goal of specifying the smallest possible set 

of geometric quantities from which congruence can already be inferred. In terms of the 

interface aspects, congruence is thus mainly used in terms of the aspect of quantities 

with identical sizes, while the aspect of mapping hardly plays a role in the students' 

minds. The concept of congruence, characterized by the aspect of quantities of identical 

size, can also be seen in the students' formulations of quadrilaterals and circles and, to 

some extent, even in arbitrary figures. More general prior knowledge beyond the 

congruence theorems is mainly preformal and not very systematic. 

The results on the student formulations of the congruence of quadrilaterals were 

particularly interesting. Here, significant heterogeneity in the students' prerequisites on 

congruence became apparent in the fact that some students gave very differentiated 

correct congruence theorems for quadrilaterals, while others simply transferred the 

general informal definition of figure congruence (roughly: two quadrilaterals are 

congruent if one of them exactly covers the other) and still others produced incorrect 

congruence theorems, which, however, provide rich discussion opportunities for a 

deeper study of quadrilateral congruence. That is why quadrilateral congruence seems 

particularly suitable for reflecting on previous school experiences of congruence and 

for initiating a productive discussion of the topic. A corresponding interface activity 

was used later in the lecture (Hoffmann & Biehler, 2020, p. 344). 

For the design research on the interface topic congruence, which we will report in a 

different paper, this study provides results on several levels: First of all, the learner 

perspective could be sharpened to the extent that the theoretically founded hypotheses 

were confirmed, according to which most students do not bring a precise content 

knowledge to the concept of congruence and, in further considerations, build on the 

congruence theorems for triangles and try to apply them to other contexts in terms of 
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the aspect of quantities with identical size. In addition, the non-optimal or incorrect 

student formulations, in particular, provide rich opportunities for the construction of 

further learning opportunities on the concept of congruence, for example, by using 

them as the basis for a critical group discussion or a comparative written analysis. 
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The concept of ideal, because of its role in the construction of structuralist algebra, is
an important entry point for studying the teaching of this field. In this article, we will
focus  our  attention  on  the  management  of  transitions  in  abstract  algebra
(Hausberger,  2018).  To  do  so,  we  will  place  ourselves  in  the  framework  of  the
Anthropological  Theory  of  the  Didactic  (Chevallard,  2000)  and  provide  salient
results of praxeological analyses of our corpus. The latter is made up of the teaching
material of three French post-secondary teachers. These analyses will allow us to
study  continuities  and ruptures  in  the  praxeologies  of  the  abstract  algebra track
throughout the Bachelor in France, but also to shed light on the way in which the
professors manage the transitions in the development of structuralist praxeologies.

Keywords: teaching and learning of linear and abstract algebra; transition to, across
and from university mathematics; structuralist praxeologies; anthropological theory
of the didactic; ideal in ring theory.
INTRODUCTION
The issue of transitions has received increasing attention in research on mathematics
education, resulting in a recent topical ICME survey (Gueudet, diSessa, Kwon and
Verschaffel,  2016).  The  state  of  the  art  of  the  literature  reviewed  in  the  survey
underlines different facets (cognitive, epistemological, socio-cultural, institutional,...)
of the transitions. The latter are investigated in terms of continuities, discontinuities,
ruptures that occur at different transition points (e.g. from school to university) and
research-based  devices  are  proposed  to  accommodate  them.  Even  more  recently,
Hochmuth, Broley and Nardi (2021) report on the works on this theme carried out
within INDRUM.
This  paper  focuses  on  transitions  across  university  mathematics  courses.  Such
transitions have been mainly investigated in the context of the analysis path (loc. cit.,
p. 203-204). In particular, several studies adopt the institutional perspective offered
by the Anthropological Theory of the Didactic (ATD; Chevallard and Bosch, 2020)
and refer to a model of the calculus to analysis transition introduced by Winsløw
(2006). In their concluding section, Hochmuth et al. (2021) raise the question of the
situation for the other fields, and, in reference to Winsløw, “what does the observed
jump from the first to the third stage of the model mean in a longer-term perspective,
e.g. taking into account what students learn in more advanced mathematics studies?”
(p. 210).
Our goal is to investigate these questions in the context of the abstract algebra path,
with an epistemological and institutional lense. It is based on the perspective opened
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up by Hausberger (2018): the concrete to abstract transition identified by Winsløw in
analysis  is  generalized  in  the  form of  the  wider  perspective  of  the  teaching  and
learning of mathematical structuralism at large - in ATD terms, the development of
structuralist praxeologies. A new three stage model has been proposed by Hausberger
and  applied  to  abstract  algebra  in  a  small-scale  pioneering  study.  A larger-scale
study, centered on second and third year post-secondary teaching practices in France
and Switzerland, is carried out by Candy (2020a) in her PhD project with a focus on
the concept of ideal in ring theory. This choice is motivated by the role played by the
concept of ideal (Corry, 2004, p. 15): its central importance for the theory of abstract
rings and, even more, for the “rise of structures” due to its strong interconnections
with  other  algebraic  concepts  (fields,  modules,  groups,  etc.).  A  model  for  such
praxeologies taught at the second year of post-secondary studies in France has been
presented at INDRUM2020 (Candy, 2020b).
This  paper  reports  on the results  of  the PhD project  that  connect  to  the issue  of
transitions,  in  France.  It  addresses  the  following  research  questions:  What
continuities and ruptures can be observed in the praxeologies of abstract algebra that
involve the concept of ideal, as they are taught throughout the Bachelor in France?
How  are  transitions  in  the  development  of  structuralist  praxeologies  handled  by
abstract algebra teachers? Both questions are related since our methodology is based
on the analysis of teaching material provided by selected teachers, under the light of
Hausberger’s  model.  It  also  refers  implicitly  to  didactic  transposition  processes
(Chevallard, 2020), but the discussion of conditions and constraints that explain the
observed states of equilibrium within institutions are out of the scope of the paper.
We begin by presenting our theoretical framework and the model, and then outline
the methodology for analyzing the data. We illustrate the methodology through its
application to selected excerpts from exercise sheets.  Then, we discuss the results
obtained in relation to the research questions, before concluding with the highlights
of the study and prospects for further development.
THEORETICAL FRAMEWORK
Hochmuth et al (2021) highlight the following main features of ATD that justify its
frequent  use  in  research  on  transitions:  the  consideration  of  knowledge  as  living
within institutions, the institutionalization of knowledge seen as the result of complex
processes of  didactic transposition subject to a set of conditions and constraints at
various  levels,  and finally  the  central  4T-model  of  praxeologies (task,  technique,
technology,  theory)  that  allows  researchers  to  build  reference  models  of  the
knowledge to be taught for application to teaching-learning phenomena. We direct
the  reader  unfamiliar  with  ATD  to  the  mathematics  education  encyclopedia
(Chevallard, 2020) for an introduction to these notions and will focus the rest of our
discourse  on  the  additional  tools,  specific  to  the  point  of  view  of  mathematical
structuralism, that have been developed.
Structuralist praxeologies and their levels. The starting point is the consideration of
mathematical structuralism as a methodology, which consists of reasoning in terms of
classes  of  objects,  relations  between  these  classes  and  stability  properties  for
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operations  on structures  (Hausberger,  2018).  The general  view of  structures  thus
allows particular properties of objects to be demonstrated by making them appear as
consequences  of  more  general  facts  (theorems  about  structures).  Dually,
generealizations are put to the test of objects, hence a dialectical relationship between
objects and structures. In praxeological terms, the simplification produced lies in the
passage from a praxeology Р=[T/?/?/Өparticular] where it is unclear which technique to
apply, to a structuralist praxeology Ps=[Tg/τ/θ/Өstructure] where, modulo generalization
of  the  type  of  task  (Tg),  the  theory  of  a  given  type  of  structure  guides  the
mathematician in solving the problem. Furthermore, Hausberger (2018) distinguishes
several levels of structuralist praxeologies: at  level 1, structures act as a vocabulary
and appear mainly through definitions (e.g., the type of tasks “prove that a ring A is a
principal ideal domain (PID)” is solved by showing, by hand, that the definition is
satisfied, i.e. that any ideal is monogeneous); at level 2, the technique used mobilizes
general abstract results about structures (on our example, one shows the existence of
an Euclidean algorithm, which invokes in the logos of the praxeology the structuralist
theorem that any Euclidean ring is a PID).
Transitions  in  the  development  of  structuralist  praxeologies.  Following Winsløw,
Hausberger (2018, p. 89) proposes a three-phase model (Figure 1): while the first
type  of  transition  amounts  to  going  from  P to  Ps,  the  second  type  leads  to
praxeologies whose entirety of praxis and logos lies in the abstract. To unfold our
example,  the  student  then encounters  tasks  like  “show that  a  Noetherian  integral
domain such that any maximal ideal is principal is a PID”.

Figure 1: a model for transitions in the development of structuralist praxeologies

Contextualization and decontextualization of structuralist praxeologies in relation to
the dialectic of objects and structures. In the example given, the ring A plays the role
of  a  didactic  variable of  the  type  of  tasks:  the  structuralist  praxeology  is  thus
contextualized to domains of mathematical objects, whose variation is crucial to lead
- in fine - to a  decontextualization (the ring  A is  defined  abstractly).  We will  be
particularly attentive to the choices made by university teachers in relation to these
didactic variables which are essential to operate the objects-structures dialectic.
METHODOLOGY
In order to shed light on didactic choices that concern transitions in abstract algebra
throughout  the  Bachelor,  we  conducted  a  case  study  of  9  university  teachers
considered representative of 5 teaching levels,  in France and Switzerland (Candy,
2020a). In this article, we will rely on data from three teachers: MP1, EC2 and EC4.
MP1  teaches  mathematics  in  the  second  year  of  the  Classes  Préparatoires  aux
Grandes Ecoles Mathématiques-Physiques (CPGE-MP; these are classes reserved for
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the best students who are destined to enter the French Grandes Ecoles), EC2 teaches
in the second year of  the Bachelor's  degree in a 7.5 ECTS course called “Linear
Algebra” and EC4 teaches in the third year of the Bachelor's degree in a 5 ECTS
course  called  “Elements  of  Ring  and  Field  Theory”.  EC4  teaches  in  the  same
university as EC2; moreover, some of the students of the third year of the Bachelor's
degree come from a CPGE-MP. Thus, in this article, we can study the transitions
through two possible curricula experienced by those third year Bachelor students.
In our study, we began by conducting an ecological analysis of the official sylabi in
order  to  bring  to  light  the  places  where  the  concept  of  ideal  lives.  Then,  our
praxeological  analysis  of  the course  documents (lecture notes and tutorial  sheets)
consisted  in  highlighting  the  praxeologies  that  mobilize  the  concept  of  the  ideal
within the exercise sheets of the corpus. When the exercises were not corrected, we
used the correction of exercises of the same type of tasks present in the institution.
We took care to link the exercises to the contents of the lectures, which allow to
identify the global  organization of  the praxeologies  (their  unification by common
technologies or theories, within themes or sectors of study) and to provide certain
technological and theoretical elements that remain partially implicit in tutorials.
Finally, the structuralist level of the praxeologies has been carefully noted, as well as
the  choice  of  the  didactic  variables  of  contextualization  of  the  structuralist
praxeologies. The aim is to analyze the continuity and rupture that can be observed in
relation to the two types of transitions described in the model, under the hypothesis
that  the  type  I  (epistemological)  transition  would  be  situated  at  the  level  of  the
(institutional) transition between the second and third year of the Bachelor's degree,
while the type II transition would be linked to that of the Bachelor's to the Master's
degree.
PRAXEOLOGICAL ANALYSES
In this section, we illustrate our analytical tools on salient excerpts from the corpus
while reporting on the main findings of our analyses. The discussion of the results in
order to answer the research questions will be the subject of the next section.
CPGE-MP: the MP1 corpus
The analysis  of  the official  program of  CPGE-MP1 allows to  identify three main
habitats of the concept of ideal. The latter is introduced by its general definition in the
sector  “common  algebraic  structures”,  at  the  level  of  the  theme  “ideals  of  a
commutative ring” where it is linked to the notion of ring homomorphism (as kernel)
and to the notion of divisibility (inclusion of ideals), then illustrated in the case of the
ring Z. It is then taken up again at the level of the theme “rings of one-dimensional
polynomials” of the same sector, through the item “ideals of K[X]”. One can note that
the program does not mention the principality property (of an ideal, of a ring) and
that it does not underline the analogy between the arithmetic of  Z and that of  K[X]
(which follows from the principality). Nevertheless, the implicit organization of the
contents is based on this analogy. Finally, the concept of ideal is mentioned in the

1 https://cache.media.education.gouv.fr/file/special_1_MEN_ESR/42/4/MP-mathematiques_287424.pdf
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theme  “polynomials  of  an  endomorphism,  of  a  square  matrix”  of  the  sector
“reduction of endomorphisms and square matrices” where the properties of ideals
previously studied allow to justify the existence of the minimal polynomial.
The  study  of  the  objects  at  stake  in  the  exercise  sheets  shows  a  diversity  of
contextualizations, although limited to numbers and polynomials. For the principal
ideal  domains  (PID),  the  classical  examples  Z  and  K[X],  quoted  in  the  official
program, are mainly worked on through their arithmetic (definition of gcd and lcm in
terms of ideals) and the consequences in linear algebra of the principality of  K[X].
The ring  Z[X] is studied as a non-example of a PID. Finally, MP1 has chosen to
introduce  Z[i]  (the  Gaussian  ring  of  integers,  whose  historical  importance  in  the
development of abstract algebra is well known) and the set D of decimal numbers to
work on the principality of Euclidean rings on less classical examples.
The analysis of the tasks shows that the students' work is mainly situated at level 1 of
the structuralist praxeologies. Thus the type of task T1 (to demonstrate that a subset I
of a ring  A is an ideal), present in 2 occurrences, gives rise to a praxeology whose
technology is based on the definition of an ideal and the type T2 (to demonstrate that
a given Euclidean ring  A is a PID, 4 occurrences), in spite of the genericity of the
technique, proceeds by hand from the definition of principality. It is at the level of a
meta-discourse that the teacher underlines the analogy between the two contexts and
the generality of the method, without going so far as to quote a structuralist theorem
(figure 2). Indeed, the theorem in question is not on the syllabus; its status is that of a
cultural element and the definition of a Euclidean ring is not formalized. Only one
occurrence of T1 leads to a level 2 structuralist praxeology where the technique uses
the structuralist theorem characterizing ideals as kernels of ring homomorphisms.

Figure 2: example of a structuralist theorem that remains implicit

The abstract tasks, 3 in total, are situated within the same exercise devoted to the
notion of radical  √ I  of an ideal  I  of a ring  A: it is proved to be an ideal (T1) then
appears the type of task T7 (to prove properties of operations on ideals). This last
type, introduced during the lectures on the gcd and lcm (addition and intersection of
ideals),  is  carried  out  here  in  an  abstract  context,  about  a  new operation  whose
behavior with respect  to the two previous ones is studied (e.g.  √ I ∩ J=√ I ∩√J),  to
finally be contextualized to Z through the task of determining the radical of an ideal
of Z. These tasks show a dialectic between contextualization and decontextualization,
since the general formula may be used to reduce to computing the radical of prime
ideals  of  Z.  It  is  a  local  implementation  of  the  dialectic  between  objects  and
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structures in the sense of Hausberger (2018), but the notion of radical remains weakly
motivated.
Second year of the Bachelor: the EC2 corpus
We notice that the concept of ideal does not appear explicitly in the official syllabus
of  EC2.  However,  the  same  niches  as  in  the  case  of  MPSI-MP are  likely  to  be
invested, since the arithmetic of polynomials and the reduction of endomorphisms are
part  of  the  study  program.  Although  he  starts  his  course  with  a  chapter  “small
panorama of algebraic structures” (like MP1), EC2 chooses to introduce the ideal
concept at  the level  of  the theme “arithmetic of  K[X]” of the sector  “the algebra
K[X]”, which constitutes its main habitat, with as niche the principality of K[X] and
the reformulation of the gcd (defined from the divisibility relation) in terms of ideals.
Not surprisingly, these results are subsequently applied to the theme “polynomials of
endomorphisms” of the sector “reduction of endomorphisms”.
Of the 7 tasks on ideals contained in the tutorial sheets, only two are contextualized
(to K[X], one to prove principality and the other to prove the existence of the lcm of
two  elements  a and  b of  K[X],  via  the  introduction  of  a  generator  of  the  ideal
(a)∩(b)). They appear as isolated tasks aimed at proving theoretical elements stated
in the course. We identify a single proper praxeology in this corpus, generated by the
type  of  task  denoted  previously  T1. Its  4  occurrences  are  all  decontextualized:  it
consists in proving that the sum and intersection of ideals is still an ideal, starting
with  the  case  of  principal  ideals.  This  shows  a  deficit  of  the  objects-structures
dialectic.  A  last  abstract  task  is  given  in  connection  with  the  reduction  of
endomorphisms: it is to prove that the kernel of a homomorphism of algebras is an
ideal. It shall be noted that the definition of a ring homomorphism (and its intimate
link with the notion of ideal) are not mentioned in the course.
Third year of the Bachelor: the EC4 corpus
The syllabus of  EC4 is  quite detailed:  it  includes  both a  large panel  of  concepts
(ideal,  ideal  generated  by  a  subset,  quotient  rings,  prime/maximal  ideal,
PID/euclidean ring/unique factorization domain) and the study of their properties in a
structuralist  perspective  (behavior  of  ideals  under  homomorphisms,  isomorphism
theorems),  from which structuralist  theorems result  (e.g. characterization of prime
and maximal ideals by quotient properties), but it also mentions  specific examples
that must be treated (Z,  K[X], Z[X], Z[i]). We thus find the paradigmatic examples
used by MP1 and the perspective of unification between the contexts of numbers and
polynomials, which gives meaning to the abstract theorems. Unlike MP1, the learning
goals  are  organized  around  the  structures,  it  is  no  longer  the  numbers  or  the
polynomials that are put to the fore. 
EC4 reintroduces in his course all the basic notions related to ideals even if EC2 had
already introduced some of them. The structure of the course allows to link the 12
exercises  dealing  with  ideals  to  the  4  following  sectors:  “ideals  and  quotients”,
“polynomials  and  ideals”,  “prime  and  maximal  ideals”,  “operations  on  ideals”.
Considering their complexity (we have identified 41 different tasks),  we can only

65



sketch the corresponding praxeologies and refer the reader to the thesis manuscript
(Candy, 2020a, appendix A5, p. 400-410) for a detailed description.
Of these 41 tasks, 18 use a definition and 23 use a theorem about structures. This
highlights EC4’s didactic intention to reach a structuralist level 2. More precisely, the
praxeologies  mobilizing  prime  or  maximal  ideals  (for  example,  the  praxeology
generated by T18 : show that an ideal  I of a ring A is prime, figure 3) mostly use as
technology the isomorphism theorems or the Chinese theorem; they thus work at a
level 2. On the other hand, those concerning the principality of ideals (e.g. T13 : show
that an ideal I of a ring A is principal) have as technology the definition of a principal
ideal and are thus mostly done “by hand”. Indeed, they are mostly situated in the
sector “polynomials and ideals” and are contextualized to K[X]. We do not note any
subsequent  development  of  the  praxeology  at  the  structuralist  level  2,  when  the
principality of Euclidean rings is known.

Figure 3: illustration of T18 in EC4's corpus

Of these 41 tasks, 10 are abstract tasks. Within the corpus, we find occurrences of
task  types  that  are  first  contextualized  and  then  decontextualized  in  order  to
demonstrate a general result (but not a generalization of the  former contextualized
occurrences). This is the case, for example, of T18 , contextualized twice in Z[X] in
exercise 7 (figure 3), before being posed to the case of the inverse image of any prime
ideal by a ring homomorphism, and then to the case of an ideal P defined abstractly
by a condition that may be interpreted as a rewriting, in the set-theoretic terms of
ideals, of the definition of a prime ideal (figure 4).

Figure 4: one occurrence of T18, decontextualized

The corresponding praxeology is of structuralist level 1, unlike the one applied to
Z[X]; we can regret that the usefulness of these results is not highlighted by new
contextualizations, in the spirit of the dialectic between objects and structures. The
other abstract tasks are related to the discussion of the consequences of the presence
of invertible elements in an ideal, to the determination of the ideals of a Cartesian
product of rings and its consequences for a quotient of such a product. These are
therefore theoretical results which are intended to feed contextualized structuralist
praxeologies of level 2. For example, the question of the determination of the ideals
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of Z2 is posed in application of the principality of Z and the results on the Cartesian
product. A praxeology generated by T13  is thus obtained, at structuralist level 2. 
DISCUSSION

Summary of main characteristics Type  1
transition

Type  2
transition

MP1 Praxeologies  mainly contextualized  and limited  to
the  structuralist  level  1;  a  relative  diversity  of
contexts (Z, K[X], Z[i], D)

Spotted
preparation  (via
meta discourse)

Absent

EC2 A single type of tasks dealt with at structuralist level
1 and in an abstract context; the objects-structures
dialectic is extremely weak

Absent Absent

EC4 Work  at  structuralist  levels  1  and  2;
decontextualized  instances  of  praxeologies  are
introduced  to  establish  structuralist  properties  of
ideals  and  punctually  serve  to  develop
contextualized praxeologies of structuralist level 2

At the center of
the course

Spotted
preparation
(implicit)

Table 1: summary of the main results

As suggested by the analysis of the syllabi, the type 1 transition does not appear as a
learning goal  in the CPGE-MP and second year Bachelor institutions under study.
Accordingly,  when tasks are contextualized to object domains, mainly  K[X] and Z,
the technique consists  in applying the definitions of concepts  without relating the
properties at stake to general results. Thus, the structuralist praxeologies involved are
all  level  1  and  the  objects-structures  dialectics  remains  largely  invisible  in  these
institutions. 
Nevertheless, MP1 chose to introduce a relative diversity of examples of PIDs which
are all  Euclidean,  and he uses meta discourse to allude to the underlying general
principle  (a  structuralist  theorem).  This  didactic  gesture  may  be  considered  an
intention to facilitate the type 1 transition. At university, EC2 introduces structures as
a “vocabulary”  and assigns abstract tasks on basic formal properties of ideals. The
type 1 transition  is therefore envisaged from a top-down perspective: although the
course  content  is  organized  around  domains  of  objects  (polynomials,  matrices,
endomorphisms),  concepts  are  introduced  beforehand  and  taken  as  a  given.  This
strategy  may  be  questioned  since  it  may  be  argued  that  the  resulting  level  1
structuralist praxeologies will tend to be weakly motivated.
It is from the third year of the Bachelor's degree onward that the type 1 transition
appears as a real objective. We have seen, in the EC4 course, that the  syllabus is
organized  around structures.  Moreover,  EC4  deploys  praxeologies,  in  numerous
contexts, which mobilize the concept of ideal at a structuralist level 2, notably around
prime/maximal ideals  and the isomorphism theorems or the Chinese theorem. The
objects-structures dialectic is at play and assigned abstract tasks punctually serve to
subsequently develop contextualized level 2 structuralist praxeologies.
Type 2 transition does not appear as a learning objective in the institutions under
study. Abstract tasks are rare in CPGE-MP and restricted to the first basic properties
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of ideals  in the second year of  Bachelor.  At the third year,  EC4 assigns  tasks to
explore structuralist properties of ideals (e.g. behavior under inverse image, Cartesian
product). Nevertheless, the main application is the enrichment of contextualized level
2 structuralist  praxeologies.  A body of abstract knowledge in which ideals play a
major  role  (e.g.  Elimination  Theory,  Algebraic  Geometry)  is  not  in  the  horizon.
However,  the  scope  of  exercise  8  (figure  4)  may  be  connected  to  Algebraic
Geometry. The teacher probably had this connection in mind, but it remains invisible
to the students. Thus, the type 2 transition is left to the Master’s degree.
Our analyses are limited to the case of three professors chosen as representatives of
their  respective institutions.  However,  Candy (2020a) provides results  on a larger
corpus that support these analyses. In the context of this article, we can provide some
initial answers to our research questions.
To answer the question of continuities and ruptures which can be observed in the
abstract algebra track around the concept of ideal through the Bachelor in France, it
seems important to us to recall that the students  who take the course of EC4 could
have  first  followed  the  course  of  EC2  or  that  of  MP1.  However,  the  treatment
between EC2 and MP1 appears different. In both cases, the praxeologies involved are
of  structuralist  level  1.  But,  if  EC2  chooses  to  work  on  praxeologies  in  a
decontextualized way, MP1 chooses to work on contextualized praxeologies and to
accompany the type 1 transition by meta-discourse.  Thus,  students from the MP1
course could be better prepared for the upcoming transition since the structuralist
perspective is pointed out as an horizon. 
Structuralist  praxeologies at the third year of Bachelor are either  of  level  1 or 2.
However,  discontinuities  in  the  type  1  transition  can  be  noted  since  structuralist
praxeologies are most of the time elaborated from theoretical elements provided a
priori, in a top-down perspective. The analogy between the arithmetic of numbers and
polynomials,  carefully  developed  by  MP1 in  a  bottom-up  perspective,  remains  a
missed opportunity to develop a structuralist praxeology in the EC4 course, since all
students  do not  share  such a  background.  Finally,  the  transition  of  type  2  is  not
worked out; it would be necessary to analyze a corpus of  teaching material at the
Master’s degree to measure the epistemological gap in praxeological terms.
As for the management of transitions by teachers, our study tends to show, for both
type 1 and type 2 transition, that it is the objects-structures dialectics which is central
in the management of transitions by teachers. For the type 1 transition, this can be
done  through  meta-discourse  which  deals  with  the  identification  of  a  technique
present  in  the  structuralist  level  1  praxeologies  which  could  be  generalized  to  a
structure class in order to create a technological element of level 2 (figure 2, MP1).
The  type  1  transition  can  also  be  managed  through  the  choice  of  variables
contextualizing the tasks which favour the use of level 2 praxeologies and make level
1 praxeologies costly.  This is the case,  for example,  of EC4 in the framework of
prime and maximal ideals (figure 4). Finally, for the type 2 transition, we have seen
that it can be punctually favored by a set of contextualization then contextualization
as in figures 3 and 4 of the EC4 corpus.
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GENERAL CONCLUSION AND PERSPECTIVES
This analysis allows us to highlight the objects-structures dialectic as a nodal point of
the management of transitions in abstract algebra. The interplay of contextualizations
and decontextualizations allows the passage from structuralist praxeologies of level 1
to 2 by recognition of a unifying technology on contextualized praxeologies (type 1
transition); then, decontextualization offers an opportunity to engage in abstract tasks
with familiarity gained from contextualized praxeologies (type 2 transition).
The phenomena observed in this reduced corpus would benefit from being tested in
the context of a larger corpus, as is the case with Candy (2020a), so as to be able to
argue for the presence of dominant praxeological models within institutions. They are
also to be related to the ecological study of the conditions and constraints that are
exercised at the level of the different institutions, in order to shed light on the states
of equilibrium reflected in these dominant models. Moreover, our results suggest that
this equilibrium is likely to be unstable with respect to the management of transitions
in structuralist algebra, and this instability should also be investigated.
REFERENCES
Candy, J. (2020a). Etude de la transposition didactique du concept d’idéal : écologie 

des savoirs et problématique de l’entrée dans la pensée structuraliste en France et 
en Suisse romande [doctoral thesis]. University of Montpellier.

Candy, J. (2020b). Etude de l’enseignement du concept d’idéal dans les premières 
années post-secondaires : élaboration de modèles praxéologiques de référence. In 
T. Hausberger et al. (Eds.), Proceedings of INDRUM2020 (pp. 308-317). 

Chevallard, Y., & Bosch, M. (2020). Anthropological Theory of the Didactic (ATD). 
In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 53-61). Springer.

Corry, L. (2004). Modern Algebra and the Rise of Mathematical Structures. 
Birkhäuser.

Gueudet, G., Bosch, M., diSessa, A. A., Kwon, O. N., & Verschaffel, L. (2016). 
Transitions in Mathematics Education. Springer.

Hausberger, T. (2018). Structuralist praxeologies as a research program on the 
teaching and learning of abstract algebra. International Journal of Research in 
Undergraduate Mathematics Education, 4(1), 74–93. 
https://doi.org/10.1007/s40753-017-0063-4

Hochmuth, R., L. Broley, & E. Nardi (2021). Transitions to, across and beyond 
university. In V. Durand-Guerrier et al. (Eds.), Research and Development in 
University Mathematics Education: overview produced by INDRUM (pp.193-215).
Routledge.

Winsløw, C. (2008). Transformer la théorie en tâches : la transition du concret à 
l’abstrait en analyse réelle. In A. Rouchier & I. Bloch (Eds.), Actes de la XIIIème 
école d’été en didactique des mathématiques (cd-rom). La Pensée Sauvage.

69



  

Design and analysis of an unusual curve sketching exercise for first 

year teacher students 

Sarah Khellaf1 and Jana Peters2 

1Leibniz University Hannover, Germany, khellaf@idmp.uni-hannover.de 

2Leibniz University Hannover, Germany, peters@idmp.uni-hannover.de 

Abstract: This paper intends to show how certain theoretical elements and tools of the 

Anthropological Theory of the Didactic (ATD) can be used in the development of 

exercises that address specific mathematical difficulties of students at the transition 

from school to university and in a subsequent analysis of student solutions.  
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university level; Transition to, across and from university mathematics.  

INTRODUCTION 

The switch from school mathematics to a more reflected use of mathematical practices 

at university is still considered a challenge for students at the transition from school to 

university (Liebendörfer, 2018, chap. 2.3). Teacher students, specifically, experience 

what is known in German mathematics education as “double discontinuity” (Winsløw, 

2017). To address such transition challenges in an introductory course of mathematics 

education for first-year teacher students1, we employ exercises and teaching materials 

which aim to examine specific aspects of the relationship between school mathematics 

and university mathematics. The materials are created on the basis of design principles 

which address professionalisation aims of teacher education (Ruge et al., 2019; Ruge 

et al., 2021, p. 250) and were elaborated for the creation of mathematical exercises 

using the notion of praxeology of the ATD (Khellaf et al., 2021).  

This contribution focuses on one particular exercise that deals with the topic of curve 

sketching. Curve sketching is a standard topic in calculus courses in German schools 

and typically serves as application field for differentiation techniques. The exercise 

discussed in this contribution intends, on the one hand, to help students overcome 

certain mathematical difficulties connected with the topic of curve sketching (for an 

overview of typical difficulties see Roos, 2020, chap. 3). On the other hand, the 

exercise intends to bring to our students’ attention specific limitations of typical school 

mathematical approaches to the topic. It is designed in such way that the application of 

standard solution strategies leads to a dead end. A solution can be found by directly 

applying the definitions of extremum and inflection point to the given graphs (Fig. 1). 

Our students typically experience difficulties in switching from solution strategies they 

learned in school to practices such as checking prerequisites of theorems and consulting 

definitions, which are more closely associated with university mathematics. When the 

usual criteria do not work, some students engage in a variety of ‘unproductive’ and 

 

1 Course development happens as part of the BMBF-funded teacher education project Leibniz-Prinzip (cf. LSE, 2021) 
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‘unusual’ practices and many have unexpected difficulty perceiving definitions as a 

resource. As most students attend several mathematics lectures before encountering 

our exercise (e. g. Analysis I), this persistence of school approaches surprised us and 

incited us to investigate this didactical phenomenon.  

In this paper, we intend to do two things:  

1. We employ the Herbartian schema of the ATD to describe in detail the rationale 

behind the exercise’s design and successive modifications. This adds to previous 

work on exercise’s design that drew mainly on Critical Psychology and the ATD’s 

notion of praxeology (cf. Khellaf et al., 2021; Ruge et al., 2019).  

2. We present a reference epistemological model (REM) that was created to represent 

a range of (according to the reference institution) ‘legitimate’, ‘plausible’ and 

‘expected’ solutions to the exercise. This REM shall in the future serve as 

analytical tool for the analysis of student solutions to the exercise.  

We finish by discussing potentially generalizable aspects of our investigation and 

observations that might be of interest to for example DBR or SoTL communities 

(inside and outside the field of mathematics education).  

THEORETICAL BACKGROUND: ELEMENTS OF THE 

ANTHROPOLOGICAL THEORY OF THE DIDACTIC 

The Anthropological Theory of the Didactic (ATD) (Chevallard, 1992, 2019) is a 

research programme for the study of human practices from an institutional 

perspective2. Institution in the sense of ATD means any form of legitimised social 

group. Any form of knowledge, and thus also actions in relation to this knowledge, is 

located in institutions and subject to institutional conditions and legitimisations. 

Institutional conditions do not merely represent external societal conditions but are 

constitutive for knowledge and the actions associated with it. In the ATD, knowledge 

is understood as human activity – legitimised, justified and explained within the 

institution – that includes not only practical aspects of “know-how” (i.e. praxis, task 

and technique) but also knowledge in the sense of “know-why” (i.e. logos, technology 

and theory). This is subsumed under the term praxeology.   

The study of the dissemination of knowledge through institutions and among persons 

is at the heart of the ATD. One important tool to capture study processes is the 

Herbartian schema (cf. Bosch, 2019): [S(X; Y; Q♥) → M={A◊
i, ..., Qi, …, Wi, …, Di, 

…}]  => A♥. It consists of the Didactic System S(X; Y; Q♥)3 around a question Q♥ that 

is studied by X (one or more students) with the help of Y (one or more teachers) to find 

an answer A♥. The study process takes place in a didactic milieu M consisting of 

 

2 Due to limited space, we cannot really explain all relevant concepts of the ATD in detail and therefore have to refer the 

reader to the existing literature. Selecting a few works, we refer to Chevallard (2019) for an introduction to ATD and an 

overview. Lucas, Fonseca, Gascón and Schneider (2019) focus on the REM and the DEM as important concepts for 

research in ATD. For a concise introduction to the Herbartian schema we refer to Bosch (2019). 

3 The ♥ is a metaphor used within the ATD to indicate that this question is “at the heart” of the study process. A♥ is then 

the answer to the question Q♥.  
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different types of objects: established answers A◊
i to questions Qi that come up in the 

study process and have to be deconstructed and reconstructed in order to arrive at A♥ – 

this process is known as question-answer-dialectic; works Wi and data Di, which help 

with or provide feedback on the study process. Another category for researching study 

processes is media. Media are all types of systems that issue a message or statements. 

This can be textbooks, other works, but also fellow students or teachers. The usefulness 

of a statement to arrive at A♥ is evaluated against the milieu and fed back to X and Y. 

This is called the media-milieu-dialectic. Media-milieu- and question-answer-

dialectics are analytical tools to describe the dynamics of study processes. 

The institutional perspective of the ATD on study processes means that X and Y are 

institutional positions, Q♥ and A♥ as well as the milieu are part of institutionally 

legitimised knowledge. In each institution, e.g. school, there is a predominant way of 

describing and presenting the knowledge, i.e. the set of relevant questions, what 

answers, works and data are regarded as legitimate or adequate, in what way the 

knowledge is used etc. This is called the dominant epistemological model (DEM). To 

study didactic phenomena of an institution, the ATD proposes to build a reference 

epistemological model (REM) (cf. Lucas et al., 2019). The REM can be seen as a 

phénoménotechnique (in the sense of Bachelard) with which didactic phenomena 

linked to the DEM can be produced and thus studied in the research process.  

As mentioned in the introduction, we suspect that institutional differences between 

school mathematics and university mathematics might have played a role in the genesis 

of the phenomenon to be studied. Differences between the knowledge of different 

educational institutions and their implications for possible study processes are central 

concerns of the ATD. Therefore, ATD is particularly useful for us, as it makes possible 

a detailed description of practices typical for the involved institutions. 

Give correct mathematical answers to the following questions and provide an acceptable 

mathematical justification.  

1) How many inflection points does graph 1 have? 

2) How many extrema does graph 2 have? 

Fig. 1: Task instruction of the curve sketching exercise 
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DESIGN AND ANALYSIS OF THE EXERCISE  

Task description4  

Fig. 1 shows the curve sketching exercise given to students (cf. Ruge et al., 2021, 

section 14.2.2). Students are additionally given a chapter on curve sketching from a 

German mathematics textbook for upper secondary school (Freudigmann et al., 2012, 

pp. 38-67) as reference material. The chapter contains definitions, theorems, examples 

and exercises. Figures 2 and 3 show the definitions of extremum and inflection point.  

Definition: A function has a  

          local maximum 𝒇(𝒙𝟎),                local minimum 𝒇(𝒙𝟎),   

at 𝑥0, if there exists an interval 𝐼 with 𝑥0 ∈ 𝐼, so that for all 𝑥 ∈ 𝐼: 

                𝒇(𝒙) ≤ 𝒇(𝒙𝟎)                           𝒇(𝒙) ≥ 𝒇(𝒙𝟎).  

In this case, the point (𝑥|𝑓(𝑥0)) [sic] is called  

        “high point” of the graph             “low point” of the graph.  

Fig. 2: Definition of extremum (Freudigmann et al., 2012, p.46, translation by authors) 

Definition: Let the function 𝑓 be defined on an interval 𝐼, differentiable and let 𝑥0 be an 

inner point of the interval.  

A point 𝑥0 at which the graph of 𝑓 changes from being a left-hand5 curve to being a right-

hand4 curve or the other way around is called inflection point of 𝑓.  

The respective point 𝑊(𝑥0|𝑓(𝑥0)) is called inflection point of the respective graph.  

Fig. 3: Definition of inflection point (Freudigmann et al., 2012, p.56, translation by 

authors) 

Among the theorems are four which specify criteria for the existence of extremums and 

inflection points on certain differentiable functions; Fig. 4 shows one such theorem. 

Theorem: Let the function 𝑓 be arbitrarily often differentiable on an interval 𝐼 and let 𝑥0 be 

an inner point of the interval.  

1. If 𝑓′′(𝑥0) = 0 and 𝑓′′ has a sign change in the vicinity of 𝑥0, then 𝑓 has an inflection 

point at 𝑥0.  

2. If 𝑓′′(𝑥0) = 0 and 𝑓′′′(𝑥0) ≠ 0, then 𝑓 has an inflection point at 𝑥0.  

Fig. 4: Schoolbook theorem: criteria for inflection points (Freudigmann et al., 2012, p. 

56, transl. by authors) 

 

4 For a more detailed description of the 2020 implementation cf. https://platinum.uia.no/download/io3-teaching-units-

for-student-inquiry/luh-teaching-units/ (last accessed 12.08.2022).  

5 ‘left-hand curve’ = strictly convex curve; ‘right-hand curve’ = strictly concave curve [the authors] 

73



  

Questions 1) and 2) can be answered with the help of the definitions of extremum and 

inflection point that can be found in the schoolbook (Fig. 2 & Fig. 3). According to 

these definitions, there are no inflection points on graph 1 but infinitely many 

extremums on graph 2 (cf. Fig. 1).  

Examples of ‘peculiar’ student responses to the task 

In 2019, a student group presented an exercise solution and explained correctly why 

the schoolbook theorems do not yield useful information, but could still not answer 

questions 1) and 2) because they had not thought of looking into the definition as a 

viable course of action. In 2021 a student, who wanted to write an essay about the topic, 

tried to apply the strategy of approximating the functions pertaining to graphs 1 and 2 

with step functions and to transfer knowledge about properties of the step functions 

onto the limit functions, before we directed him towards the definitions. Overall, we 

could observe in many students’ approaches a peculiar absence of the strategy of 

consulting the (formal) definitions of the concepts in question, and a replacement of 

this strategy by a variety of ‘unproductive’ and ‘unusual’ strategies.  

Description of the task’s economy and ecology 

In German school mathematics, the curve sketching exercise can be considered 

‘unusual’ because exercises within the topic of curve sketching typically ask for the 

application of algorithmic procedures derived from schoolbook theorems which give 

criteria for the existence of extremums and inflection points. These algorithms 

constitute the institution’s ‘official answer’ A◊
School for virtually all schoolbook 

exercises which ask to find extremums or inflection points on functions, which are 

typically given in algebraic form. A◊
School thus constitutes the dominant epistemological 

model (DEM) in the institution of school mathematics regarding the topic of curve 

sketching. In the curve sketching exercise, however, the standard procedures for 

determining extrema and inflection points fail: The schoolbook theorems are 

formulated as unidirectional conditional statements (cf. Fig. 4), but on the straight 

segments of graph sketches 1 and 2 (Fig. 1) the sufficient conditions do not hold.  

In university mathematics, a standard technique to approach any mathematical problem 

is the verification of one’s own knowledge of the involved definitions, which we will 

call A◊
University. In the case of the curve sketching exercise, making sensible use of the 

schoolbook definitions will lead to an answer to questions 1) and 2).  

The curve sketching exercise was designed in such way, that the media provided 

strongly evoke the DEM of the institution of school mathematics: it is introduced by a 

fictional conversation between two school students and provides a schoolbook excerpt 

as material (WSchool). A
◊
University, on the other hand, becomes less associated with the 

task (→ A◊
University). One aim of evoking the DEM was to make our students experience 

its mathematical limitations and provoke subsequent questioning of the DEM.  

The milieu actively provided was a page on an online learning platform that contained 

the media and some instructions. However, as the page is non-responsive and does not 
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give feedback on student’s activities (apart from providing the media), it is not included 

in the Herbartian schema. The teaching team Y offered to respond to questions at any 

time and would add further elements to the milieu upon request (in the form of replies). 

An ‘invisible’ but nonetheless crucial part of the milieu are the results of an application 

of logical/mathematical reasoning (Dmath). A
♥ was not included in the milieu (e.g. in 

the form of a sample solution for self-check).  

Question-answer-dialectic, chronogenesis and media-milieu-dialectic 

Students are confronted with Q♥ (cf. Fig.1) and many first try A◊
School to solve it. A 

correct(!) application of mathematical reasoning (i. e. interaction with the milieu) 

should yield Dmath, i.e. the ‘feedback’ that A◊
School cannot answer Q♥, which should give 

rise to new questions Qi. This coincides with the broader intention of the curve 

sketching exercise to initiate a questioning of A◊
School with regard to its “validity and 

limitations …, its adequacy to Q[♥, the authors], the adaptations required, etc.” (Bosch, 

2019, p. 4040).  

The original curve sketching exercise can be depicted schematically as:6  

[S(X; Y; Q♥) → M={A◊
School, A

◊
University, WSchool, Dmath, Qi, …}]  => A♥  

However, problems with the chronogenesis of the inquiry can arise and students can 

get stuck in a particular way: as the only part of the (initially provided) milieu that can 

give feedback on the correctness of students’ answers is Y or Dmath, which are both 

spatially and/or temporarily displaced (hence the grey font), it can happen that students 

end up believing, e.g. due to a logical error in the interpretation of the schoolbook 

theorems (taking unidirectional conditional statements for equivalences), that they 

have answered the question Q♥ correctly even though they haven’t. We suspect, that 

the DEM is being evoked too strongly and that the initial milieu doesn’t provide enough 

feedback to enable (at least part of) our students to overcome and question the DEM.  

As a consequence, in subsequent implementations of the online course, the milieu was 

enriched by adding new materials (…)i to the learning platform which consisted in 

fictional dialogues WStudent between students who try to solve the curve sketching 

exercise but who run into the same dead ends as some actual students did and give an 

incorrect answer. The materials then pose the question QDM, why the displayed 

reasoning is incorrect, and include an official answer A◊
DM to QDM by the institution 

that is our didactics course in the form of a sample explanation.  

The modified curve sketching exercise can thus be schematically represented as:  

[S(X; Y; Q♥) → M={A◊
School, A

◊
University, (WStudent, QDM, A◊

DM)1, (…)2, …, WSchool, 

Dmath, Qi, …}]  => A♥  

 

6 The symbols stand for: X = students, Y = teaching team, Q♥
 = questions 1) and 2) from Fig.1, A◊

School = algorithms for 

checking criteria for the existence of extremums and inflection points, A◊
University = verification of one’s own knowledge 

of the involved definitions, WSchool = provided schoolbook excerpt, Dmath = results of (correct) mathematical reasoning  
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THE REFERENCE EPISTEMOLOGICAL MODEL 

In order to better understand the potential of the exercise to induce question-answer- 

and media-milieu-dialectics and to enable more in-depth analyses of students’ solutions 

we started to work out a REM with reference to the institution of mathematics 

education constituted by our working group and through our courses.7 The REM 

contains all praxeological elements which occur in a set of solutions to the curve 

sketching exercise that we created on the basis of WSchool and our knowledge of 

mathematics (cf. Dmath) and which were deemed the most ‘obvious’, ‘plausible’ and 

‘expected’ (i.e. ‘normal’) solutions from the point of view of reference.8 A visualisation 

of this set of solutions is given in the form of a flowchart (Fig. 5), which was inspired 

by the tool of questions-answers map (Bosch, 2019, p. 4041). The chart is not meant 

to be interpreted strictly chronologically: drawing a ‘solution path’ into the chart is 

supposed to indicate which praxeological elements occur and don’t occur, but not 

necessarily at which stage of the solution they are employed (they might be employed 

several times at different stages in the solution). The detailed REM can be accessed by 

consulting tables 1, 2 and 3 in the supplementary material in combination with the 

flowchart. The tables specify three regional praxeologies that will now be explained.   

Regional praxeology Differentiation (cf. Table 1) 

We regard the differentiation of real functions as a praxeology in its own right, because 

it is taught in school as separate topic before curve sketching is introduced in later 

school years. In the context of our course, differentiation is also treated differently from 

curve sketching as our didactic contract demands that the schoolbook be cited when 

curve sketching theorems are used, while justifications for the application of 

differentiation techniques are not necessary. The praxeology differentiation includes 

all praxeological elements that were relevant in our solutions, even if some of them are 

likely not commonly taught in German schools but in introductory Analysis courses at 

university (e.g. θ(diff).1 and 2). In this sense, the resulting praxeology is specific to the 

institution of mathematics education, whose praxeological equipment intersects with 

that of both school and university mathematics (as well as that of other disciplines).  

Regional praxeology Curve Sketching (cf. Table 2) 

We consider the praxeologies extrema (E) and inflection points (IP) to be two 

subpraxeologies of the regional praxeology curve sketching. The two praxeologies 

possess largely similar logos-blocks (monotony is relevant for both; justifications of 

theorems are based on the same ideas) and are consolidated on page 67 of Freudigmann 

et al. (2012) into a sequence of activities commonly called “curve sketching”. 

However, the book’s presentation assigns the two praxeologies to two different 

subchapters with their own specific definitions, theorems, examples and tasks. Table 2 

 

7 It is prominently characterised by the assessment criteria we apply in our exams and which we communicate to our 

students, by the knowledge and practices we teach in our courses, etc.  

8 Naturally, included solutions had to be mathematically sound. 
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represents the praxeology extrema (E); the respective praxeology inflection points (IP) 

is analogous, but “E” is swapped with “IP” and other schoolbook theorems are relevant.  

Regional praxeology Solving Tasks (cf. Table 3) 

After we had coded all steps of each solution using the above praxeologies as coding 

manual9, there remained passages in our solutions to which no praxeological elements 

had yet been assigned. For this reason, we defined an additional praxeology solving 

tasks that includes general strategies for solving tasks. These strategies are commonly 

introduced in school, applied in all subjects (not just mathematics), and are relevant for 

university mathematics as well, where they undergo a mathematical specialisation as 

stronger emphasis is placed on mathematical rigour (e.g. in mathematical case 

differentiations at university, the cases have to cover all logical possibilities and any 

two cases have to be disjunct from each other).  

DISCUSSION 

The design of the curve sketching exercise addresses two circumstances: First, it is a 

reaction to mathematical difficulties students typically experience at the transition from 

school to university.10 By posing a mathematical problem which cannot be solved 

within a well-known DEM from school mathematics, we intend to initiate questioning 

and further analysis of this DEM. This idea is especially relevant in the education of 

teacher students, as this group can not only benefit from questioning and increasing 

their mathematical knowledge, but also from using didactic theory to analyse and 

reflect upon the teaching of the DEM in school, its goals and effects. Secondly, exercise 

modifications intend to mitigate teaching difficulties arising from the non-

responsiveness of our digital learning environment and the lack of feedback by the 

milieu. These difficulties are in fact not only a problem of our specific learning 

platform but also, more generally, a feature of the type of task proposed: the idea for 

the task is based on the expectation (and experience) that many students are fixated on 

the DEM so strongly that they overlook solution strategies that are very elementary 

from the point of view of university mathematics. The potential of the exercise lies in 

its capacity to incentivise reflection on these issues, i. e. on biases in one’s own 

mathematical thinking and their possible origins. With regard to the learning platform, 

the question arises of how to provide feedback that is standardised but will nonetheless 

relate to individual mistakes to some degree in order to help students who are ‘stuck in 

the DEM’ and to encourage them to continue their investigation into Q♥. Due to worries 

that the presence of a sample solution A♥ might discourage further investigation and 

bar access to certain learning experiences, we did not provide A♥ on the page of the 

learning platform that contained the exercise. The option of enriching the milieu with 

discursive material in the way explained, on the other hand, has worked well for us: 

 

9 Coding is understood here in the sense of qualitative content analysis; the units that were coded were the elements of 

the 4-T-model, i. e. (the application of) techniques, reasons given for applying a technique, more rarely: intermediate 

questions/tasks.  

10 In German mathematics education, such exercises are referred to as “Schnittstellenaufgaben”.  
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some students became aware of mistakes they had made themselves while all of them 

were provided an opportunity to analyse typical learner mistakes using didactic theory.  

In order to create and refine an exercise that targets DEM bias in the described way, it 

is necessary to gather knowledge about typical student difficulties. Consultation of 

literature may guide towards promising mathematical topic areas and can generate 

ideas for potential exercises at the beginning of a design process. Once concrete 

exercises have been formulated, the potential of an exercise can be illuminated by 

creating a questions-answers map (our flowchart being a variation thereof). An initial 

questions-answers map functions as a reflection tool that gives an overview of the 

knowledge involved in various ways of dealing with the task and may generate (on the 

basis of knowledge about the DEM) a priori hypotheses about possible student 

difficulties. After a first trial of the exercise, materials that address mathematical 

difficulties with the task can be created on the basis of (naïve) observations of typical 

student mistakes and with the help of the map, which can facilitate a systematic 

covering of all difficulties of interest.  

The questions-answers map can be refined in connection with the creation of a detailed 

REM, which has happened in our case. The REM does not only help deepen reflection 

on an exercise’s potential and the involved institutional knowledge(s), but can be 

employed as analytical tool in ATD-based qualitative analyses of (various types of) 

data documenting student solutions or solution processes. In such analyses, it will serve 

as a normative reference against which deviations in solutions (or solution processes) 

can be systematically identified and characterised. This may be useful in cases where 

student difficulties are yet unknown or not documented sufficiently in existing 

research. We plan an exploratory investigation into our students’ solution strategies on 

the basis of our REM in order to see if we can learn more about the types of difficulties 

that occur and how to address them in our teaching. (There is a possibility, too, that 

unexpected solution strategies which are viable in certain milieus will inform the 

development of further materials.) Additionally, our REM constitutes a novelty in that 

it mixes praxeological elements from university and school mathematics to create a 

representation of a praxeological organisation that stems from the institution of 

mathematics education. This may open up new possibilities of investigating questions 

of teacher education more broadly. E.g.: Can the necessity to use praxeological 

elements from university mathematics in tasks that ‘could possibly occur in school’ 

provide a profession-oriented raison-d’être for these elements in the study curriculum? 
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Mathematics preparatory courses intend to strengthen prospective students’ content-

related and affective prerequisites for studies involving mathematics. Since 

participation is voluntary, courses should be designed to appeal to students and 

encourage them to participate. In this context, modality seems to be a key factor, which 

is why various distance learning courses exist in addition to on-campus courses. 

However, research on these different course formats is scarce. In this contribution, we 

therefore investigate which affective and performance-related factors predict students’ 

decision to choose on-campus or distance learning. Our results indicate that students’ 

digital readiness cannot be overestimated, even after several pandemic years, and that 

mathematical self-efficacy is a relevant factor to be considered in course design.  

Keywords: Transition to, across and from university mathematics, Novel approaches 

to teaching, Preparatory course, Emergency remote teaching, Person-environment fit. 

INTRODUCTION 

Entering a mathematics degree program involves a variety of changes that many first-

year students perceive as obstacles. On the one hand, students from different schools 

come together, forming a heterogeneous group with different biographies, prior 

knowledge, and learning socialisations. On the other hand, the transition from school 

to university is accompanied by changes in the learning environment since the way 

mathematics is characterised and taught at university differs significantly from the 

methods at school (Rach & Heinze, 2017). In order to facilitate the transition process, 

many universities offer voluntary preparatory courses to prospective students. These 

courses intend to strengthen the students’ content-related and affective study prerequi-

sites and give insight into the characteristics of the new learning environment (Biehler 

et al., 2018). According to  theories of person-environment fit (e.g. Swanson & Fouad, 

1999), the extent to which such courses enable successful learning depends on how 

well the learners’ individual characteristics fit  the characteristics of the learning envi-

ronment. A good fit of needs and offerings as well as prerequisites and demands sup-

ports academic achievement and the students’ well-being, while an insufficient fit may 

lead to failure and demotivation. To increase the person-environment fit and encourage 

students to participate, there are, for example, preparatory courses with different con-

tents, goals, and structures (Biehler et al., 2018). In addition, modality seems to be an 

important issue in the design of preparatory courses, as on-campus and distance learn-

ing are associated with different learning conditions. While some universities have 

been offering distance or blended learning courses for years (Derr, 2017; Greefrath et 

al., 2017), others have recently had experience with such formats in the COVID-19 

pandemic (Büchele et al., 2021). However, the extent to which such distance learning 
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courses are better suited to particular student groups than traditional on-campus courses 

has not yet been explored in detail. Assuming that students themselves choose the 

learning environment that best fits their own characteristics, this contribution compares 

the affective and performance-related characteristics of students in an on-campus and 

a distance learning course. The results give insight into university students’ expecta-

tions regarding course requirements and provide design principles for preparatory 

courses depending on the course modality. 

ON-CAMPUS, BLENDED AND DISTANCE LEARNING 

Even before the pandemic, some universities offered blended and distance learning 

preparatory courses to their students (Biehler et al., 2018; Derr, 2017; Greefrath et al., 

2017). While distance learning in this context is often implemented as an asynchronous 

online course with uploaded materials, blended learning courses also include single 

face-to-face sessions on campus. These types of preparatory courses are particularly 

common in student programs with a very heterogeneous student body, such as in STEM 

education. Because of the high level of independent learning, such courses allow 

prospective students to work at their own pace and intensity without being  bound to 

the university location (Derr, 2017; Greefrath et al., 2017). However, compared to on-

campus courses, distance learning is more demanding as it requires adequate 

equipment as well as additional skills in using it (Hong & Kim, 2018). In addition to 

the obvious, distance learning requires a higher degree of self-regulated learning and, 

therefore, addresses other learning styles (Artino & Stephens, 2009; Reinhold et al., 

2021). Thus, against the background of person-environment fit, it can be assumed that 

distance learning appeals to students with certain personal characteristics more than 

others. This assumption is also supported by initial research on emergency remote 

teaching showing that pandemic distance learning is challenging for students in 

different ways (Händel et al., 2020; Kempen & Liebendörfer, 2021; Reinhold et al., 

2021). Because courses carefully designed for distance learning differ to some extent 

from pandemic distance learning, we provide a brief overview about key aspects of 

person-environment fit for both perspectives. 

Students’ choice for on-campus and distance learning preparatory courses 

Since some universities offer preparatory courses with different modalities, individual 

fit criteria can be derived from students’ course decision. Analysing students’ reasons 

for choosing a blended learning or an on-campus course, Biehler et al. (2011) revealed 

different extrinsic and intrinsic factors, with the latter being attributed greater 

importance. Extrinsic factors mainly arise from demographic aspects of the person-

environment fit and contain restrictions imposed by students’ living or working 

situation. Students who choose a blended or distance learning course appreciate the 

high degree of flexibility in terms of attendance and time (Biehler et al., 2011; 

Thompson & McDowell, 2019). From this perspective, distance learning courses 

mainly address students who live far away, work during normal course hours or have 

other commitments. Although older students are more likely to belong to one of these 

groups, Fischer (2014) reports no significant differences between students choosing a 
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blended learning or an on-campus course in terms of age and year of graduation. Thus, 

external conditions do not appear to be sufficient for predicting the course decision. 

Intrinsic factors include both affective and performance-related aspects of person-

environment fit. Comparing students' prior academic performance, Fischer (2014) 

reported that students with stronger prerequisites, such as a better overall school 

performance (GPA) or a better math grade, tend to choose a blended learning course. 

Consistent with this, students in the blended learning course also have higher self-

efficacy (Fischer, 2014), that is, they have higher confidence in their own mathematical 

abilities than their peers on campus (Bong & Skaalvik, 2003). In contrast, digital 

readiness in terms of computer or internet self-efficacy was similar in both groups, 

representing no sufficient reason for or against a blended learning course (Biehler et 

al., 2011). Thus, course decision seems to be influenced less by (self-reported) abilities 

for digital learning than by individual learning routines. While students in blended 

learning courses cite self-regulated learning and individual time management as 

important aspects of the learning environment, students in on-campus courses value 

personal contact and peer learning (Biehler et al., 2011). In summary, previous research 

indicates that students with a stronger connection to mathematics and a preference for 

independent learning are more likely to choose a distance or blended learning course. 

Students who tend to choose an on-campus course, on the other hand, have weaker 

prerequisites and value, above all, the social interaction. 

Distance learning during COVID-19 pandemic 

Due to the pandemic situation in 2020, regular on-campus courses had to be 

spontaneously converted to distance learning. Since emergency remote teaching is 

closely aligned with on-campus teaching, pandemic distance learning often contains 

many more synchronous elements than established distance learning courses. While 

lectures are provided in form of video recordings at many universities, tutorials can 

also be successfully offered synchronously via video conferencing (Mullen et al., 

2022). In this context, distance learning courses may also include fixed schedules and 

video-based face-to-face interactions. Thus, pandemic distance learning as a learning 

environment has some specific characteristics that limit the transferability of previous 

findings. Rather, it is likely that pandemic distance learning places specific demands 

on students in terms of self-regulated learning, social interaction, and digital readiness. 

Thus, research on emergency remote teaching shows that students' ability to adapt to 

distance learning varies according to their individual characteristics (Händel et al., 

2020; Kempen & Liebendörfer, 2021). In general, there is a positive relationship 

between attitudes toward online learning and coping with the new learning conditions 

(Reinhold et al., 2021). However, students with stronger motivational orientation 

toward mathematics express a higher need for face-to-face interaction and prefer 

traditional on-campus instruction. Strong motivational orientations in this study 

include, for example, a high mathematical self-concept (Reinhold et al., 2021), which 

is a more general construct than self-efficacy, but still relates to student self-assessment 

(Bong & Skaalvik, 2003). On the other hand, Büchele et al. (2021) report that 

82



  

preparatory course performance in 2020 was generally better than in previous years. 

However, it remains uncertain whether this observation is explained by a higher 

person-environment fit or by more opportunities for cheating in distance learning. 

THE PRESENT STUDY 

Since a sufficient person-environment fit is crucial for effective learning, this 

contribution aims to identify factors that influence university students’ decision to take 

an on-campus or a distance learning preparatory course. The study is based on a 

preparatory course held at the University of Münster in September 2021. Due to 

pandemic constraints, this course was offered in two variants. In both variants, lectures 

were video-recorded and provided asynchronously on the university’s learning 

platform. The daily tutorials, on the other hand, were offered synchronously, either on 

campus or via distance learning video conferencing. Both tutorial options were 

designed the same in terms of time slots, tutors, group size, and instruction. Since 

external factors have been shown to be less relevant in predicting course decision 

(Biehler et al., 2011), we focus on affective and performance-related factors in this 

study. Due to pandemic-driven digitalisation, we expect changes on both sides of 

person-environment fit, i.e. students becoming accustomed to digital, self-regulated 

learning and distance learning environments incorporating face-to-face-interaction. 

With this in mind, research is guided by the following questions: 

RQ1: Which individual affective and performance-related factors influence students’ 

decision to take an on-campus or a distance learning preparatory course?  

Both affective and performance-related factors represent intrinsic factors and, 

therefore, are supposed to have a (strong) influence (Biehler et al., 2011). Since 

previous research findings are contradictory (Fischer, 2014; Reinhold et al., 2021), we 

will exploratively investigate the relationship between strong mathematical learning 

prerequisites and course decision. However, it is hypothesised that students who 

appreciate self-regulated learning and feel ready for digital learning are more likely to 

choose a distance learning course. Students who value personal contact and peer 

learning, on the other hand, are expected to enrol in an on-campus course. 

RQ2: How strong are the effects of performance-related factors on course decision in 

comparison to affective factors?  

Performance-related factors such as grades provide clear feedback on students’ 

(mathematical) academic achievements. Affective factors, on the other hand, concern 

a persons’ characteristics that may match or differ from the learning environment that 

is offered. Since all courses should equally promote mathematical learning, we expect 

the affective factors to have a stronger influence on the course decision. 

MATERIAL AND METHODS 

Sample  

The preparatory course is designed for prospective mathematics teachers at primary 

and lower secondary level. These two degree programs contain a comparable 
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proportion of mathematics. In this context, we investigated N = 159 students, of whom 

n = 133 were pursuing a primary teaching degree (127 female, 5 male, one did not 

specify) and n = 26 a secondary teaching degree (16 female, 10 male). Students could 

independently sign up for a course option, resulting in n = 71 students in the on-campus 

course and n = 88 in the distance learning course. On-campus learners and distance 

learners did neither differ significantly in their age (MOC = 19.53, SD = 2.16 and MDL 

= 19.39, SD = 2.01) nor their study program (80.3% and 86.4% primary level). 

Instruments 

To answer the research questions, we collected data on a total of six potentially 

predictive variables describing affective or performance-related aspects of person-

environment fit (see Table 1 for an overview).  

Table 1: Overview of the instruments and the sample’s descriptive statistics 

To measure affective factors, we made use of existing instruments that have proven 

successful in previous studies. Overall, we collected data on four variables in this 

domain, namely self-regulation, peer learning, self-efficacy, and digital readiness. 

Students’ self-regulated learning was measured using items of the short version of the 

strategies of university students questionnaire (LIST-K; Klingsieck, 2018; sample 

item: “I change my learning technique when I encounter difficulties.”). This scale is 

based on self-reports and gives insight into students’ meta-cognitive learning 

strategies. To assess students’ need for face-to-face interaction, we focus on students’ 

engagement in peer learning as collaboration with fellow students is one of the most 

important aspects of the tutorials. Peer learning was measured using items from the 

LimST scale (Liebendörfer et al., 2021; sample item: “When I have a solution, I want 

to discuss it with fellow students.”). Students' confidence in their own mathematical 

abilities was assessed in this study using the construct of mathematical self-efficacy. 

Self-efficacy has been shown to be a meaningful construct in the analysis of 

preparatory courses and is surveyed in this study using the scale from the WiGeMath 

project (Biehler et al., 2018; Hochmuth et al., 2018; sample item: “In math, I am 

confident that I can understand even the most difficult material.”). Since working in a 

digital learning environment involves various actions, digital readiness includes 

different facets such as application usage or information sharing. In order to reflect the 

Predictor  Coding Value # Items α Mean (SD) 

A1: Self-regulation  1 to 7 3 .82 4.78 (0.90) 

A2: Peer learning  1 to 6 3 .68 4.44 (0.98) 

A3: Self-efficacy  1 to 4 4 .82 2.56 (0.52) 

A4: Digital readiness  1 to 4 7 .68 3.07 (0.42) 

P1: Prior GPA lower = better 1 to 4 1  1.91 (0.45) 

P2: Final math. grade  higher = better 1 to 15 1  10,66 (2.36) 
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requirements of the digital learning environment as accurately as possible, we 

developed items for this scale ourselves, using the digital readiness for academic 

engagement scale as a basis (DRAE; Hong & Kim, 2018; sample item: “I find it easy 

to follow courses in a video conference.”). The reliabilities of the four scales range 

from acceptable to good (see Table 1), with digital readiness and peer learning scales 

having the lowest reliability (α = .68). Considering the broad scope of the construct, 

reliability can be considered satisfactory as both scales encompass different facets of 

digital or peer learning. 

Performance-related factors were measured by asking students (1) about their school 

grade point average as an indicator of prior academic performance and (2) about their 

final grade in mathematics as an indicator of performance in school mathematics. 

RESULTS 

To answer the first research question, logistic regressions were conducted with the 

dichotomous criterion course decision (on-campus vs. distance learning) as the 

dependent variable (see Table 2). Model 1 includes affective factors as predictors, 

while Model 2 consists of performance-related predictors. For each model, correlations 

between predictor variables were low (r < .57), indicating that multicollinearity was 

not a confounding factor in the analysis. In examining studentised residuals, one outlier 

was isolated. There are no unusually high values of Cook’s distance, indicating that 

there are no influential cases. 

 Model 1 Model 2 Model 3 

Predictor b SE OR b SE OR b SE OR 

Self-regulation 0.01 0.20    0.01 0.21  

Peer learning -0.35 0.19    -0.36 0.19  

Self-efficacy -1.16** 0.37 0.31   -1.40*** 0.40 0.25 

Digital readiness 0.75+ 0.44 2.12   0.77+ 0.45 2.17 

Prior GPA    0.25 0.43  0.41 0.45  

Final math grade    0.03 0.08  0.16+ 0.10 1.18 

Nagelkerke R2                .14 .003 .16 

Table 2: Coefficients of the models (method: inclusion) predicting whether a student 

chooses an on-campus or a distance learning course; ***𝒑 < . 𝟎𝟎𝟏 **𝒑 < . 𝟎𝟏 +𝒑 < . 𝟏 

Of the four variables entered into Model 1, only the students’ mathematical self-

efficacy (𝑂𝑅 = 0.31, 𝑝 = .002) contributed significantly to predicting course decision. 

However, digital readiness (𝑂𝑅 = 2.12, 𝑝 = .087) also has a weakly significant 

impact. While self-efficacy is a negative predictor of choosing a distance learning 

course, digital readiness is positively related to this type of learning. The variables 

concerning learning strategies, i.e. self-regulation and peer learning, did not have 
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additional impact on course decision. Compared to baseline, Model 1 has improved 

significantly by adding affective predictors (𝜒2 (4) = 16.42, 𝑝 = .002) and explains 

14% of the variance (Nagelkerke R2) in course decision. In Model 2, neither the final 

grade in mathematics nor the overall school performance proved to be a significant 

predictor of course decision. Accordingly, Model 2 is not statistically significant as a 

whole (𝜒2(2) = 0.34, 𝑝 = .842) and does not contribute to the variance explained. 

For the second research question, we compared the influence of affective and 

performance-related factors on course decision. Therefore, a logistic regression was 

conducted, including both affective and performance-related factors (see Table 2). 

Model 3 can explain 16% of the variance in course decision (𝜒2(3) = 19,33,                      
𝑝 = .004), with the mathematical self-efficacy contributing the most to the explained 

variance (𝑟𝑦,𝐴3 = .25,  𝑟𝑦,𝐴4 = .1, 𝑟𝑦,𝑃2 = .01). A one-point increase in self-efficacy is 

associated with a 75% decrease in the relative probability of choosing a distance 

learning course (𝑂𝑅 = 0.25, 𝑝 < .001). In Model 3, when controlling for affective 

characteristics, students’ final grade in mathematics also becomes a weakly significant 

predictor (𝑂𝑅 =  1.18, 𝑝 = .093). Although this effect can be explained by collinear 

effects (𝑟 = .34, 𝑝 < .001), it should be noted that self-efficacy is a negative predictor 

and final grade in mathematics is a positive predictor for choosing a distance learning 

course. Here we find that the relationship between self-efficacy and mathematics grade 

is substantially stronger for students in on-campus courses (𝑟 = .47, 𝑝 < .001) than 

for students in distance learning courses (𝑟 = .25, 𝑝 = .022). 

DISCUSSION AND CONCLUSION 

Preparatory courses have been offered as blended or distance learning courses for 

several years (Biehler et al., 2018; Derr, 2017; Fischer, 2014). However, synchronous 

distance formats have only become established through pandemic-related restrictions. 

To evaluate this type of distance learning for future teaching, we examined which types 

of students choose an on-campus or a distance learning format.  

Based on theories of person-environment fit, the first research question (RQ1) asked 

for affective and performance-related characteristics that influence students’ course 

decision. Unlike in previous studies (Biehler et al., 2011; Fischer, 2014), self-regulated 

learning and peer learning did not have an impact on course decision in our study. This 

unexpected finding may be related to pandemic-driven developments on both sides of 

the person-environment fit: On the one hand, video conferencing enables synchronous 

elements in distance learning that structure the learning process and allow students to 

collaborate online. On the other hand, first-year students in 2021 have already 

experienced distance learning in school and have developed new learning strategies for 

digital interaction. These personal and environmental developments may reduce the 

importance of self-regulated and peer learning as decision criteria. In contrast, 

students’ digital readiness and self-efficacy proved to be relevant affective factors for 

course decision, replicating results from research on emergency remote teaching 

(Händel et al., 2020; Kempen & Liebendörfer, 2021; Reinhold et al., 2021).  

86



  

With respect to the second research question (RQ2), a more concise picture of choice 

prediction emerges since affective and performance-related factors are included: In 

general, students are more likely to choose a distance learning course if they exhibit 

weak mathematics self-efficacy, have a higher grade in mathematics, and feel ready 

for digital learning. Self-efficacy showed the strongest impact, which is consistent with 

our hypothesis that affective factors should influence course decision more strongly 

than performance-related factors. In line with theories of person-environment fit, it is 

reasonable that distance learning offers students the opportunity to learn in a familiar, 

protected environment where feelings of embarrassment are less pronounced. 

Therefore, such a learning environment might be more attractive to students with 

weaker self-efficacy. This explanation is supported by research on pandemic distance 

learning (Büchele et al., 2021; Reinhold et al., 2021), but requires further investigation 

into how factors such as mathematical anxiety influence course decision. With regard 

to the performance-related factors, we could only report a slight preference of higher-

performing students for distance learning. This is consistent with the results of previous 

studies, which found that higher-performing students prefer blended or online learning 

courses (Biehler et al., 2011; Greefrath et al., 2017). It is noteworthy, however, that 

high self-efficacy and good grades in mathematics are associated with different course 

decisions, contrary to what was described, for example, in Fischer (2014). On the one 

hand, this finding once again highlights the differences in the various digital learning 

environments. On the other hand, the relationship between self-efficacy and 

mathematics grade may be overlaid by other factors, especially for students in distance 

learning. For example, extrinsic demographic factors such as living situation or even 

current illness have not been included in this study, although they may influence the 

weighting of the decision criteria (Biehler et al., 2011). 

In conclusion, our findings indicate that distance learning with synchronous elements 

represents a learning environment with its own characteristics and, therefore, attracts 

different students than asynchronous distance and on-campus learning. Because 

preparatory courses are voluntary and take place prior to the start of studies, distance 

learning options will still be relevant after the pandemic. Taking the relevant decision 

criteria into account, instructors can better tailor courses to the students’ characteristics. 

For example, distance learning courses should pay more attention to students' self-

efficacy, while on-campus courses could prepare more for digital learning.  
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In this paper, we present insights into the mathematical complexity of our reference 

model regarding different approaches to introducing vectors in school. We will discuss 

and compare approaches using n-tuples, arrow classes, or translations. While an 

approach via n-tuples is relatively simple, arrow classes turn out to be much more 

complex. To give a detailed example, we will discuss the proof that vector addition is 

commutative in terms of both approaches separately. This is part of the larger research 

interest to identify possible prerequisites regarding vectors that first-year students 

bring from school during their transition to university. Our detailed reference model 

is an essential foundation for further research regarding the transition issues of the 

vector topic. 

Vectors, reference model, Anthropological Theory of the Didactic, Epistemological 

studies of mathematical topics, transition to university mathematics. 

INTRODUCTION 

The transition from school to university has been a broadly conceived issue (Hoyles et 

al., 2001). There are differences between these two institutions concerning formal 

notation, rigour, and abstractness of mathematics (Luk, 2005). This process of 

transition can be investigated from different perspectives. For example, one can study 

the mathematical beliefs of students and how they change (Geisler & Rolka, 2021) or 

focus on offers of support for the transition (Gallimore & Stewart, 2014). Another 

perspective is to dive more deeply into the different types of practices of mathematics 

at school and university. The Anthropological Theory of the Didactic (ATD) provides 

an adequate framework to investigate mathematical practices in detail and while being 

sensitive to institutions and institutional effects (Chevallard, 2019). 

In many countries, students learn about vectors in school and bring their learned 

knowledge about vectors when they start studying at university. Students seem to come 

to university with a surprisingly diverse and very unsound understanding of vectors, 

consisting of incoherent elements of different views on vectors (Mai et al., 2017). This 

observation raised questions about the roots of these conceptions. Therefore, we are 

analysing school textbooks for mathematics as one possible source. For this goal, we 

use ATD, which suggests developing a so-called epistemological reference model as 

an analytical basis (Chevallard & Bosch, 2014). This paper will focus on insights into 

our reference model about approaches to vectors at school. 

THEORETICAL FRAMEWORK 

In the Anthropological Theory of Didactic (ATD), a core idea is that knowledge is 

always related to an institution to which individuals can belong (Chevallard, 2019). 
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Another key concept from the ATD, which describes that knowledge can be situated 

in different institutions, is the notion of the didactic transposition. According to the 

model of didactic transposition, four different kinds of knowledge exist: “scholarly 

knowledge,” “knowledge to be taught,” “taught knowledge,” and “learned/available 

knowledge” (Chevallard & Bosch, 2014). From the model’s perspective those four 

kinds of knowledge are part of the didactic transposition that knowledge undergoes 

before students learn it. Different institutions are involved in this process. For this 

paper, we consider mathematics at schools and university as vaguely defined 

institutions. Researchers working with ATD are encouraged to develop their own 

institutional point of view in a reference model, which can be understood as positioned 

outside the above mentioned process of didactic transposition (Barbé et al., 2005). 

Within the ATD, knowledge is conceptualised in terms of praxeologies. Praxeologies 

contain a praxis block and a logos block. The praxis block concerns problems (tasks) 

and activities to solve them (techniques). The logos block contains justifications 

(technologies) for why those activities do work and further justifications of these 

justifications themselves (theory). 

A BRIEF OVERVIEW OF APPROACHES TO VECTORS AT A SCHOOL 

LEVEL 

Tietze, Klika, and Wolpers (1982) summarize the following relevant interpretations of 

vectors at the school level exist: n-tuples, points, pointers/location vectors, arrow 

classes and translations. Filler, and Todorova (2012) state two mathematical 

approaches towards introducing vectors that are suitable and common for school level: 

n-tuples and arrow classes. Both mention the axiomatical approach and agree that it is 

rather unsuitable for introducing vectors to students in school. In German mathematics 

textbooks, we found a mixture of (partial) approaches using n-tuples, arrow classes, 

and translations to be most relevant (Brandt et al., 2014; Griesel et al., 2014; Körner et 

al., 2015). 

RESEARCH INTEREST 

Based on the discussion from the previous section, the research interest of this paper is 

to flesh out a reference model for the introduction of vectors at school level using three 

different approaches, namely vectors as n-tuples, as arrow classes and as translations. 

Through an explicit and detailed elaboration of such a reference model, focusing first 

on the formulation of the necessary definitions and theorems and the associated proofs, 

the reference model becomes logos centred. Praxis will be considered later, when the 

analysis of the school textbooks as artifacts of the knowledge to be taught are analysed. 

Only some excerpts of the reference model can be presented below, because the 

original model would be too long to fit in here. Beyond this paper, the reference model 

is intended as a framework for analysing school textbooks regarding the topic of 

introducing vectors. In the end, this research will help to better understand what prior 

knowledge students bring to university as textbooks are an influential factor in 

developing students’ knowledge at school (Valverde et al., 2002). In this paper, we 
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show the readers that large parts of the mathematical background regarding the 

introductions of vectors (have to) remain implicit for students at school. 

THE BASIC STRUCTURE OF THE REFERENCE MODEL 

For the formulation of the reference model, we decided that three types of vector 

objects should be considered: n-tuples (here and in the following with real-valued 

components and 𝑛 = 2 or 𝑛 = 3), arrow classes and translations as mappings from the 

plane into the plane or respectively in 3d-space. All three types of objects appear in 

school textbooks and are referred to as vectors. Often textbooks present an incoherent 

mixture of these three approaches and textbooks also differ in how they combine them. 

Although arrow classes are uncommon for university mathematics, they are an 

important tool at school level for solving tasks in geometrical contexts. 

In the reference model, a definition is given for each of the above-mentioned vector 

objects and operations with them. The defined structures are similar to vector spaces. 

However, this is not the implicit and more general approach of defining vectors in 

university mathematics as elements of vector spaces. The reference model includes 

further terms and operations relevant to school textbooks, including vector addition, 

multiplication by a scalar, the magnitude of a vector, opposite vectors, and location 

vectors. Our reference model is divided into two parts. First, we introduce each of the 

three approaches to vectors. Afterwards, we prove that these three approaches are 

isomorphic regarding the operations of addition, scalar multiplication and the 

assignments of “length” resp. “magnitude” (isometrical isomorphy). 

Defining a vector and the related operations and concepts based on n-tuples does not 

cause any difficulties. Building on the definition of n-tuples, the further desired 

concepts and properties such as addition and scalar multiplication can be easily defined 

by using the properties of real numbers. The situation is different if vectors are to be 

introduced as arrow classes as we will show later on. At school level, this term is 

restricted to arrow classes consisting of arrows in the plane or space. The one-

dimensional case is often neglected in school, although positive and negative numbers 

could be easily associated with one-dimensional vectors, as is done in some older 

textbooks. 

In our reference model, the arrow concept is defined as a 2-tuple consisting of a starting 

point and an endpoint. For this definition, we assume Euclidian geometry with 

properties of points, lines, and planes without specifying an axiomatic system for these 

objects. In the beginning, a coordinate system is not necessarily needed for this 

approach. Later, it becomes relevant when a connection (isomorphy) to the other two 

approaches to defining vectors is established. Furthermore, the length of an arrow and 

the relation “is parallel to” for two arrows have to be introduced. These two concepts 

can easily be traced back to known geometrical facts. We intend to build an equivalence 

relation on the sets of arrows by regarding arrows that are parallel, have the same 

length, and have the same orientation as equivalent. It is surprisingly complicated to 
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precisely define the intuitively simple concept of “having the same orientation” in 

geometric terms (see also below). 

Once this is done, the relation of two arrows being equal in length, parallel to each 

other, and oriented the same way can be proved to be an equivalence relation of arrow 

classes. Subsequently, it is clear that each arrow is an element of an associated arrow 

class. Such arrow classes are called vectors. Within this approach, it is important also 

to define the zero vector. Therefore, another class of “arrows” by all those 

“degenerated” arrows of the kind 𝐴𝐴⃗⃗⃗⃗  ⃗ has to be introduced. These arrows have to form 

an equivalence class of their own. However, the defining equivalence relation for non-

degenerate arrows is not applicable (parallelism and orientation are difficult to define 

including these degenerated arrows). This mathematical difficulty is solvable but is 

related to erroneous or missing introductions of zero vectors in school textbooks based 

on vectors as arrow classes. 

A well-known difficulty of textbook language and students’ conceptions of vectors is 

the missing symbolic distinction between arrows and arrow classes (vectors). Usually, 

both are written as 𝐴𝐵⃗⃗⃗⃗  ⃗. To avoid symbolic confusion in our reference model, we use 

the notation with one arrow, e.g.  𝐴𝐵⃗⃗⃗⃗  ⃗, to explicitly denote the arrow from A to B and 

the notation with two arrows above, e.g.  𝐴𝐵⃗⃗⃗⃗  ⃗⃗⃗ ⃗⃗  ⃗
, to refer to the class of arrows determined 

by the representing arrow  𝐴𝐵⃗⃗⃗⃗  ⃗. 

Finally, translations (as mappings) are introduced in the reference model as vector 

objects. Mathematically, these can be defined similarly to n-tuples or arrow classes. 

Our reference model introduces the ℝ𝑛 with usual operations. For 𝑎 ∈ ℝ𝑛 a translation 

can be defined as a mapping 𝑡: ℝ𝑛 → ℝ𝑛 with 𝑡(𝑥) = 𝑎 + 𝑥 for all 𝑥 ∈ ℝ𝑛. This way, 

they are introduced similarly to the n-tuple approach but as mappings. In this sense, 

they mainly differ from the n-tuple approach by a different notation and the explicit 

possibility to apply the translation to a point (given by its coordinates). 

This section will present a definition for arrows of the same orientation and investigate 

the consequences of such a definition for the proof that vector addition is commutative. 

The first complication is that it is not directly possible to define the orientation as a 

property of an arrow and then assess whether two orientations are the same. We have 

to define a relation for two parallel arrows: “Arrow a has the same orientation as b 

if…”. This is a logical challenge for textbooks and students’ understanding. It is similar 

to defining whether two finite sets have the same size (existence of a bijective mapping) 

without determining their size before by counting.  

The relation of two arrows “having the same orientation” is essential for defining arrow 

classes. For a theory about vectors as arrow classes, it is enough to define “orientation” 

only for arrows with the same length and parallel to each other. This reduces the 

possibilities for two given arrows to have same orientation or to have opposite 

orientations. From an ostensive point of view, this seems trivial to decide. However, 

the mathematical definition in the reference model has to be precise.  
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Definition of the same and opposite orientation of two parallel arrows with the 

same length 

The following definition of two arrows having the same orientation is based on the 

suggestion of Filler (2011, p. 88). It is here supplemented with the case 3. for two 

identical arrows to guarantee that the relation of having the same orientation is a 

reflexive relation. 

Let A, B, C, and D be points on a plane. Let 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ be two parallel arrows of the 

same length with 𝐴 ≠ 𝐵 and 𝐶 ≠ 𝐷. We say 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ have the same orientation if 

and only if one of the following three statements is true: 

1. 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ do not lie on the same line and the lines AC and BD are parallel to 

each other (see figure 1). 

2. 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ are on the same line, but both arrows are not identical. Additionally, 

either B and C lie on the line segment between A and D or A and D lie on the 

line segment between B and C (see figure 2). 

3. 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ are equal (𝐴 = 𝐶 and 𝐵 = 𝐷). 

Otherwise, the arrows 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐶𝐷⃗⃗⃗⃗  ⃗ have an opposite orientation. 

Figure 1: Two examples of two arrows with the same and with opposite orientation (the 

figure is similar to Filler, 2011, p. 88). 

 

Figure 2: Illustration of two cases of the points 𝑩 and 𝑪 lying between the points 𝑨 and 

𝑫 on a line. 

Thus, it is not surprising that school textbooks known to us do not use this logically 

complicated definition and mostly rely on an intuitive assessment of the “same 
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orientation”. However, it is clear that a relational concept of “same orientation” is 

necessary to overcome an ostensive definition of “same orientation”. 

With this definition as preparation, we can turn to the proof of the commutativity of 

vector addition for 2-tuples and arrow classes in comparison. 

Proof that vector addition is commutative for 2-tuples 

Let 𝑉1 = (
𝑎1

𝑎2
) and 𝑉2 = (

𝑏1

𝑏2
) be vectors (in the sense of 2-tuples). Then 𝑉1 + 𝑉2 =

(
𝑎1

𝑎2
) + (

𝑏1

𝑏2
) = (

𝑎1 + 𝑏1

𝑎2 + 𝑏2
) = (

𝑏1 + 𝑎1

𝑏2 + 𝑎2
) = (

𝑏1

𝑏2
) + (

𝑎1

𝑎2
) = 𝑉2 + 𝑉1 is true because of 

the commutativity of the addition of real numbers. Therefore, the addition of two 

vectors is also commutative. 

In the world of tuples this proof is relatively easy and does, of course, work analogously 

for every n-tuple. Now, we turn our focus to arrow classes. 

Definition of the addition of plane arrow classes 

Let 𝑉1 and 𝑉2 be plane arrow classes (vectors). Select any arrow 𝐴𝐵⃗⃗⃗⃗  ⃗ ∈ 𝑉1. Select the 

specific arrow from 𝑉2 which has the start point B (its existence and uniqueness has to 

be shown before), which is the endpoint of the selected first arrow 𝐴𝐵⃗⃗⃗⃗  ⃗. We call the 

second arrow’s endpoint 𝐶 and can refer to this arrow as 𝐵𝐶⃗⃗⃗⃗  ⃗. Now we define 𝑉1 +

𝑉2  =  𝐴𝐵⃗⃗⃗⃗  ⃗⃗⃗ ⃗⃗  ⃗
+  𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗

: =  𝐴𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
. The resulting arrow 𝐴𝐶⃗⃗⃗⃗  ⃗ represents the arrow class 𝐴𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗

 which 

is the result of the addition. This concept of addition corresponds to common idea of 

attaching an arrow to the tip of the other arrow. In the elaboration of our reference 

model – but not here in this paper – we prove that this definition is well defined for an 

arbitrarily selected representative from the arrow class 𝑉1. Again, showing the 

independence of the definition of the chosen representative is often neglected at school 

level. In principle, it is also needed when introducing fractions and their operations. 

That this neglection happens consistently at school level, might be done so because of 

the difficulty of the concept of equivalence classes. 

Proof that vector addition is commutative for arrows on a plane 

A challenge is that a proof needs to distinguish different configurations of vectors: 

being parallel or not, or including a zero vector. Also, we use the term “collinear” in a 

sense for parallel that is worked out in more detail in our reference model. 

We start with 𝑉1 and 𝑉2 being non-collinear plane arrow classes (vectors). Let 𝐴, 𝐵 and 

𝐶 be points with 𝐴 ≠ 𝐵, 𝐵 ≠ 𝐶, 𝑉1 = 𝐴𝐵⃗⃗⃗⃗  ⃗⃗⃗ ⃗⃗  ⃗
 and 𝑉2 = 𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗

. By the definition of addition 

for arrow classes the following is true: 𝑉1 + 𝑉2 = 𝐴𝐵⃗⃗⃗⃗  ⃗⃗⃗ ⃗⃗  ⃗
+  𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗

=  𝐴𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
. Thus, we are to 

show that 𝑉2 + 𝑉1 = 𝐴𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
. This can be achieved by proving that the arrows 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐷𝐶⃗⃗⃗⃗  ⃗ 

(see figure 3) have the same length, are parallel to each other, and have the same 

orientation. 
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Figure 3: Illustration of the geometric configuration for the proof that the addition of 

arrow classes is commutative. 

(a) 𝑉1 + 𝑉2 = 𝐴𝐵⃗⃗⃗⃗  ⃗⃗⃗ ⃗⃗  ⃗
 +  𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗

 =  𝐴𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
 by definition. 

(b) Choose the point 𝐷 so that 𝐴𝐷⃗⃗ ⃗⃗  ⃗ ∈ 𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
 is true. 

(c) 𝐵𝐶 ∥ 𝐴𝐷 as 𝐴𝐷⃗⃗ ⃗⃗  ⃗, 𝐶𝐷⃗⃗⃗⃗  ⃗ ∈ 𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
. 

(d) Define 𝛼 ≔ ∠𝐵𝐷𝐴 and 𝛼′ ≔ ∠𝐷𝐵𝐶. 

(e) It follows that 𝛼 =  𝛼′ because of (c) and the Alternate Interior Angles Theorem. 

(f) Further, |𝐵𝐶| = |𝐴𝐷| holds as 𝐴𝐷⃗⃗ ⃗⃗  ⃗, 𝐵𝐶⃗⃗⃗⃗  ⃗ ∈  𝐵𝐶⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗
. 

(g) 𝐵𝐷 is a side of the triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 each. 

(h) The triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent because of the Congruence 

Theorem SAS together with (e), (f) and (g). 

(i) |𝐴𝐵| = |𝐶𝐷| as the triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent. 

(j) Define 𝛽 ≔ ∠𝐴𝐵𝐷 and 𝛽′ ≔ ∠𝐶𝐷𝐵. 

(k) It follows that 𝛽 =  𝛽′, because (h) △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent and (i) 

|𝐴𝐵| = |𝐶𝐷| (the adjacent sides have the same length). 

(l) 𝐴𝐵 || 𝐶𝐷 because of the Converse Interior Angle Theorem together with (k) 𝛽 =
 𝛽′. 

(m) 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐷𝐶⃗⃗⃗⃗  ⃗ have the same orientation, because (l) 𝐴𝐵 || 𝐶𝐷, (i) |𝐴𝐵| = |𝐶𝐷|, 

and (c) 𝐵𝐶 ∥ 𝐴𝐷. 

(n) 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐷𝐶⃗⃗⃗⃗  ⃗ are elements of the same arrow class, because they are (l) parallel, 

(i) have the same length, and (m) they have the same orientation. 

After this thorough argumentation, the proof is still not complete, yet. Since it was 

necessary to presume non-collinear arrow classes for the given argumentation above, 

we now turn our attention to the formerly skipped cases. 

1. 𝑉1 and 𝑉2 are both the zero vector. 

2. Either 𝑉1 or 𝑉2 is the zero vector. 

3. 𝑉1 and 𝑉2 are parallel vectors. 
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Regarding 1. and 2. the proof cannot rely on the geometric situation as seen in figure 

3. Luckily, it can easily be calculated that the addition of arrow classes in these specific 

cases is commutative. We turn now to case 3. which is more complex. 

If 𝑉1 and 𝑉2 are collinear vectors, the definition of vector addition can be used to only 

consider arrows on the same line due to the independence of chosen representatives. 

Obviously, the sum leads to two parallel arrows and attaching them in any order leads 

to a line segment of the same length. Consequently, to prove that the addition, in this 

case, is commutative, we need to prove that the results of 𝑉1 + 𝑉2 and 𝑉2 + 𝑉1 have the 

same orientation. Same orientation for arrows on the same line was defined with the 

help of six different cases regarding the relative position of the two arrows to each 

other. Furthermore, it is possible that the considered arrows from 𝑉1 and 𝑉2 are not of 

the same length and contrary orientated (here, we use the term in common sense, since 

above we did not cover a definition for the case of arrows of different lengths). The 

proof has to consider every possible constellation. We will only give a representation, 

as seen in figure 4, of three exemplary constellations due to the limited space in this 

paper. In figure 4 one can see an arrow 𝐴𝐵⃗⃗⃗⃗  ⃗ to which an arrow 𝐵𝐶⃗⃗⃗⃗  ⃗ is attached. This 

represents 𝑉1 + 𝑉2. To the arrow 𝐵𝐶⃗⃗⃗⃗  ⃗ is another arrow 𝐶𝐷⃗⃗⃗⃗  ⃗ attached which is from 𝑉1, 

because it has the same length as 𝐴𝐵⃗⃗⃗⃗  ⃗. So, this is a representation of the commuted 

addition 𝑉2 + 𝑉1. For the proof it would further be necessary to argue in each possible 

case that 𝑉1 + 𝑉2 and 𝑉2 + 𝑉1 result in the same arrow class resp. both resulting arrows 

are representatives of the same arrow class. 

 

Figure 4: Exemplary constellations for the parallel case. 

DISCUSSION 

The elaboration of a reference model as mathematical background theory for the 

introduction of vectors using the usual school approaches via n-tuples, arrow classes, 

and translations has proven to be very insightful. The presented reference model 

constitutes a mathematical view that is neither the scholarly knowledge nor the 

knowledge to be taught at school. Because no task types or techniques are addressed 
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in the reference model, the reference model can be compared to the logos block of a 

praxeology. It offers definitions and theorems with their proofs which constitutes a 

collection of technologies and their theory. 

In comparison, the access to a vector object as an n-tuple is clearly shorter than the 

access via arrow classes. The latter approach to vectors is already in the preparations 

for the definition of the object “arrow class” clearly more complex in comparison to 

the n-tuple approach. Subsequently the study of a proof for the commutativity of vector 

addition shows in an example case that the difference in complexity stays relevant as 

the reference model progresses. Regarding school mathematics, this fact reveals that 

the most ostensive approach to vectors contains a high complexity while an algebraic 

approach is much more straight forward from a mathematical perspective. In 

mathematics textbooks, this complexity is partly condensed into single sentences like 

“In geometry, a vector can be described graphically by a set of mutually parallel, 

equally long and equally oriented arrows” (Brandt et al., 2014, translated by the 

authors). Without corresponding further explanations, vast parts of the associated logos 

remain implicit in such statements. 

The investigation and elaboration of the presented reference model are by themselves 

insightful and reveal the mathematical structures connected to the different approaches. 

Nevertheless, it is only a first step. In the future, our research will use the reference 

model to analyse textbooks and the knowledge to be taught that comes along with them. 

By this analysis, there will undoubtedly be a gap between the given justifications in the 

textbook logos and further implicit justifications which do not surface in the school 

institutions but are made visible in our reference model. Having a tool to describe the 

mentioned gap better and will also help to reflect the knowledge on vectors that 

students might learn at school and, on the other side, to reflect on what beginners have 

to learn when they first engage with university mathematics. 
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The notion of a polynomial, as one of the most fundamental concepts in all areas of 

mathematics, has a prominent role in pre-tertiary and tertiary education. Due to the 

repeated encounter of students with this notion, it makes sense to study its role in the 

transition to university mathematics. In this paper, the secondary-tertiary transition of 

mathematics students at the University of Split concerning the notion of a polynomial 

is analysed using tools of the Anthropological Theory of the Didactic. 

Keywords: Transition to, across and from university mathematics; Teaching and 

learning of linear and abstract algebra; Curricular and institutional issues concerning 

the teaching of mathematics at university level; Polynomial; Anthropological Theory 

of the Didactic.  

THE POSITION OF POLYNOMIALS IN MATHEMATICS AND RESEARCH 

IN MATHEMATICAL EDUCATION  

The notion of a polynomial is significant in almost every area of mathematics as a 

discipline. The short route through algebra shows a long and fundamental role of 

polynomials: from classical algebra problems such as solving algebraic equations, 

through Galois theory and ring theory in modern algebra and beyond. On the other 

hand, the notion of a polynomial includes polynomials as the simplest functions that 

are easy to evaluate. Therefore, polynomials play an important role in the analysis and 

theory of approximations. It is sufficient to mention the Taylor polynomial or the 

Weierstrass approximation theorem. An attempt to position polynomials in somewhat 

younger areas of mathematics than those previously mentioned leads to the same 

conclusion. The close connection of some areas of mathematics with computers, such 

as coding theory and cryptography, leads to the importance of polynomials over finite 

fields. As the notion of a polynomial can be expected to be significant for both pre-

tertiary and tertiary education, it makes sense to observe a secondary-tertiary transition 

in terms of this notion. Expected repeated encounters with polynomials will be 

observed in the Croatian context, more precisely, through the secondary-tertiary 

transition that students of the first year of Mathematics at the Faculty of Science, 

University of Split are going through. The motivation to study this topic comes from 

the difficulties of first-year students observed through teaching courses in linear 

algebra. According to our knowledge, many studies mention polynomials, but most 

often as examples in a topic that includes polynomials. Although the cumulative effect 

of such studies contributes significantly to the knowledge about the realization of the 

notion of a polynomial in different phases of education, there is a lack of research 
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dedicated exclusively to this notion at the tertiary level. Bolondi, Ferretti & Maffia's 

(2020) analysis of some Italian, Spanish, and North American high school textbooks 

came across different schemes for defining the notion of a polynomial. Sultan and Artzt 

(2011), in a book aimed at bridging the gap between mathematics that high school 

teachers learn at university and mathematics that they teach in high school, write the 

following: 

Before getting into a deep discussion of finding roots of polynomials, we review the 

definition of a polynomial. This is probably the most misunderstood word in secondary 

school mathematics. (p. 71) 

Therefore, the question arises about the cause of the observed phenomena in secondary 

education and its possible effects on undergraduate mathematics education. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

Secondary-tertiary transition is a common research topic in mathematics education 

(Vleeschouwer, 2010). As it includes institutional transition, the Anthropological 

Theory of the Didactic (ATD) is a suitable theoretical framework for the topic as it 

observes mathematical and didactic activities in the complexity of social institutions. 

Dependence of knowledge on the institution, which breaks the illusion of transparency 

of knowledge, is explained by the process of didactic transposition (Bosch & Gascón, 

2006), which observes knowledge in four phases: scholarly knowledge, knowledge to 

be taught (curricula), taught knowledge by teachers in the classroom and learned 

knowledge by students. For an object of knowledge 𝑜 in an institution 𝐼 in which 𝑝 is 

a position, the relation, in the notation 𝑅𝐼(𝑝, 𝑜), to 𝑜 with respect to 𝑝 in 𝐼 can be 

observed (Bosch et. al., 2019). It remains to explain how 𝑜 can be described by the 

tools of ATD. According to ATD, every human activity, including mathematical ones, 

can be described in terms of praxeology (Bosch & Gascón, 2006). Praxeology 
[𝑇/𝜏/𝜃/Θ] consists of four components: type of tasks 𝑇; a set of techniques 𝜏 that can 

solve 𝑇; a technology 𝜃 that explains and justifies 𝜏; and a theory Θ that is a formal 

argument and thus justifies 𝜃. The ordered pair [𝑇/𝜏] of type of tasks 𝑇 and the set of 

techniques 𝜏 is called the praxis block of [𝑇/𝜏/𝜃/Θ] and is associated with know-how; 

while the ordered pair [𝜃/Θ] of technology 𝜃 and theory Θ is called the logos block of 

praxeology and is associated with know-why (Bosch et al., 2019). Mathematical 

praxeologies or mathematical organizations (MO) are classified as follows: point 

praxeology (generated by a single type of tasks), local praxeology (several point 

praxeologies with common technological discourse), regional praxeology (several 

local praxeologies with common theory). Every mathematical praxeology is "activated 

through the manipulation of ostensives" (Arzarello et al., 2008, p. 181), perceptual 

objects; whereby this manipulation is guided by non-ostensives, that is, concepts. 

Before addressing research questions, let us introduce the necessary notations to apply 

the ATD tools to the topic of this paper. A relation of the high school student ℎ𝑠 to the 

knowledge 𝑃 of the notion of a polynomial at the end of the high school 𝐻𝑆 in Croatia 

will be denoted by 𝑅𝐻𝑆(ℎ𝑠, 𝑃). The relation of the student 𝑠1 of the first year of the 
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undergraduate study program Mathematics at the Faculty of Science, University of 

Split (designation 𝑈) to the 𝑃 will be denoted by 𝑅𝑈(𝑠1, 𝑃). The transition from 

secondary education 𝐻𝑆 to the first year of 𝑈 is denoted by 𝑅𝐻𝑆(ℎ𝑠, 𝑃) → 𝑅𝑈(𝑠1, 𝑃). 

RQ1: How do polynomial-related praxeologies develop and differentiate through 

Croatian high schools? What can be said about 𝑅𝐻𝑆(ℎ𝑠, 𝑃)? 

RQ2: How do polynomial-related praxeologies develop and differentiate through the 

first year of 𝑈? What phenomena can be observed in the transition 𝑅𝐻𝑆(ℎ𝑠, 𝑃) →
𝑅𝑈(𝑠1, 𝑃)? 

METHODOLOGY 

The research methodology follows the phases of didactic transposition of the notion of 

a polynomial both in 𝐻𝑆 and 𝑈. Croatian high school mathematics curricula and 

textbooks are analysed to assess the prior knowledge of first-year mathematics students 

about polynomials, i.e., 𝑅𝐻𝑆(ℎ𝑠, 𝑃). Analogously, to assess 𝑅𝑈(𝑠1, 𝑃), the study 

program, syllabi, exams and materials of first-year courses at 𝑈 are analysed. This part 

provides information about knowledge to be taught in both institutions, HS and U, and 

the way in which the taught and learned knowledge are assessed is explained below. 

𝑅𝐻𝑆(ℎ𝑠, 𝑃) are supplemented by the results of the questionnaire conducted among 

students at the beginning of the first semester of 𝑈 in the academic year 2019/2020. 

Questionnaires were also conducted among students at the beginning of, and in the 

middle of the second semester to answer RQ2 more precisely. All questionnaires, with 

polynomials as the main topic, were conducted unannounced among mathematics 

students in attendance in classes of one of the first-year courses. All the above, 

supplemented by interviews with two high school mathematics teachers and seven 

university teachers at 𝑈, will enable the detection of the phenomenon of the transition 

𝑅𝐻𝑆(ℎ𝑠, 𝑃) → 𝑅𝑈(𝑠1, 𝑃). 

KNOWLEDGE TO BE TAUGHT 

High school curricula and textbooks 

In this article, only the gymnasium1 mathematics curricula, which were in force in 

Croatia from 1994 to 2019, will be presented2. The observed curricula prescribed the 

following contents: the notion of a polynomial, the algebra of polynomials, rational 

functions (first grade - age 15); the notion, graph and zero points of a second-degree 

polynomial, problems with extremes, quadratic inequalities, intersection of lines and 

parabolas (second grade - age 16). In addition to the previous contents, the curriculum 

of mathematical gymnasiums3 prescribed additional and more advanced contents such 

 
1 In Croatia, a gymnasium is a type of high school (lasting four years) whose goal is to prepare stu-

dents for further university education. 
2 The 𝑈 is enrolled almost only by students who have completed some of the gymnasium programs, 

and the generation of students who finished high school according to the new curricula is still not 

enrolled. 
3 Gymnasiums with the maximum number of mathematics classes. 
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as reducible and irreducible polynomials, Fundamental Theorem of Algebra, the ring 

of polynomials of two variables. Polynomials are no longer explicitly mentioned 

anywhere in curricula, but a direct connection with the following contents is evident: 

linear equations and inequalities, linear and affine functions, the graph of a linear 

function (first grade); second-order curves (third grade - age 17); functions, derivation 

and integral (fourth grade - age 18). Although curricula seem to prescribe a functional 

approach to a polynomial, an analysis of high school textbook sets used in the last 

twenty years, shows that most authors introduce this notion in the first grade of high 

school in a section about algebraic expressions, with noticeable differences in discourse 

and its level. The observed textbooks for first grade differ in the following issues.  

In which way the notion of a variable is introduced? What does it mean? What is the 

relationship between notions of exponentiation, algebraic expression, and polynomial? Are 

operations between polynomials explained in some way, or are they introduced as rules? 

Is the algebra of polynomials related to the properties of real numbers? Has the notion of 

equality of polynomials been introduced, and if so, in what way? What is the null 

polynomial? Has a connection been established between the notion of a first-degree 

polynomial and the notion of a linear function? If so, in what way? 

Comparing even the sets of textbooks of the same group of authors, a gradual decrease 

in the representation of logos blocks in textbooks of the observed period is noticeable. 

The changes in the observed period will be briefly illustrated through the example of 

the most used sets of textbooks intended for mathematical gymnasiums. The most used 

textbook from 2005 explicitly explains the difference between a constant 

("predetermined number") and a variable ("any real number", "number not 

predetermined"). An algebraic expression is defined as "any expression that consists 

of variables and constants, obtained by four basic algebraic operations and 

parentheses", while a polynomial is defined as "an algebraic expression obtained only 

by addition and multiplication operations", and in the lesson on polynomial algebra is 

written: 

The general form of a polynomial of one variable is 

 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0   (1)  

The exponent 𝑛 is called the degree of the polynomial. Coefficients of the polynomial are 

the real numbers 𝑎0, 𝑎1, … , 𝑎𝑛. The coefficient 𝑎𝑛 ≠ 0 is called the leading coefficient. 

In the 2015 textbook of the same group of authors, it is commented that the constants 

are "special numbers", and the variables are "general numbers". An algebraic 

expression is defined as "any expression that consists of variables and constants related 

to basic algebraic operations", a monomial as "a product of a constant and a variable", 

a binomial as a "sum of monomials", and a polynomial as a "multi-member algebraic 

expression". The algebra of polynomials has been transferred to the second-grade 

textbook (when a polynomial is defined as a real function), and in the first-grade 

textbook is only briefly mentioned that "polynomials are calculated using known 

properties of arithmetic operations". Definitions of a polynomial in Croatian textbooks 
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for first grade, but also in textbooks in other countries for students of similar age 

(Bolondi et al., 2020), are an obvious example of didactic transposition, i.e., adapting 

mathematical scholarly knowledge to knowledge to be taught in high school. For 

example, for the logos of the presented textbook from 2005, we certainly cannot say 

that it corresponds to the academic approach to a polynomial as a function, in the 

notation 𝑃𝐹; but it obviously does not define a polynomial as a completely algebraic 

object, in the notation 𝑃𝐴, because 𝑥 in (1) is not a formal variable (indeterminate, 

placeholder) but 𝑥 is an arbitrary real number.  

When looking at praxeologies whose object of knowledge is a polynomial, two local 

praxeologies can be noticed in Croatian textbooks: algebraic-functional, in the notation 

𝑀𝑂𝑃𝐴𝐹
, and functional, in the notation 𝑀𝑂𝑃𝐹

. Moving away from the functional 

approach is noticeable when considering the most common types of problems in a 

section about algebraic expressions ("simplify algebraic expression", "reduce algebraic 

fraction") and presented techniques for solving them, which are reduced to 

manipulation of symbols based on polynomial algebra for 𝑃𝐴. Considering the 

organization of almost all observed textbooks, praxeologies whose types of tasks are 

solving linear equations also belong to 𝑀𝑂𝑃𝐴𝐹
 because the lesson on a linear equation 

precedes the lesson on a linear function. The same is true for praxeologies whose 

objects of knowledge are quadratic functions in textbooks for the second grade of high 

school. On the other hand, 𝑀𝑂𝑃𝐹
 consists of praxeologies about linear function in the 

first grade, quadratic function in the second grade, and polynomials as one of the 

elementary functions in the fourth grade. Attempts to unite 𝑀𝑂𝑃𝐴𝐹
 and 𝑀𝑂𝑃𝐹

are visible 

in some textbooks, such as in the presented textbook from 2005. For the same purpose, 

in some other textbooks, a lesson on the value of algebraic expression has been 

included, but none of this is enough to be able to say that 𝑀𝑂𝑃𝐴𝐹
 and 𝑀𝑂𝑃𝐹

 form a 

regional praxeology.   Finally, the reduction of the polynomial-related logos, especially 

in first-grade textbooks, separated the praxeologies that were associated with it. 

Undergraduate study program, syllabi, and course materials 

In terms of content, the first year of 𝑈 has hardly changed in the last twenty years, and 

since the introduction of the Bologna System in 2005, it has not changed structurally. 

The first year, as in most undergraduate study programs in mathematics in the world, 

is dominated by two modules (Bosch et al., 2021): algebraic and analytical. The module 

of analysis includes the first-semester course Introduction to Mathematical Analysis 

(IMA), and the second-semester course Mathematical Analysis I (MAI). The algebra 

module includes the first-semester course Linear Algebra I (LAI) and the second-

semester course Linear Algebra II (LAII).  

Introduction to Mathematics (IM) course is a first-semester course aimed at bridging 

the gap between high-school mathematics and university mathematics. In IM, among 

the elementary functions, polynomials are treated as real functions of one real variable. 

The course covers the knowledge of polynomials prescribed by the curriculum for 

mathematical gymnasium, only with a more rigorous approach. The characterization 
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of the equality of polynomials and the characterization of the null polynomial, in high 

school usually introduced only as rules without explanation, are proved. The 

supplementary literature mentions that the null polynomial theorem need not hold over 

finite fields, and provides counterexample: „the polynomial 𝑓(𝑥) = 𝑥3 + 2𝑥 is a null 

polynomial over ℤ3, and not all its coefficients are equal to zero“. Also, after the 

theorem on the equality of polynomials, it was noted that a polynomial can be 

identified4 with a series of its coefficients, so "the variable 𝑥 can be understood as 𝑥 =
(0,1,0,0, … )". In courses belonging to the analysis module a polynomial is defined as 

a real function of one real variable. Students in the IMA learn about continuity, and in 

the MAI about differentiation (Taylor's theorem) and integrability. Thus, through the 

IM, IMA, and MAI 𝑀𝑂𝑃𝐹
 praxeologies are formalized and supplemented, and students 

are equipped with new praxeologies whose object of knowledge is 𝑃𝐹. 

In the algebra module, the approach to the notion of a polynomial can be twofold: 

formal and functional. LAI is a first-semester course in which, among other things, 

basic algebraic structures are introduced: group, ring, field, and vector space. Although 

students are introduced to some substructures (normal subgroup, quotient subgroup) 

and homomorphisms, the tasks are reduced to checking the structure, or 

homomorphism between structures. Therefore, it can be concluded that the 

development of structuralist praxeologies (Hausberger, 2018) begins in this course. 

Polynomials over a field of real numbers with standard operations are treated as an 

example of a commutative unitary ring and real vector space. Unlike other courses of 

the first semester in LAI, a polynomial is introduced formally, as the finite formal sum 

of powers, i.e., polynomial in variable 𝑥 is an expression of the form (1), where 𝑛 ∈
ℕ0 and 𝑎𝑘 ∈ ℝ, for each 𝑘 ∈ {0,1, … , 𝑛}. For some students, this will be a re-encounter 

with the definition because, in some high school textbooks, a polynomial is defined in 

the same way; while in others (such as observed one from 2005), some kind of hybrid 

definition is introduced between this formal and functional approach because 𝑝(𝑥) ∈
ℝ. This redefines or upgrades 𝑀𝑂𝑃𝐴𝐹

 praxeologies. Polynomials over an arbitrary field 

are also mentioned in LAI materials (and finite fields are introduced in the section 

dedicated to fields), but the tasks are focused exclusively on polynomials over a field 

of real numbers. Polynomials with coefficients from an arbitrary ring, and the functions 

induced by polynomials, are part of the fourth-semester course Algebraic Structures. 

LAII is a course dedicated to linear operators on the finite-dimensional vector (unitary) 

spaces, so polynomials in this course have an important role because of the 

characteristic and minimal polynomials of a linear operator, but also because vector 

spaces of polynomials to a certain degree (including null polynomial) are one of the 

most common examples for the domain or codomain of linear operators. Although the 

theory is given in full generality (over an arbitrary field), the tasks are limited to vector 

spaces over fields of real or complex numbers. As LAI, LAII is marked by general 

logos blocks and specific praxis blocks. Both approaches to a polynomial can be found 

 
4 Identification in this course for a student can only mean establishing a 1-1 mapping. 
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in the prescribed literature (example of literature in English: Friedberg et al., 2018, p. 

10) for LAII, even though in some of it the explicit definition of a polynomial is missing 

(e.g., Hefferon, 2020). The authors seem to refer to this notion as already known 

(illusion of transparency), as evidenced by the frequent use of the phrase "usual 

operation" (e.g., Hefferon, 2020, p. 88-89) which refers to operations with 

polynomials. This may mean that the students sometimes have to conclude from the 

context which approach it is. Let us give one such example from the course materials 

(similar examples can be found in, e.g., Nicholson, 2013, p. 336, 355), in which it was 

necessary to examine whether the mapping 𝑓: ℝ2[𝑥] ⟶ ℝ2[𝑥] given by the rule 

 𝑓(𝑝(𝑥)) = 2𝑝(−𝑥)  (2) 

is linear operator, where it was previously written that ℝ2[𝑥] denotes the set of all 

polynomials with real coefficients in the variable 𝑥 of degree less than or equal to 2. If 

𝑝(𝑥) is a formal polynomial (an expression of the form 𝑎𝑥2+bx+c, where 𝑎, 𝑏, 𝑐 ∈
ℝ; like in, e. g. , Nicholson, 2013, p. 546), then students may wonder what 𝑝(−𝑥) is. 

Namely, in this case, 𝑥 is a formal variable, it is not a real number, and in none of the 

prescribed textbooks the composition between formal polynomials was introduced. On 

the other hand, the IM, IMA, and MAI courses insist on the difference between a 

function and the value of a function at a point, so in the case that 𝑝 is a real function of 

a real variable, the ostensive (2) can also be confusing for students. In that case, some 

of the ostensives (𝑓(𝑝))(𝑥) = 2𝑝(−𝑥) or 𝑓(𝑝)(𝑥) = 2𝑝(−𝑥) (as can be found in 

some prescribed textbooks) are more appropriate. Praxeologies, whose objects of 

knowledge are operators of derivation or integration, are important factors in 

connecting the two dominant modules. In the algebra module, these operators are 

introduced formally (without the use of limits) on the vector space of polynomials. 

TAUGHT AND LEARNED KNOWLEDGE 

The interviewed high school teachers had almost the same experiences and thoughts 

on the issue of textbooks and equipping students with praxeologies whose object of 

knowledge is 𝑃. Teachers believe that textbooks are important in the teaching process, 

but because they consider them deficient, inaccurate, and poorly structured, they do not 

rely heavily on textbooks, especially in terms of explanation and lessons order. They 

mentioned that 30 years ago there was a school subject in mathematics gymnasiums 

that was dedicated only to polynomials and that this notion was gradually marginalized, 

so according to newer textbooks, students learn almost only about second-degree 

polynomials. The experiences and thoughts of the interviewed teachers are in line with 

the results of a questionnaire conducted at the very beginning of the first semester 

among 45 students. When asked to define the notion of a polynomial, about 44% of 

students did not provide an answer, but they often mentioned binomials and trinomials. 

When they were asked to provide an example of a polynomial, these students mostly 

answered by giving an example of a quadratic equation. Around 13% of students 

explicitly wrote that a polynomial is an equation, while almost 16% of students wrote 

that a polynomial is an expression, but they wrote it as an algebraic equation. Only one 
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of these students knew the general form of the algebraic equation, while the others cited 

the general form of the quadratic equation. Around 22% of students defined a 

polynomial as an expression of a certain form. Only two students of that 22% wrote a 

general form of a polynomial in one variable, and the rest wrote a general form of a 

second-degree polynomial. Only 2 of 45 students defined a polynomial as a real 

function of one real variable, and these students knew the rule of mapping for 

polynomials of arbitrary degrees. Immediately after the first two questions, each 

student was individually asked to explain the meaning of the symbols in the definition 

and examples he/she had written. Almost all students used the ostensive 𝑥 for the 

variable in their definitions and examples. When asked what 𝑥 is, all but four students 

who knew the general form of a polynomial (whether they defined it as an algebraic 

expression or defined it as a function) answered that 𝑥 is unknown. In interviews5 with 

university teachers, we learned that teachers who teach IM are well aware that students 

do not distinguish between polynomials and algebraic equations. They pointed out that 

first-semester students generally do not see the need for characterization of equality of 

polynomials and characterization of null polynomial. However, the situation changed 

after the first semester. At the beginning of the second semester, 2 of the 30 students 

wrote that polynomial is an expression, but they wrote it as an algebraic equation. 60% 

of students defined a polynomial as a real function of a real variable. About 23% wrote 

the definition of a polynomial from LAI, but when they were asked what 𝑥 is in that 

definition, all students answered that 𝑥 is a variable with 𝑥 ∈ ℝ. 3 out of 30 students 

did not answer the question at all. 

Teachers who teach LAI said that the exams in which students should check whether a 

mapping, whose domain or codomain is a set of polynomials, is a homomorphism of 

groups or rings are arguably the worst solved in exams. One of the teachers said: 

"Students simply do not know what to do with these tasks, and they manage to pass the 

exam thanks to other tasks." Mentioned praxeologies appear and complement at the 

very beginning of the LAII course through tasks in which it must be checked whether 

the given mapping is a linear operator. For example, if a mapping is given with (2), 

students are generally not sure of the linear combination of what the mapping has to 

keep, so they often write 𝑓(𝑝(𝛼𝑥 + 𝛽𝑦)), where 𝛼, 𝛽 ∈ ℝ. Also, when students have 

to determine a kernel of a linear operator, whose domain is a vector space of 

polynomials to a certain degree, they often solve algebraic equations. It is also 

interesting how students sometimes unknowingly generalize the results proved for 

polynomials of one variable (polynomial equality theorem and null polynomial 

theorem). One such example is the problem from the third questionnaire in which three 

linear functionals 𝐹, 𝐺, 𝐻: ℝ3 ⟶ ℝ were given by the rules 𝐹(𝑥, 𝑦, 𝑧) = 2𝑥 + 𝑧, 

𝐺(𝑥, 𝑦, 𝑧) = 2𝑦 and 𝐻(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧, and it was necessary to check whether 

 
5 The first part of the interview with the university teachers consisted of a general question asking them, in case they 
noticed, to list the difficulties that students have related to the notion of a polynomial, which spans several genera-
tions within the first-year courses they teach. For the second part of the interview, questions were asked regarding 
the course they teach and the answers they had provided in the first part of the interview. 
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{𝐹, 𝐺, 𝐻} is the basis for the dual vector space of ℝ3. Students either didn’t know how 

to solve this task or set out to test linear independence the way they did assume that 

𝛼, 𝛽, 𝛾 ∈ ℝ are such that it holds 

𝛼𝐹(𝑥, 𝑦, 𝑧) + 𝛽𝐺(𝑥, 𝑦, 𝑧) + 𝛾𝐻(𝑥, 𝑦, 𝑧) = 0 
from which they got 𝑥(2𝛼 + 𝛾) + 𝑦(2𝛽 + 𝛾) + 𝑧(𝛼 + 𝛾) = 0 and then the system 

{
2𝛼 + 𝛾 = 0
2𝛽 + 𝛾 = 0
𝛼 + 𝛾 = 0

 

but they did not know how to correctly argue how they came to the system. Usually, 

they only described the technique they used, and the extremely common conclusion 

was: "This is how it is done." Given that students have difficulty with the previous 

example, which is one of the simplest types of tasks when it comes to dual vector 

spaces, recognized in the literature as a notion that carries obstacles (Vleeschouwer, 

2010), it can be assumed what happens when the environment is dual vector space of 

polynomials to some degree. 

CONCLUSION 

While Croatian high school textbooks have similar praxis blocks, they differ in logos 

blocks about the notion of a polynomial 𝑃, especially in first-grade textbooks. Two 

local praxeologies are observed: 𝑀𝑂𝑃𝐴𝐹
, which leans towards an algebraic approach to 

a polynomial, and in some textbooks may contain some parts of a functional logos; and 

𝑀𝑂𝑃𝐹
 based on a functional polynomial approach. It is certainly difficult for a high 

school teacher to unite 𝑀𝑂𝑃𝐴𝐹
 and 𝑀𝑂𝑃𝐹

 in some way, so depending on how much the 

teacher relies on the given textbook, students can enroll in the undergraduate study 𝑈 

equipped with praxeologies with very different logos blocks. However, it seems that 

𝑅𝐻𝑆(ℎ𝑠, 𝑃) is marked by the dominant type of tasks in high school whose object of 

knowledge is 𝑃 - by solving the quadratic equation. Given the traditional organization 

of mathematical knowledge, followed by the organization of study 𝑈, the theory of 𝑃 

consists of the theory of a polynomial introduced as a function 𝑃𝐹 and the theory of a 

polynomial introduced as a formal algebraic object 𝑃𝐴. Praxeologies whose logos are 

those theories do not unite until the course of Algebraic Structure in the fourth 

semester. From the obtained results we can conclude that 𝑅𝑈(𝑠1, 𝑃) is characterized by 

the definition of 𝑃 as a function, and techniques and technologies characteristical of 

𝑃𝐴, which fail to be justified by functional logos. In the first year of 𝑈, the functional 

logos is probably still underdeveloped, as a result of the transition from high school, 

which is an institution dominated by the praxis blocks (Winsløw et al., 2014). In 

addition to the presented didactic obstacles, the results indicate that the formal 

approach to 𝑃 could carry some epistemological obstacles, and the role of non-

ostensives (polynomial, polynomial function, variable, formal variable, 𝑝(𝑥)) should 

not be neglected. All the above are assumptions that still need to be explored and 

considered in further transitions through undergraduate and graduate study of 

mathematics. The departments of mathematics in Croatia must not ignore the fact that 
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the first generation of high school students will graduate in the school year 2021/2022 

according to new curricula, which can bring new phenomena in the secondary-tertiary 

transition. 
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Mastering formalism is key to learning university mathematics. It is particularly 

characterised by the consequent use of definitions. Specific difficulties may arise when 

dealing with borderline cases that satisfy a given definition although they do not look 

prototypical (e.g. a constant sequence). To work out the learning potential of such 

examples and difficulties for first-year university students, we conducted an 

exploratory study with 21 students investigating their coping with the borderline case 

of a constant sequence. We identified two major difficulties (symbolic representation 

and characterisation as a process) and four main strategies (change of representation, 

recall of known borderline cases, use of definition, use of previous content). Finally, 

we discuss how borderline cases can be usefully integrated into mathematics teaching. 

Keywords: Teachers’ and students’ practices at university level; Transition to, across 

and from university mathematics; definitions; formal thinking; borderline cases. 

DEFINITIONS IN THE TRANSITION TO FORMAL MATHEMATICS  

At the beginning of mathematics studies, mathematical formalism becomes very 

important. While argumentation based on examples, visualisations or intuitive 

reasoning is common in school mathematics, university mathematics mostly relies on 

proofs based on axioms and definitions. In school, definitions serve to describe already 

known concepts. In contrast, objects are only created through a definition in higher 

mathematics (Edwards & Ward, 2008). The secondary-tertiary transition thus marks a 

transition "from describing to defining, from convincing to proving in a logical manner 

based on those definitions" (Tall, 2002, p. 20). Tall continues: 

This transition requires a cognitive reconstruction which is seen during the university 

students' initial struggle with formal abstractions as they tackle the first year of university. 

Students often do not use definitions in their reasoning (Edwards & Ward, 2008). In-

stead, they use justifications such as the sole use of examples or argumentation based 

on the intuition, even if tasks cannot be solved without definitions (Alcock & Simpson, 

2002; Holguin, 2016). This is partly because students are often unaware of the role 

definitions play in argumentation (Edwards & Ward, 2008). Thus, many of students’ 

reasoning strategies are no longer valid in higher education (Alcock & Simpson, 2002). 

Students may then struggle with the new ways of working, feel excluded from the new 

discourse, and significantly lose motivation (Liebendörfer, 2018, chapters 9.3 & 10.4). 

One approach to understanding the difficulties with formal reasoning is to distinguish 

between the notions of “concept image” and “concept definition”. According to Tall 

and Vinner (1981), the concept image is "the total cognitive structure that is associated 
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with the concept, which includes all the mental pictures and associated properties and 

processes" (p. 152), while the concept definition is "a form of words used to specify 

that concept" (p. 152). The university discourse requires the concept definition to be 

used in argumentations, especially in cases where concept image and concept definition 

seem to contradict. However, students often only refer to their concept image when 

arguing, even if it does not fit the definition (Edwards & Ward, 2008). 

Previous research has mainly focussed on helping students to enrich their concept 

images and strengthen the connections to the concept definition (e.g. Alcock and 

Simpson, 2017). However, it lacks insights into how students learn to generally argue 

formally using the concept definition. To better understand students’ difficulties and 

strategies, we aim at analysing how students deal with concepts when their concept 

image does not fit the concept definition. This leads to the following research 

questions: 

RQ1: What difficulties do students have in working with the constant sequence? 

RQ2: What strategies do students use to cope with these difficulties?  

THEORETICAL BACKGROUND: STUDENTS’ DIFFICULTIES WITH 

FORMAL DEFINITIONS 

According to Tao (2007, p. 1), the transition from school mathematics to university 

mathematics includes a transition from the "pre-rigorous stage" of mathematical edu-

cation to the "rigorous stage". In the "pre-rigorous" stage, which covers years at school, 

learning is informal and intuitive with a focus on examples and calculations. The "rig-

orous" stage, which is in Germany situated at the beginning of university studies, con-

tains strongly theory-based mathematics that demands precise and formal ways of 

working. The "post-rigorous" stage is only attained in later years of study. When stu-

dents are familiar with the rigorous mathematical ways of working, intuitive reasoning 

can again be increasingly used to support or guide the formal argumentations. Conse-

quently, the initial studies is the stage in which the most rigorous mathematics is re-

quired in order to avoid common mistakes and eliminate misunderstandings right from 

the beginning. Rigorous work is intended to destroy false intuition and strengthen good 

intuition (Tao, 2007). Formal mathematics does not exclude intuition and visualisation 

for generating ideas, but must always consist of proofs in the end. Thus, in the "rigorous 

stage", students should learn what mathematically valid argumentation consists of, that 

is formal deductive reasoning based on definitions and axioms.  

Tall (2008) adds a theoretical view on this transition given by "three worlds of mathe-

matics" used to describe the development of mathematical thinking. The “conceptual-

embodied world” is based on the perception of objects and their properties in the real 

world. Mathematical thoughts arise from visual objects, patterns and experiments. 

Then, the “proceptual-symbolic world” arises from the embodied world by the use of 

symbols that develop through actions and represent “thinkable concepts”, such as the 
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concept of a number that arises from counting. The “axiomatic-formal world” refers to 

formal concepts based on set-theoretic definitions and logical reasoning using proofs 

based on axioms and definitions. While in school there is a transition from embodiment 

to symbolism, the transition to higher education marks the transition to formalism. At 

this point, students have to learn that argumentations that were still valid in symbolism 

are no longer so in formalism. Consequently, one of the learning goals at the beginning 

of the university is mastering between visualisation and the formal world of mathemat-

ics (Nardi, 2014). 

The very nature of formal argumentation based on definitions can be especially demon-

strated by so-called “borderline cases” (also called “pathological” or “strange exam-

ples”; Mason, 2002). These cases are examples of a given definition that violate some 

very typical properties that are central to the existing concept image. In borderline 

cases, the first intuition may no longer be certain or it may contradict the definition. 

Tall and Vinner (1981), for example, asked students whether the real function 𝑓(𝑥) =
1

𝑥
, 𝑥 ≠ 0 was continuous. Students often gave wrong, intuitive reasons, such as "the 

graph is not in one piece" or "the function is not defined at the origin" (p. 167) to argue 

that it was not continuous. A formal argumentation based on the definition of continu-

ity would give the correct answer.  

Similarly, borderline cases of sequences have been investigated. The concept image of 

some students includes that a convergent sequence is always either monotonically in-

creasing or monotonically decreasing. Thus, an alternating convergent sequence is of-

ten not recognised as such. Moreover, the common idea that a sequence must not as-

sume the limit leads to not accepting a constant or finally constant sequence as conver-

gent (Vinner, 1991). Some misconceptions also relate to the acceptance of a sequence 

as such. The concept image of many students only includes sequences that are defined 

by a single term with a variable, typically “n”. As a result, sequences are not recognised 

as such if they are defined differently for even and odd indices or if they are constant 

(Roh, 2005; Tall & Vinner, 1981). Such sequences thus represent borderline cases, 

especially with regard to the definition of a sequence. 

METHODS AND STUDY DESIGN 

To explore students’ difficulties (RQ1) and strategies (RQ2), we conducted a study 

with 21 students of a preliminary course for mathematics and computer science 

students and for preservice mathematics teachers for higher secondary schools. For this 

group, the intended study programme will build strongly on formal mathematics, which 

is why mastering formal reasoning is an important learning goal for them. Of the 

participants, 12 were female and 9 male, and they were between 18 and 23 years old. 

All participants of the preliminary course were invited and participation was possible 

on a voluntary basis either alone or in pairs. This resulted in 13 interviews. 
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The interviews took place via Zoom and were audio- and videographed. The screen of 

a participant was shared and captured in order to be able to follow the editing processes. 

Beforehand, an interview guideline was prepared and the three interviewers were 

introduced to the guideline, the mathematical content, and the aim of the study. 

At the time of the study, in the third week of the preliminary course, basics of logic as 

well as sets and functions had already been worked on, as well as calculating with 

absolute values, inequalities and sums. After that, the students worked on a digital 

learning environment on the topic of sequences, in which the use of definitions was to 

be promoted. It was completed by all preliminary course participants instead of taking 

part in the synchronous online lecture and the tutorials. The students were to work 

independently on the learning environment, in which sequences were first introduced 

and defined. In doing so, they were to watch existing videos and explanations as well 

as solve some tasks provided. A sequence was defined in the learning environment as 

follows: 

A sequence (of real numbers) is a function 𝑓: ℕ ⟶ ℝ, 𝑛 ↦ 𝑓(𝑛) ≔ 𝑎𝑛. 

The values are called the elements of the sequence. The whole sequence is usually notated 

in a shorter form: (𝑎𝑛)𝑛∈ℕ. 

After examining some examples of sequences and exploring possible representations 

of sequences (piecewise defined, recursive, etc.), the question was asked in the learning 

environment whether (𝑎𝑛)𝑛∈ℕ = (12)𝑛∈ℕ correctly defines a sequence. Only after 

working on this task were they introduced to the definition of a constant sequence. 

Once the students had completed these tasks, we conducted semi-structured guideline 

interviews were we reviewed the tasks and asked subject-specific questions about this 

section of the learning environment. This paper refers to the review of the task 

presented above. Students were asked how they had worked on the task. The correct 

answer was already known to the students at the time of the interview, so that it was a 

reflection on their own working process. If students did not explain their answers on 

their own, they were asked to clarify their difficulties in more detail. 

The interviews were transcribed and then analysed using a structuring qualitative 

content analysis (Kuckartz, 2016). According to our research questions, the students' 

statements were first deductively coded for difficulties and strategies. The statements 

in these categories were then inductively categorised for emerging themes. The 

resulting codes were allowed to overlap, and in fact, several categories were recognised 

simultaneously in some statements. 

RESULTS: STUDENTS’ DIFFICULTIES AND STRATEGIES  

We report the analysis of the part of the interview relating to the above task, which 

lasted no longer than three minutes each. All participants had worked the example in 

advance and most of them had reported difficulties or at least irritations when working 

the selected task. Inductive coding yielded two major problems and four main 

strategies, see figure 1. 
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Figure 1: Category system identified in the qualitative analysis. 

To answer the two research questions, we describe the subcategories and illustrate them 

with student utterances. The excerpts from the transcripts were translated from 

German, with some filler words omitted for better readability. We indicate the 

participants’ numbers in brackets. 

Difficulties in working with the constant sequence (RQ1) 

The two main difficulties with the constant sequence were identified in terms of 

symbolic representation and in terms of the characterisation of a sequence as a process. 

The first difficulty concerning the symbolic representation refers to students’ uncer-

tainty caused by the unfamiliar symbolic representation of the defining term. Whereas 

in the definition of a sequence and in all the examples presented before, the defining 

term included an “n”, this was now no longer given, so that students were irritated: 

Before, we only had examples where n was somehow contained in the second part of the 

term. And that's why we somehow assumed that n always had to be integrated in it. (1) 

Since the representation differed from the previous ones, the assumption was made that 

it was not a sequence: "In my head it was still, there has to be a variable, otherwise it 

can't fit." (13) 

The second main difficulty describes the characterisation of a sequence as a process. 

In this case, students, similar to the understanding for functions, assumed a covariation 

of the sequence elements, so that they must differ from the previous one. This also 

leads to the sequence not being recognised as such: “And it is often the case that a 

function, depending on what value for x you insert, a different y comes out, and here it 

was more or less fixed.” (6) As the values did not differ in the given example, there 

was also a contrast to the previous examples and the concepts built up through them: 

“Because I just thought, the next value must be different from the one before or/ [...] I 

just had that in my head, that there was a change. And has to happen.” (4) 
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Strategies in working with the constant sequence (RQ2) 

We identified four main strategies students used to address these challenges: the change 

of representation, the recall of known borderline cases, the use of definition, and the 

use of previous content. 

The first strategy was the change of representation. In this case, a representation of the 

sequence was used, which differed from the defining term, to answer the question. We 

identified two representations that were used by the students. The first representation 

was the graph of a sequence: "I first thought about what such a graph could look like." 

(15) The second was the tabular representation to decide whether there is a sequence 

at hand: “So I first made a table for the different n's and then also for the corresponding 

values.” (20) 

The second strategy in this context was to refer to similar borderline cases in the same 

sense, thus violating the same properties. Their properties were then transferred to the 

current example to answer the question. First of all, the constant sequence can be 

compared to the constant function from which the students knew that this still 

represents a function: 

So I just imagined a function that is simply like/ Well, we know f of x equals twelve, then 

twelve is simply assigned to every value of x. And that's how I imagined it for the sequence. 

(5) 

Another borderline case that was familiar to the students was the sums in the sigma-

notation without an indicating variable, for example ∑ 105
𝑘=1 . The fact, that the 

notation without this variable is still valid, was transferred to the example of the 

constant sequence: 

I think we've already had similar cases with the sums, where you have k equal to one to 

five and then the sum sign somehow just shows ten. [...] Yes, but I also transferred that to 

it, actually. (1) 

The third strategy was the formalistic use of the definition of a sequence. This relates 

to the argumentation that the example represents a function, for example by stating that 

every natural number is assigned to twelve: 

And then I thought to myself, okay, then I looked again briefly at the definition, and the 

definition was simply that a value is really assigned for each n, and in principle, that is 

because the value 12 is assigned for each value. And then I said, okay, then of course it's 

correct. (14) 

The fourth category of strategies consists of the use of previous content to find the 

answer. This includes the content of the learning environment such as previous 

examples or explanations as well as content of the preliminary course or other sources. 

For example, some students compared the given task with previous examples and tasks 

in order to transfer them to the current example: “I first had a look at what this 

expression in brackets means and I looked at this illustration up here again, that is, in 

the previous task.” (21) This strategy cannot be defined as narrowly as the three 

115



  

strategies before it. It can also directly merge into one of the strategies named before 

it. However, it did not always do so, so we consider it to be a strategy in its own right. 

We identified some overlaps in the use of strategies as, for example, the comparison to 

functions and the graphical representation: "I always make the comparison to 

functions. I thought about it like just a straight line, it's also a function.” (14) 

In many cases, the definition was only applied after preliminary considerations had 

already been made, for example the graphical representation from above: 

„I first thought about what such a graph could look like, and then I looked at the definition, 

that an n is always assigned to a real number, that is, that it is always a function, and then 

it fit.“ (15) 

The comparison with other borderline cases was also partly validated by definition. 

The student comparing the sequence to a constant function continues: 

„And that's how I imagined it for the sequence. Yes, then the condition was that each n 

from the natural numbers should be assigned a concrete value. I then thought that the 

sequence is correctly defined.“ (5) 

DISCUSSION 

In an exploratory study, we confronted 21 students of a preliminary mathematics 

course with a constant sequence to answer the questions of what difficulties and 

strategies they show in reasoning whether this was actually a sequence. The analysis 

of the 13 interviews (mostly in pairs) resulted in two main difficulties (symbolic 

representation and characterisation as a process) and four strategies (change of 

representation, recall of known borderline cases, use of definition, use of previous 

content) to face them. 

Limitations 

The small sample yielded only a limited number of difficulties and strategies. As the 

excerpt presented was part of a larger interview, the focus of the interview was not only 

on this task, which is why no detailed follow-up questions had been prepared 

beforehand. It should also be noted that the results depend strongly on our choice of 

the example. For instance, the constant sequence is an example that targets notation 

and graphical representation, so there are corresponding difficulties here as well. So 

one should also look at examples, which are borderline cases of the definition in a 

different way. 

Theoretical implications 

Whereas the first difficulty is already known from the literature and was reproduced in 

this study, the second difficulty based on the dynamic notion of sequences seems new. 

Both difficulties relate to a contrast and apparent contradiction to students’ previously 

constructed concept images. This creates uncertainty and thus the assumption that it is 

not a sequence, resulting in tensions between concept image and concept definition. 
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We propose not to conceptualise such tensions based on individual examples, but to 

categorise them in terms that are more general. In this particular case, we have already 

found two prototypical categories: The tensions due to familiarity with certain symbols 

and the tensions caused by process-based conceptions. In both respects, the object dealt 

with does not look like what is familiar. These categories fit into Tall's (2008) 

proceptual-symbolic world, as this world refers especially to symbols and processes. 

Future research could classify the main tensions between concept image and concept 

definition of objects from first-year mathematics to delineate a learning trajectory for 

a way into mastering formalism. 

Concerning the strategies, we do not discuss the fourth strategy because it is not 

specific to our question. The other strategies can be classified according to Tall and 

Vinner (1981). The first two strategies refer to the concept image that either had been 

built up about sequences themselves (several representations) or was present about 

other concepts (other borderline cases). These strategies help students to think about 

what the solution can be. They also serve to "revisit your intuitions on the subject" 

(Tao, 2007, p. 2) to get a personal conviction of the solution. The third strategy is based 

on concept definition and is the one that is finally formally accepted. 

It is worth noting that many students first used one of the two strategies corresponding 

to the concept image and then moved on to the definition. This suggests that the change 

of representation and the search for analogies to known borderline cases may be helpful 

in finding a solution. Through these two strategies, students gain some conviction in 

what the solution will be. We may thus think of a three-step approach to answering 

questions that heavily rely on mathematical formalism. As students will most likely 

have some intuition from the beginning, the first step is to experience and become 

aware of the difficulties in form of tensions. Such an awareness seems to have to be 

developed in the transition to formal mathematics in general, for instance also when 

evaluating theorems. Once students start critical reflecting on the formal definition, 

their own intuition needs to be doubted and questioned in the second step. The third 

step is then the transition to formal reasoning in order to finally answer the question. 

The first two identified strategies (change of representation, recall of known borderline 

cases) relate to reasoning by analogy and are allowed and desired in the second step, 

but no longer in the third step, where only the third, formal strategy is allowed. 

However, the first two strategies help in the second step to distinguish between good 

and bad intuition in the sense of Tao (2007). 

Since we have already identified strategies to address such problems without concrete 

instructions to the students, it seems that “handling the formalism” can be seen as a 

competence of its own to resolve tensions between concept image and concept 

definition. This is a general competence that is not linked to concrete content. Thus, 

the learning goal of handling the mathematical formalism can be described more 

precisely in an overarching way and independent of content. That this learning goal is 

also relevant for teachers is shown by school-relevant borderline cases such as the 

question of whether 0, 9 equals 1. This question, which often leads to the intuitive 
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answer that 0, 9 less than 1 (Tall & Vinner, 1991), can also be dealt with using the 

three-step approach described above, for example by changing the representation and 

using the number line in the second step. 

Practical implications 

Following the supposition that "handling the formalism" can be conceived as a general 

competence, university teachers have to decide whether they want to include fostering 

this competence as a learning goal in their lectures. This will depend on the teaching 

context. For example, this competence is probably less important in mathematics for 

engineering than in pure mathematics. Mason (2002) writes: "There is considerable 

controversy between lecturers as to whether it is advisable to show students strange 

examples" (p. 25). Based on our findings concerning the three-step approach, which 

suggest that exactly such examples can be supportive in moving to formal reasoning, 

we suggest that the use of such examples is helpful in fostering this competence. They 

can help to establish learning strategies and to learn the distinction between good and 

bad intuition. This means that such examples should not be avoided, but should be used 

explicitly to correct false intuitions. It seems particularly helpful to use borderline cases 

when the content is still simple, as the strategies described can then be made 

comprehensible without many difficulties on the content. Especially the last strategy, 

the use of definitions, is new at the university and has to be taught to the students before 

they can apply it themselves. We therefore suggest creating borderline cases as early 

as possible, linking them directly to definitions, and explicitly making analogies to 

other examples in order to provide the students with this strategy. 

The difficulties with mathematical formalism are a part of the difficulties in the 

transition from school to university. Many students struggle because they are required 

to prove theorems based on definition. Our research refers only to a first step, namely 

the coordination of concept image and concept definition. However, this step seems 

necessary before students can realize how important definitions are and that they 

should be used in proofs (Alcock & Simpson, 2002). In particular, students are 

sometimes helpless because their known ways of argumentation based on analogy or 

visual reasoning are no longer accepted. Yet, we could see that strategies based on 

analogies and images may be valid and helpful to clarify students’ own intuition. Only 

when they need to move to the formal argumentation, these strategies no longer help. 

It might thus help them to reflect on the roles of concept image and concept definitions 

in dealing with formalism. 
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In an institution 𝛪, a praxeology 𝓅 is generally a modification of a praxeology 𝓅* 
coming from a collective of institutions 𝛪*, where the modification is conceptualised 
by the phenomenon of institutional transposition. This paper presents a praxeological 
analysis of the concept of concavity of functions as expressed in a mathematics 
textbook for Norwegian upper secondary school. The analysis shows how the 
institutional (here, didactic) transposition has “moved” the mathematics presented in 
upper secondary school away from the mathematics taught at the university and how 
this transposition has resulted in a poor logos block of the mathematics to be taught.  
Keywords: Transition to, across and from university mathematics; concavity; didactic 
transposition; praxeology; teaching and learning of analysis and calculus. 
INTRODUCTION 
The theory of didactic transposition (Chevallard, 1991) was introduced in 1985 by 
Yves Chevallard. The didactic transposition process refers to the transformations an 
object of knowledge undergoes from the moment it is produced by scholars, to the time 
it is selected and designed by noospherians to be taught, until it is actually taught (and 
studied) in a given educational institution (Chevallard & Bosch, 2014). When doing 
didactic transposition analyses, the empirical unit is enlarged to encompass data from 
outside of the mathematics classroom. This reflects the insight that to study teaching 
and learning of mathematics in the classroom, it is not enough to study what students 
and teachers are thinking and doing: the mathematics taught becomes itself an object 
of study. The researcher studies transformations between the following instances: the 
scholarly mathematical knowledge as it is produced by mathematicians; the 
mathematical knowledge to be taught as officially formulated in curriculums and as 
presented in textbooks; the mathematical knowledge as it is actually taught by teachers 
in classrooms; and the mathematical knowledge as it is actually learned by students 
(Bosch & Gascón, 2006). The didactic transposition process taking place between the 
mentioned instances is illustrated in Figure 1.  

 
Figure 1. Didactic Transposition Processes (adapted from Chevallard & Bosch, 2014, 
p. 171) 
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In the research presented here, we have studied the didactic transposition of concavity 
of functions from scholarly knowledge to mathematical knowledge to be taught in 
secondary school. We have analysed transformations between the mathematical 
organisation of concavity of functions (in particular, its logos block) as expressed in a 
university textbook on calculus (Lindstrøm, 2016) and the mathematical organisation 
of the same theme as expressed in a mathematics textbook for Grade 12 (Kalvø et al., 
2021). As asserted by Winsløw (2022), the calculus presented in mathematics courses 
at the university is indeed the result of a didactic transposition of the calculus of the 
18th century. So, the mathematics presented in the university textbook analysed here 
is itself a body of transposed knowledge. An analysis of the transformations that this 
knowledge has undergone from the scholarly mathematical knowledge is however 
beyond the scope of this paper. 
The transformations of concavity of functions that have taken place between the 
university textbook and the school textbook have been studied through a praxeological 
analysis. Generally, praxeological analyses, together with analyses of didactic 
transposition processes that specific knowledge objects have undergone, help us 
understand which mathematics is taught in school, and why it has become so. Our study 
centres on the following research question: What are the transformations that the 
notion of concavity of functions has undergone during the didactic transposition 
process from the knowledge taught at the university to the knowledge to be taught in 
Norwegian upper secondary school? 
THEORETICAL TOOLS  
The study reported here has been conducted in the framework of the anthropological 
theory of the didactic (ATD; Chevallard, 2019). A praxeology of a body of knowledge 
is in the ATD a model of this knowledge. This model is a unit composed of four 
components: T, τ, θ and Θ (sometimes referred to as “the four t-s”), where T is a type 
of tasks, τ is a technique (or a set of techniques) to solve the tasks, θ is a technology, 
that is, a discourse describing and explaining the techniques, and Θ is a theory, that is, 
a discourse justifying θ. T and τ belong to the praxis block of the praxeology, whereas 
θ and Θ belong to the logos block. A praxeology 𝓅 is written: 𝓅 = [T / τ / θ / Θ].  
A praxeology 𝓅 is usually the product of the activity of an institution or a collective of 
institutions 𝛪. It is often the case that this “product” is the result of an institutional 
transposition of a praxeology 𝓅* living in a collective of institutions 𝛪* to a praxeology 
𝓅 that has to live within 𝛪 and thus has to satisfy a set of conditions and constraints 
specific to 𝛪 (Chevallard, 2020). This is the case when 𝛪 is a collective of “didactic” 
institutions, that is, institutions declaring to teach some bodies of knowledge, such as 
secondary schools for example. This is referred to as didactic transposition of 𝛪* into 
𝛪. Often, in this case, it is observed that 𝓅 is a “simplification” of 𝓅* through various 
processes. For example, it may be that a certain type of tasks T in 𝛪* becomes useless 
in 𝛪. It may be that a particular technique is inefficient, or that it leads the average user 
to make many mistakes. Moreover, in the process of transposition, it is likely that 𝓅* 
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has been greatly simplified and thus distorted so the technology does not really justify 
the proposed technique. Finally, the theoretical elements are often implicit, repressed, 
or taken for granted. Therefore, for those who want to analyse a praxeology living in a 
given institution, the theoretical component is hard to bring to light. This is shown in 
the analysis section below.  
METHODICAL APPROACH 
The methodical approach is essentially that of didactic transposition analysis 
(Chevallard, 1991). The didactic transposition analysis of the concerned body of 
knowledge 𝓀	presented here	involves a comparison of praxeological analyses of two 
different “copies” (i.e., “transposed” versions) of 𝓀 as they appear in two different 
institutions. The data are the mentioned textbooks (in Norwegian)1: The first is 
Kalkulus, an introductory textbook on calculus for the university, published in 2016. It 
is written by Tom Lindstrøm, professor of mathematics at the university of Oslo. The 
second is Mønster [Patterns]: Mathematics R1, a Grade 12 mathematics textbook for a 
theoretical programme at upper secondary school, preparing for university studies in 
science, technology, engineering, and mathematics. It is part of a textbook series for 
the national curriculum since 2020, written by Tove Kalvø, Jens C. L. Opdahl, Knut 
Skrindo, and Øystein J. Weider, all serving as teachers in mathematics at (different) 
upper secondary schools. The reasons for the choice of these books are: Kalkulus is an 
introductory textbook used in the first calculus course taken by students enrolled in 
teacher education programmes for Grade 8–13 at several Norwegian universities; 
Mønster is part of a brand-new textbook series for the theoretical programme; it is not 
a revised version of an old series as are two other textbook series for the same 
programme (i.e., Borgan et al., 2021; Oldervoll et al., 2021).    
ANALYSIS OF A DIDACTIC TRANSPOSITION PROCESS 
We present here an analysis of concavity of functions as treated in the textbook Mønster 
(Kalvø et al., 2021, pp. 208–224) and compare it with the treatment of the same topic 
in the university textbook Kalkulus (Lindstrøm, 2016, pp. 313–321)—which we regard 
as closer to scholarly knowledge. The aim is to bring to light the didactic changes this 
knowledge object, as presented in Mønster, has been subjected to. 
The Logos Block of Concavity of Functions in Kalkulus 
In Chapter 6.4 of Kalkulus, with heading “Discussion of Curves”, there is a section 
entitled “Convex and Concave Functions” (pp. 283–288).2 The author starts with a 
geometrical definition of the concepts of convex function and concave function: 

6.4.5 Definition The function f is called convex on the interval I if every time we select 
two points a, b ∊	I, then no point on the line segment between (a, f(a)) and (b, f(b)) will be 

 
1 Quotations from these textbooks have been translated into English by the first author.  
2 For functions, being convex and concave is synonymous with being “concave up” and “concave 
down”, respectively (as used by e.g. Adams & Essex, 2018). 
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below the graph of y = f(x) (see Figure 2).3 We say that f is concave on I if every time we 
select two points a, b ∊	I, then no points on the line segment between (a, f(a)) and (b, f(b)) 
will be above the function graph (see Figure 3). (Lindstrøm, 2016, p. 314) 

 
Figure 2. Convexity of a Function (taken from Lindstrøm, 2016, p. 314) 

 
Figure 3. Concavity of a Function (taken from Lindstrøm, 2016, p. 314) 

The author continues to build up elements in the logos block, which allows him to 
deduce a connection between concavity and the second derivative of a function twice 
differentiable. To be able to use the mean value theorem in the proof of the theorem 
that establishes the sought relationship, the following lemma using difference quotients 
is presented (p. 315): 

6.4.6 Lemma     A function is convex on an interval I if and only if the following applies. 
For all points a, b, c ∊ I such that a < c < b, we have   
!(#)%!(&)

#%&
	≤ 	 !(')%!(#)

'%#
.   (1) 

Correspondingly, f is concave on I if and only if  
!(#)%!(&)

#%&
	≥ !(')%!(#)

'%#
.  (2) 

The author writes that the two statements can be proved the same way and presents a 
proof for the convexity part of the lemma:  

Proof: Assume first that f is convex. Then the point (c, f(c)) cannot be above the segment 
connecting (a, f(a)) and (b, f(b)), and we must have the situation shown in Figure 4a.  

When we compare the slopes k, k1, and k2 of the three segments in the figure, we see that 
k1 ≤ k ≤ k2, which means that  

 
3 Figures taken from Kalkulus used in this paper are given titles by the authors (figures are untitled in 
the source). Moreover, we have renumbered them to have continuous numbering of figures.  
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!(#)%!(&)

#%&
	≤ 	 !(')%!(&)

'%&
	≤ 	 !(')%!(#)

'%#
. 

If we omit the middle part, we get (1). (Lindstrøm, 2016, p. 315) 

       
Figure 4. Convexity (left image) and Non-convexity (right image) (taken from 

Lindstrøm, 2016, pp. 315–316) 

The next step of the author is assuming that f is not convex and showing, consequently, 
that (1) does not hold:  

Since f is not convex, we can find points a, b, c ∊ I so that a < c < b and (c, f(c) is above 
the segment connecting (a, f(a)) and (b, f(b)); this means that we have the situation shown 
in Figure 4b.   

We now see that the ratio between the slopes is k1 > k > k2 – in other words 
!(#)%!(&)

#%&
>	 !(')%!(&)

'%&
>	 !(')%!(#)

'%#
. 

If we omit the middle part, we get the inverse inequality of (1). ∎ (Lindstrøm, 2016, 
pp. 315–316)   

Then everything is ready to state the theorem that is the central theoretical element in 
the author’s mathematical organisation of the logos part of concavity of functions:  

6.4.7 Theorem     Assume that f   is continuous on an interval I and that f  ″(x) ≥ 0 for all 
inner points x ∊ I. Then f is convex on I. If instead f  ″(x) ≤ 0 for all inner points of I, then f 
is concave on I. (Lindstrøm, 2016, p. 316) 

The proof addresses the convexity part of the theorem, using the above lemma: 
Proof: Choose three points a, b, c ∊ I so that a < c < b. According to Lemma 6.4.6, it 
suffices to prove that !(#)%!(&)

#%&
≤	 !(')%!(#)

'%#
. By the mean value theorem, there exist two 

numbers c1 ∊ (a, c) and c2 ∊ (c, b) so that !(#)%!(&)
#%&

= 𝑓′(𝑐()  and !(')%!(#)
'%#

= 𝑓′(𝑐)). Since 
f  ″(x) ≥ 0, f  ′ is increasing and, consequently, f  ′(c2) ≥ f  ′(c1) [because c1 < c < c2]. Hence 
!(#)%!(&)

#%&
= 𝑓*(𝑐() ≤ 𝑓*(𝑐)) =

!(')%!(#)
'%#

. ∎ (p. 316) 

After this, two examples are given that discuss convexity / concavity. The second 
example introduces the notion of inflection point with this formulation: “a is an 
inflection point for f if f is continuous at a and there exists an ε > 0 so that f is convex 
on one of the intervals (a – ε, a), (a, a + ε) and concave on the other” (p. 318). An 
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inflection point is a point where a function changes from being concave to being 
convex or vice versa. This is succeeded by 18 tasks that address appearances of curves 
more broadly. 
The above is a brief account of the “scientific” treatment of the concept of concavity 
in Kalkulus, which describes the constituent parts of the logos block of concavity: 1) a 
definition of convex / concave function; 2) the mean value theorem (proved in a 
previous section) used in the proof of a lemma to be used in the proof of a central 
theorem with respect to the concept at stake; 3) the mentioned lemma (with proof); 4) 
the central theorem (with proof) declaring a connection between the sign of the second 
derivative and the concavity / convexity of a function; 5) a definition of inflection point. 
The Mathematical Organisation of Concavity of Functions in Mønster 
Here, we analyse the treatment of concavity of functions in Mønster (Kalvø et al., 2021) 
One remarkable point is that the section devoted to concavity issues is entitled “The 
Second Derivative”. The question of the concavity of functions is thus presented as an 
application of the notion of second derivative. The words concave and concavity do 
not appear in the textbook: they are replaced by the expressions “hollow side” (hul 
side)4—the side that faces either down or up—and “curvature” (krumning), 
respectively. We will see that this is a “symptom” of the treatment of concavity by the 
given textbook. These notions appear in the following passage: 

We compare this with the graph of f and see the following: 
• When f″ is negative, f ′ is decreasing and the graph of f turns its hollow side down. 
• When f″ is positive, f ′ is increasing and the graph of f turns its hollow side up.  
A function with a graph turning its hollow side up or down is not linear. We say that the 
graph curves, and we mark the curvature of the graph with an arc below the sign line (see 
Figure 5). (Kalvø et al., 2021, pp. 211–212) 

 
Figure 5. Sign Line for the Second Derivative (adapted from Kalvø et al., 2021, p. 211) 

In this way, words that are traditional in mathematics (concave/convex, 
concavity/convexity) but which, a priori, mean nothing to the students, are replaced by 
expressions (hollow side facing down/up, curvature) that make sense in everyday 

 
4 Throughout the paper, italicized words in parentheses refer to Norwegian words used in Mønster.  
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language, which in this case have a metaphorical value, and which are used here as 
definitions. The same is true for inflection point, where the authors use the notion 
“turning point” (vendepunkt). 

The point where the graph goes from facing the hollow side up to [facing] the hollow side 
down (or vice versa), is called the turning point. At the turning point, the sign of the 
derivative changes. (p. 211) 

The technology of this technique (using a sign line for the second derivative) is in fact 
reduced to a minimum. The authors of the textbook have adopted a “naturalistic” 
approach to functions. They do so by considering a specimen function regarded as 

generic, in this case the function defined by 𝑓(𝑥) =
	!
"
𝑥# + !

$
𝑥$	 for all x ∈ ℝ. The graphs of f and f′(x) 

=	!
$
	𝑥$ + 𝑥 are shown in Figure 6 (adapted from 

Kalvø et al., 2021, p. 211). Looking at the graph of 
f, we “see” that f first increases, reaches a maximum 
at a point that appears to be – 2, then decreases and 
reaches a minimum at x = 0, before increasing again. 
Let us then try to determine “visually” the intervals 
in which f is either concave or convex.  
The function f is first concave, up to a value x0 
somewhere between – 2 and 0; then it becomes 
convex after x0. How can we determine x0?  

Figure 6. The Graphs of f, f′, and f′′ 

To do this, we need to look not at the values of the derivative, but at how the derivative 
varies—that is, how the slope of the tangent to the graph of f′ changes.  
Instead of examining the graphs of f  and f ′, it is technically more concise to simply 
examine the graph of f ″ (see Figure 6). Here, f ″(x) = x + 1. The second derivative f ″ is 
therefore represented by a straight line with slope 1. It is strictly negative when x < –
 1, zero for x = x0 = – 1 and strictly positive when x > – 1. The reader can examine two 
animated GIFs, where the first GIF (first link) highlights the values (positive, negative) 
of f ′ while the second GIF (second link) highlights the fact that f ′ is increasing or 
decreasing. 

https://commons.wikimedia.org/w/index.php?title=File:Tangent_function_animation.gif
&oldid=507127692 

https://upload.wikimedia.org/wikipedia/commons/7/78/Animated_illustration_of_i
nflection_point.gif.  

If we look at the treatment of concavity in Mønster as a certain praxeology, we can 
analyse it as explained in the following paragraphs.  
The type of tasks T studied is formulated more allusively than explicitly. A task t of 
type T consists in determining the curvature of the graph of a given function f and 
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finding its possible turning point(s). This involves determining intervals of ℝ on which 
f is either “concave down” or “concave up” by examining a “sign line” as shown in 
Figure 5. 
The notion of concavity is hinted at, rather than properly defined. This is made 
possible, among other things, by a linguistic “manipulation” which is one of the keys 
to the didactic transposition carried out by the authors: the words concavity and 
inflection point do not appear. “Concavity” is replaced by the expression “hollow side 
down / up” associated with the expression “curvature”; “inflection point” is replaced by 
“turning point”. While the words “concavity” and “inflection point” are relatively 
opaque words in ordinary language, and therefore require comments, if not a precise 
definition, the expressions by which they are replaced belong to everyday language and 
are known to all, which authorizes the authors not to say more about them. 
The technique τ to perform a task t ∈ T consists in calculating the second derivative f ″ 
(differentiating a function: type of tasks T1) and studying its sign (determining the sign 
of a function: type of tasks T2). In essence, both T1 and T2 are assumed to have been 
studied beforehand and to be now largely routinised. The only new feature is that, given 
the function f, the derivatives f ′ and f ″ must be calculated successively. 
The technology θ of the technique τ is reduced to next to nothing. One would expect 
that when f is concave down, the authors would point out to their readers that the slope 
of the tangent decreases. Instead, they invite them to observe, on the graph of f ′, that 
f ′ is decreasing. Even more so, they do not care to mention the equivalence of various 
properties such as 

– the slope of the tangent decreases; 
– the curve is below its tangents; 
– for any point a on an interval I on which f is defined, the function ra: x ↦ ra(x) = !(+)%!(&)

+%&
 

decreases. (In Figure 7, we have for example: ra(x1) > f ′(a) > ra(x2).) 

 
Figure 7. Chords and Tangent for a Function f 

The third of these properties corresponds to Lemma 6.4.6 in Kalkulus (explained in the 
previous section).  
Finally, about the praxeology of concavity in Mønster, we have uncovered that there is 
no theory ϴ justifying the technology θ. This can be explained by two factors: first, θ 
is almost non-existent; second, the authors make no real attempt to justify what little 
exists of θ. We would like to state here what the theory (according to the ATD) would 
be: a system of statements (definitions, axioms, lemmas, theorems, corollaries…) from 
which we can derive a justification of θ. Let us suppose, for example, that we want to 
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justify the fact that, when the derivative f ′ decreases, “the curve is below its tangents”. 
We have (see Figure 8): f(a) + ε f ′(a) – f(a  +  ε) = ε f ′(a) – [f(a  +  ε) – f(a)]. According 

to the mean value theorem, there exists γ ∈ 
(0, 1) such that f(a  +  ε) – f(a) = ε f ′(a + γ ε). 
We thus have: f(a) + ε f ′(a) – f(a  +  ε) = ε f ′(a) 
– ε f ′(a + γ ε) = ε [f ′(a) –  f ′(a + γ ε)]. Since f ′ 
decreases, f ′(a) >  f ′(a + γ ε) and therefore f(a) 
+ ε f ′(a) – f(a  +  ε) = ε [f ′(a) –  f ′(a + γ ε)] > 0. 
∎ 
In that case, we could look for the 
mathematical “principles” that justify the 
mean value theorem and the tools used to 
establish it (e.g., Rolle’s theorem). 

Figure 8. Decreasing Derivative  

DISCUSSION 
The presentation of concavity of functions in the secondary school textbook is but a 
“technical notice” expressed in a casual way, with as little mathematical “logos” as 
possible, most likely to make it accessible to a wider range of students. This contrasts 
with the presentation of the same theme in the university textbook, where we found a 
logos block consisting of definitions and proved results (theorems, lemma). In the 
school textbook, the notion of concavity has been substituted by an application of the 
notion of second derivative and, consequently, there is an exclusion of questions where 
concavity could have come into play. There are two other mathematics textbook series 
for the theoretical programme in upper secondary school in Norway: one is written by 
Borgan et al. (2021), the other by Oldervoll et al. (2021). They have a very similar 
treatment of concavity of functions, using exactly the same notions as the textbook 
analysed here.  
How can we summarise the effect of didactic transposition on the notion of concavity 
of a function as it manifests itself here? The main fact is that, while in the university 
presentation, the graphical notion of concavity is mathematised, in secondary school 
textbooks it remains non-mathematised: concavity is to be seen on the graph of the 
function. At best, authors simply translate this visual property by saying that the slope 
of the tangent to the curve decreases or increases. This visually established property is 
then translated mathematically by the sign of the second derivative. The crucial gain is 
obvious: the subtle work required to mathematise the graphical notion of concavity is 
avoided, so that its presentation is accessible to a wider audience.  
Another gain stems from an “iron law” of curriculum crafting: a new item benefits 
from appearing as an “application” of an established item—here the notion of second 
derivative. Is there a loss? Yes, there is. Whereas, at university, under appropriate 
regularity conditions, one can prove that, if a function is concave down, its second 
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derivative is negative, and conversely, at the secondary level, for lack of a 
mathematical definition of concavity, students will miss this particular opportunity for 
a simple, founding experience in their mathematics education: tackling a theorem, and 
then its reciprocal. Didactic transposition thus surreptitiously makes its mark, and 
sometimes takes its toll, on students’ and teachers’ praxis and logos by distorting and, 
often, damaging the mathematical equipment which is available to them. 
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INTRODUCTION AND RESEARCH QUESTION 

Research dedicated to issues in relation with the transition between secondary and 

university education have been developed for long (Gueudet 2008). More recently, 

specific work has been carried out on what is referred to in the literature as “Klein's 

double discontinuity” (Winsløw & Grønbæk, 2013), and more specifically with 

“Klein’s second transition” (Gueudet et al., 2016), that is the transition between 

academic mathematics and secondary mathematics for (future) teachers. 

The report of TWG3 during INDRUM2020 highlighted Klein’s second transition as a 

promising avenue of research in many regards. Among other things, the issue to find 

relevant topics with strong epistemological foundation that could allow teacher 

students to deeply understand crucial links between university mathematics and 

secondary mathematics in a professional perspective was particularly emphasized 

(Biehler & Durand-Guerrier, 2020). The research presented aims at contributing to the 

following related main issue: how to choose relevant advanced mathematical content 

to address or study Klein’s second transition and to create and design capstone courses?  

MAIN ASPECTS 

The purpose of the proposed poster is to present a methodological and inductive 

preliminary work in order to highlight possible main challenges, tools or levers or 

hypotheses with respect to the above main issue. To do this, we focus on the notion of 

inner product in the Euclidean plane, as it is taught in secondary education in France. 

In this regard, the underlying theoretical framework is minimal and based upon didactic 

transposition between scholarly knowledge and knowledge to teach, and between 

knowledge to teach and taught knowledge. 

By considering the case of the inner product, we first illustrate in which regard the 

relevance of a notion for future teachers with respect to Klein’s second transition could 

be measured. For this purpose, several examples are developed in the poster that 

highlight different aspects – either related to university curriculum, secondary 

curriculum or to the relations between them (both directions) – that can help teacher 

students to mobilize a “higher standpoint on mathematics”:  

• the choice of a definition, and the articulation between the definition and proof 

processes, these aspects being particularly rich in the case of inner product; 
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• the use of specific tools that shed light on the resolution of a problem: the 

example of the distance between a point and a line will be developed;  

• the choice and use of an appropriate representation register, and the underlying 

flexibility to mediate between them; 

• the importance to search for and solve inconsistencies and “vicious circles” in 

the curricula. 

HYPOTHESES AND CHALLENGES 

The above considerations give us the opportunity to formulate hypotheses with respect 

to teachers or future teachers that are consistent with respect to Klein's second 

transition. One of those is the fact that academic knowledge must allow teachers to 

have tools to control and analyse the choices related to didactic transposition on the 

one hand, and "everyday teaching" on the other hand. Also, in our view, academic 

knowledge is knowledge that is useful for the profession of mathematics teacher. It is 

the responsibility of mathematics education researchers to find relevant content for 

Klein’s second transition, to create links and finally to design situations or capstones 

courses with respect to these dimensions. 

In our view, this preliminary study highlights a new issue that need to be addressed in 

future didactic research: the “coherence” of taught knowledge in classrooms from the 

point of view of didactic transposition. In view of the various aspects presented above, 

it seems to us that this is a relevant criterion for designing capstone courses. This study 

could also be a first step to constitute a reference for researchers to model the possible 

mathematical activities for the considered notions within several theoretical 

frameworks.  

REFERENCES 

Biehler, R. & Durand-Guerrier, V. (2020). TWG3 report: University Mathematics 

Didactic Research on Number Theory, Algebra, Discrete Mathematics, Logic. In T. 

Hausberger, M. Bosch & F. Chellougui (Eds.), Proceedings of the Third Conference 

of the International Network for Didactic Research in University Mathematics 

(INDRUM 2020, 12-19 September 2020) (pp. 283-287). Bizerte, Tunisia: University 

of Carthage and INDRUM. 

Gueudet, G. (2008). Investigating the secondary-tertiary transition. Educational 

Studies in Mathematics , 67 (3), 237-254.  

Gueudet, G., Bosch, M., diSessa, A., Kwon, O.N. & Verschaffel, L.  (2016). 

Transitions in Mathematics Education. Springer, 2016, ICME 13 Topical survey, 

Gabriele Kaiser.  

Winsløw, C. and Grønbæk, N. (2013). Klein’s double discontinuity revisited: 

contemporary challenges for universities preparing teachers to teach calculus. 

Recherches en Didactique des Mathématiques, 34/1, 59-86.  

131



  

Fostering Enculturation in the Transition to University Mathematics 
through Processes of Informal Learning – Poster Proposal  

Lukas M. Günther1 

1Leibniz University of Hannover, Faculty of Mathematics and Physics, Germany, 
guenther@idmp.uni-hannover.de  

Keywords: Transition to, across and from university mathematics; Teachers’ and 
students’ practices at university level; Digital and other resources in university 
mathematics education; Informal learning. 
MATHEMATICAL ENCULTURATION, TRANSFORMATIVE EDUCATION 
& INDIVIDUAL LEARNING PROCESSES 
The presented project is researching ways of understanding and fostering the process 
of enculturation in the transition towards university mathematics, especially focusing 
on the individual and self-regulated learning processes within and outside curricular 
and didactic framing. To that end, the project understands enculturation as a process of 
transformative learning (Mezirow, 1997) and education (Koller, 2018), therefore, as 
the transition of a learning person from one mathematical culture into another (Perrenet 
& Taconis, 2009) accompanied by crises, cultural breaks (Pepin, 2014), and shifts 
within the mathematical world view and beliefs of the individual (Schoenfeld, 2016).  
Studies have shown that such adjustments of personal beliefs and views happen 
throughout the involvement with mathematics, but especially occur in the transition 
from school to university mathematics and relate to the high dropout rate of 
mathematics students in the first year of university (Egger & Hummel, 2020; 
Hochmuth et al., 2021). Within that transition students often struggle and, in some 
cases, fail to overcome the cultural break they encounter when starting to acquire 
university mathematics (ibd.). Nevertheless, enculturation is seen as a necessary part 
of the socialisation into mathematics as a science, since it concerns basic concepts such 
as formalism and axiomatics, logic, rigor, and proof (Hochmuth et al., 2021) and, 
therefore, must be promoted (Thomas et al., 2015).  
As enculturation is seen as an individual process following an emergent and 
performative path, the project is focusing on self-organized learning and coping 
mechanisms applied by the students, as they encounter breaks within their 
comprehensions and tools. For this it is integrating the concept of informal learning 
into the didactic discourse as a description of the self-organized and intentional 
transformative search for new and functional solutions for a problem (Arnold, 2016). 
RESEARCH QUESTION, STUDY & POSTER DESIGN 
Based on the outlined concepts the project is asking how informal actions of learning 
within and outside of university courses trigger and accompany individual processes 
of mathematical enculturation in the transition towards university mathematics and 
how it can be described as transformative education. The corresponding study will use 
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a mixed-method design: A quantitative survey with students of the first semester will 
concern the students’ beliefs about mathematics before (pre-test) and after (post-test) 
the first semester. It will try to pinpoint events and topics of crises leading to changes 
in those beliefs. Within the semester a group of students will be accompanied through 
a string of qualitative interviews and a digital questionnaire application, both 
concerning the occurrence and the individual dealing with the mentioned learning 
crises, as well as the usage of informal learning in these contexts. 
The poster will outline the theoretical framework of the project and give an overview 
of the mixed-method study design and its questionnaires. Also, first results of the pre-
test will be displayed. A mix of texts, schematics, and diagrams will be used to 
visualize the project.  
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INTRODUCTION 

The notion of asymptote appears across different educational levels and mathematical 

domains. It developed from geometry, through calculus, into the notion of asymptotic 

behaviour in numerical and asymptotic analysis (Katalenić et al., 2021). Hence 

discourses of asymptotes in transition between educational levels should be coherent, 

that is, aligned and increasing in complexity.  

Previous research showed that issues with discourses of asymptote emerge in particular 

educational settings (Berger & Bowie, 2012; Dahl, 2017; Katalenić et al., 2022; Mpofu 

& Pournara, 2018), some of them persisting with different participants − secondary and 

university students and practising teachers. This study investigated discourses of 

asymptote in a broader mathematical context and in the transition from upper 

secondary to university education.  

FRAMEWORK AND METHODOLOGY 

We used the Anthropological theory of the didactic (ATD) (Chevallard, 1999) and 

Commognition theory (Sfard, 2008) to examine discourses of asymptote in different 

settings covering; (1) upper secondary mathematics textbooks, (2) university students’ 

answers to questionnaires, and (3) academic mathematicians’ answers in interviews on 

discourses of asymptotes. Commognition theory enabled us to scrutinize the observed 

discourses and the ATD to compare them across institutional settings. 

RESULTS AND DISCUSSION 

Several discourses of asymptote emerged in our study of (1) and (2). They were content 

specific, separated from practice and incoherent across different settings. 

Mathematicians from (3) held different ideas about endorsing emerged discourses 

(Table 1). For example, the discourse of asymptote as a tangent line to the curve at the 

infinite point emerged in an analysed textbook and as an informal narrative in students’ 

answers. However, it was endorsed only by an expert in geometry.  

Emerged discourses of asymptote Endorsement 

Asymptote of a curve is its tangent line at the infinite point. Rejected/Endorsed 

Asymptote of a curve is a line that the curve approaches but 

does not intersect or touch. 

Conditionally 

endorsed/Endorsed 

A line is an asymptote of a curve if the distance from the curve 

to this line tends to zero as points on the curve move away from 

the origin of the coordinate plane. 

Endorsed 

Table 1: Discourses of asymptote emerged from secondary textbooks and questionnaires 

with university students and their endorsement from interviews with mathematicians 
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CONCLUSION 

The study of asymptotes should be appropriate and representable in mathematical and 

educational context. Based on the results of our study, we propose the development of 

discourses of asymptote in the transition from the upper secondary and across the 

university education. The discourses that we suggest are coherent across settings, 

increasing in complexity and aligned with the notion of asymptotic behaviour in 

applied mathematics.  

POSTER DESIGN 

The poster will be focused on different aspects of discourse of asymptote in 

mathematics, results from literature review, methodology and results of our study, and 

suggestions for attaining coherence of discourses of asymptote. When appropriate, we 

will use diagrams, figures and tables to present the course of the study. 

Keywords: teaching and learning asymptote, transition from secondary and across 

university mathematics, Anthropological theory of the didactics, Commognition 

theory. 
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INTRODUCTION 

In this poster we present the first step of a design and research project whose aim is to 

support university mathematics teachers in their task design activity for first-year 

students. We focused on semiotic representation registers (Duval, 2006) intervening in 

mathematical tasks. We developed a framework to assess and adapt the difficulty of 

mathematical exercises, in terms of registers used and conversions of registers needed, 

implicitly or explicitly. We called this framework CASPER: Categorize Activities 

Systematically with imPlicit / Explicit semiotic Registers. 

THEORETICAL FRAMEWORK 

Duval (2006) introduces the notion of semiotic representation registers as semiotic 

systems allowing transformations of representations. He distinguishes between two 

activities: treatments (within the same register) and conversions between two different 

registers. Conversions between registers are both a source of difficulties and an 

essential lever for conceptualization processes. Indeed, students shall separate objects 

from their representations, that is, they must acknowledge the existence of “objects” 

behind semiotic representations. This is only possible when they are facing multiple 

representations of the same object. Moreover, the conversion process can be more 

difficult than a simple encoding. It is the case when representations are not congruent, 

that is when the different signs in both registers cannot be mapped (1) bijectively and 

(2) univocally, or (3) if the mapping changes the reading order between source and 

target representation.  

Even at the university level, confronting students to these issues is needed and requires 

a careful design of tasks. University students are expected to develop a flexibility in 

terms of semiotic registers, and this is one of the difficulties at the secondary-tertiary 

transition (Gueudet & Vandebrouck, 2022). How can we design a framework to situate 

and adapt the flexibility required by an exercise with respect to semiotic registers?  

THE CASPER FRAMEWORK 

Defining implicitness with respect to semiotic registers in activities 

A register is explicitly displayed when it appears in the exercise’s text. It is explicitly 

mentioned when the register is suggested without being displayed. It is explicit if either 

of these two situations holds.  It is implicit if it is in the expected answer without being 
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explicit in the exercise’s text. When there are several registers, the procedure(s) for 

solving the exercise will involve a conversion of registers. This change is implicit when 

no indication is given to the student about when, how and why they performs the 

conversion. Otherwise, it is explicit.  

CASPER : Categorize Activity Systematically with imPlicit / Explicit semiotic 

Registers 

Our framework analyses activities according to 4 categories: 

1. Explicit single register (a.k.a. treatment).  

2. Multiple explicit registers with explicit conversions 

3. Multiple explicit registers with implicit conversions.  

4. Multiple registers where at least one is implicit. 

In our poster, we present examples with the associated CASPER categories. We also 

provide examples of how it can be used to adapt a given activity. This could be 

interesting for teacher to address the secondary-tertiary transition issue.   

Empirical evaluation 

We conducted an experiment with 28 first-year undergraduate students in a science and 

technology degree. They were randomly assigned into 4 groups (similar in terms 

mathematical proficiency, according to their semester 1 grades). Starting from 4 

mathematical activities on different themes, we created variations of the exercises 

according to the 4 CASPER categories for a total of 16 exercises. Participants of each 

group individually performed the same 4 exercises (covering the 4 activities and the 4 

CASPER levels), yet overall, the different groups covered the 16 exercises. 

The goal of the experiment was to validate the CASPER framework. We expect the 

categories to be difficulty levels. Thus, we measure the average success ratio for the 

different categories. Given the small data situation, we did not reach statistically 

significant results, but these preliminary results are promising. 
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INTRODUCTION TO THE THEMATIC WORKING GROUP 
The thematic working group TWG2 on “Teaching and learning of analysis and 
calculus” continues the working groups on “Calculus and analysis” from the two 
previous INDRUM conferences (see Trigueros et al., 2021; Vandebrouck et al., 2021). 
24 authors and coauthors contributed nine papers and two posters to this working group 
at INDRUM2022. The research in this working group deepened our understanding of 
these classic topics in university mathematics education. The contributions were 
diversified in terms of the selection of specific concepts but also included more general 
aspects beyond the teaching and learning of a single concept. In addition, new aspects 
of more advanced topics from university-level calculus and analysis were investigated. 
The thematically coherent nature of TWG2 allowed the contributors to discuss a 
diversified range of topics related to the teaching and learning of analysis and calculus 
at large. Accordingly, the research presented in this TWG focused on both the teaching 
and learning of specific mathematical topics or on more general questions dealing with 
the teaching and learning of courses related to calculus and analysis. Approximately 
half of the contributions focused on epistemological analyses and individuals’ learning 
of central mathematical topics such as functions of one and several variables and their 
derivatives as well as integrals in calculus, real analysis, and complex analysis. About 
the other half of the contributions addressed more general questions related to courses 
in calculus, real analysis, and beyond. These contributions included lecturers’ practices 
such as defining and enabling students’ participation in proofs, the use of interactive 
tasks in instructional videos, the adaptation of paper and pencil activities to a dynamic 
geometry environment, and longitudinal effects of the Covid-19 pandemic on students’ 
performances in examinations. Research in this thematic working group also included 
aspects of theoretical interest related to different frameworks such as the use of 
schemas in APOS theory, commognition for the study of lecturing and proof, and the 
relation between basic mental models (BMM) and “personal meanings.” 
Two sessions for the presentation of each of the paper and poster contributions were 
organized according to the main topics covered in the contributions. To initiate fruitful 
discussions for each paper, the presentation sessions were followed by thematically 
focused discussion sessions. Each group of authors and co-authors prepared a 
“reaction” to another paper, in which they summarized the central aspects related to 
the research questions, theoretical and methodological frameworks used and raised 
discussion with prompts to the authors. More open discussion sessions were held to 
identify larger strands of research questions and the need for further research in 
university mathematics education on the teaching and learning of analysis and calculus. 
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Bouguerra & Ghedamsi: An investigation of potential 
changes in students’ images of derivative at the entrance of 

the university 
 

Lankeit & Biehler: Different 
interpretations of the total 

differential and how they can 
be reconstructed in textbooks 

for multivariable real 
analysis 

Trigueros, Martínez-Planell, 
& Borji: Development of the 
differential calculus schema 
for two-variable functions 
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two variable functions using 3D dynamic geometry 
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Umgelter & Geisler: 
Analysing the quality of 
advanced mathematics 
lectures regarding the 

presentation of definitions – 
the case of real analysis 

lectures 

Griffiths & Palau: Returning 
to the classroom after taking 

online classes during the 
Covid-19 pandemic: A 

longitudinal study of student 
attainment 

Karavi, Lipper, & Mali: 
Investigation of metarules in 

lecturing for enabling 
students’ participation 

 Krämer & Liebendörfer: The effect of interactive tasks in 
instructional videos on students’ procedural flexibility 

Table 1: Central themes and inquiries in TWG2 

The papers dealing mainly with instructional inquiry include the study by Umgelter 
and Geisler on lecturers’ presentation of definitions. The authors propose and discuss 
a protocol with four categories to describe the presentation of definitions: motivation 
of concept, description of definition, giving examples and counterexamples, and mental 
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or visual forms of representation. Then, they use this protocol to examine the 
mathematical exposition by two lecturers. In a poster, Karavi, Lipper, and Mali report 
on an investigation of lecturers’ discursive actions that may assist students’ 
participation in the university mathematical discourse. As an example, they discuss 
lecturers’ discursive actions when presenting a proof (giving an idea on how to start 
the proof, sharing key ideas of the proof, and bringing means for emergence of the 
proof) as reflecting the governing metarule while proving, an idea of how to start is 
needed. Also dealing with instructional inquiry, Griffiths and Palau examine 
differences between online and face-to-face Calculus 3 courses. They compare the 
performances of two groups of students who took a face-to-face Calculus 2 course prior 
to the pandemic, one of which went on to take an online course and the other remained 
face-to-face. Griffiths and Palau compare the student groups’ grade point averages of 
their midterm and final grades. Then, the authors also compare the students’ 
performance in a subsequent face-to-face differential equations course. Their results 
show that the face-to-face students performed better. Finally, Krämer and Liebendörfer 
compare the performance of students who were presented with instructional videos 
without interruptions to those who had interactive tasks interspersed throughout the 
videos. They use the context of polynomial differentiation with the product and chain 
rules to examine students’ flexibility in choosing one or the other technique. The 
comparison showed a weak advantage of the use of interactive tasks. This paper can 
also be considered to have a component of cognitive inquiry. 
In one of two papers mainly dealing with epistemological inquiry, Hanke observes that 
the creation of vertical coherence between different mathematics courses can be 
problematic. He shows that the mean value interpretation for integrals of real-valued 
functions of one real variable does not generalize to the case of complex path integrals 
in an immediate way. He further supports his observations with an interview with a 
complex analysis lecturer. Lankeit and Biehler propose a “model of meanings” for the 
total differential of functions from ℝ! to ℝ". The model considers the contexts of 
analytic-algebraic, geometric, approximation, and real-world interpretations. The 
authors examine different definitions of the total differential and how the notion and 
related content could be developed. They also apply the model to analyze the meanings 
presented in three German textbooks on the subject. 
Two papers may be considered as dealing with both epistemological and cognitive 
inquiries. In one of them, Kouropatov, Noah-Sella, Dreyfus, and Elias argue that there 
is a substantial difference between real analysis and calculus. According to the authors, 
calculus requires thinking within an extra-mathematical context, while analysis has an 
intra-mathematical origin, which leads to didactical challenges. They support this claim 
with an interview with a student. In the other paper, Dreyfus, Elias, Kouropatov, Noah-
Sella, and Thompson argue that “basic mental models” (BMM) and “personal 
meanings” are different constructs and use the context of integration to contrast the 
differences. Using task-based interviews, they reconstruct the BMMs and personal 
meanings of three students related to integrals. The authors argue that personal 
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meaning-making is a cognitive activity as opposed to the epistemological activity of 
structuring mathematical content and that the focus on personal meaning adds to the 
normative layer captured in BMMs on integrals. Furthermore, in their poster, 
Bouguerra and Ghedamsi combine a praxeological analysis of the presentation of the 
derivative in Tunisian textbooks with students’ concept images at the entrance of 
university. 
Finally, two papers were classified as mainly dealing with cognitive inquiry. In one of 
them, Trigueros, Martínez-Planell, and Borji use APOS theory to examine the 
construction of the differential calculus schema for two-variable functions. They 
explore the notions of schema components and the types of relations between schema 
components to give empirical evidence of this complex construction. In another paper, 
Trigueros, Orozco-Santiago, and Martínez-Planell adapt activities originally developed 
for a paper and pencil environment to teach basic ideas of two-variable functions in a 
GeoGebra environment. The authors use student interviews and students’ written 
productions during the semester to show the potential of this approach. However, they 
also observe that student performance was not as good as that in the paper and pencil 
environment and discuss possible reasons. This last paper can also be considered to 
have a component of instructional inquiry. 
FUTURE DIRECTIONS 
Several directions for future research were identified during our group discussions. The 
distinction between calculus and analysis proposed by Kouropatov, Noah-Sella, 
Dreyfus, and Elias gave rise to some discussion as it seems to be more visible in some 
countries than in others. For example, in Germany, calculus roughly corresponds to 
parts of school-level analysis or to application-oriented and less proof-based courses 
for non-mathematicians. As another example, the paper by Lankeit and Biehler about 
the total differential of functions from ℝ! to ℝ" could be considered to deal with 
analysis, while the one by Trigueros, Martínez-Planell, and Borji on the differential 
calculus of functions from ℝ# to ℝ$ might be considered to deal with calculus. Would 
the explicit discussion of this distinction help to better interpret and apply the results 
of these related papers? There is room here for further research. 
There was also much discussion on BMMs and their relation to more cognitively 
oriented research, like in the paper by Dreyfus, Elias, Kouropatov, Noah-Sella, and 
Thompson. BMMs might be understood in different ways by different researchers, 
which might hinder researchers in embedding their own work in the body of literature. 
Other papers, like those of Hanke, and Lankeit and Biehler also gave rise to the 
discussion on BMMs. More research on the relation between BMMs and other 
concepts in mathematics education and epistemological analyses appears to be 
warranted. 
The epistemological analysis of some papers invited reflection on its possible use as a 
foundation for further cognitive research. For example, from the point of view of the 
epistemological analysis by Lankeit and Biehler, we may ask whether the study of 
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functions from ℝ# to ℝ$ as in the paper by Trigueros, Martínez-Planell, and Borji helps 
students generalize from few to higher dimensions.  
Some of the topics studied were new, mainly because they are more advanced and have 
rarely appeared in the research literature before. This invites further research on these 
topics such as complex analysis (Hanke) and the general multivariable function 
(Lankeit and Biehler). 
Finally, the role of teachers and resources in the teaching and learning of calculus and 
analysis also invites further research, for example how to interweave face to face and 
online instruction? The contributions by Griffiths and Palau, Krämer and Liebendörfer, 
and Karavi, Lipper, and Mali are examples in this regard. There also remains the need 
to study how to interweave paper and pencil and technology; for example, Trigueros, 
Orozco Santiago, and Martínez-Planell show that this is not a straightforward 
endeavor. 
Overall, this group presented a wide variety of novel and interesting issues that resulted 
in several productive discussions. 
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While there are parallels between what has been called, in the literature, Basic Mental 
Models (BMMs, Grundvorstellungen) and what has been called Personal Meanings, 
there are fundamental differences between them. In this paper, we work out some of 
these differences, using the notion of integral as example. Roughly summarized, our 
findings are that BMMs, including individual ones, are epistemological whereas 
Personal Meanings are cognitive. Here epistemological refers to a content analysis, 
often from a didactic point of view, and hence is informative, for example, for 
curriculum developers; cognitive refers to individual students’ personal conceptions, 
and hence is of interest, among others, to teachers.  
Keywords: Teaching and learning of analysis and calculus, Grundvorstellungen (Basic 
Mental Models), Personal Meanings, Integral. 
INTRODUCTION 
Greefrath et al. (2021) have introduced Basic Mental Models (in German: 
Grundvorstellungen; henceforth BMMs) for the definite integral. They claim that 
students use their individual BMMs when they solve a problem. On the other hand, 
Thompson (2013) has introduced the notion of students’ personal meanings and has 
shown many students and teachers lack such meanings for some central basic notions 
of mathematics. The question arises, what do students use when they solve a problem 
or answer a question, in our case about integrals; specifically, how is it possible that 
students who lack meanings use individual BMMs? We conclude that there are 
fundamental differences between individual BMMs and personal meanings. The aim 
of this paper (and its research question) is to clarify the differences and similarities 
between individual BMMs and personal meanings.  
THEORETICAL BACKGROUND 
Basic Mental Models (BMMs, Grundvorstellungen) 
A fundamental idea produced and used by the German tradition of didactics of 
mathematics is the notion of Grundvorstellung, often translated into English as Basic 
Mental Model or BMM. According to Greefrath et al. (2021),  

Normative BMMs are interpretations of a mathematical concept that learners should 
generally and ideally develop. These BMMs are identified by didactic analyses of the 
mathematical concept... They can be used as educational guidelines and to specify learning 
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objectives for mathematics lessons. This can provide orientation to teachers when 
designing and organizing their lessons. (p. 650) 

That is, BMMs are theoretical constructs based on a content analysis, and as such they 
can be useful in the determination of learning objectives and the design of instructional 
materials. For the notion of definite integral, Greefrath et al. (2021) have identified 
four BMMs: area, reconstruction, average and accumulation. For example, the 
accumulation BMM “considers the definite integral of a function as the limit of a sum 
with a large number of small terms” (p. 650), which are products, and hence this BMM 
emphasizes the process of integration. In this paper, we relate to only three of these 
four BMMs because the average BMM did not play a role in any of our data. 
In addition to normative BMMs, Greefrath et al. (2021) also consider individual 
BMMs, which “are the specific manifestations of normative BMMs in a person” (p. 
654). They developed an instrument for assessing students’ individual BMMs for 
integral; when using this instrument, students are presented with an argument that uses 
one of the four BMMs and are asked whether the argument reflects the student’s own 
line of thought. The instrument has a high validity for the students’ choice of one of 
the four BMMs, as shown by expert evaluation.  
Students’ personal meanings 
Taking a Piagetian approach, Thompson (2016) focuses on what comes to a person’s 
mind upon encountering a situation; meaning is what the person imbues to the situation. 
A person’s meaning in a situation is what comes to the person’s mind immediately, 
together with what is ready to come to mind next. Thus, meaning also has an 
implicative nature. The meaning of an understanding is the space of implications that 
the current understanding mobilizes—actions, operations, or schemes that the person’s 
current understanding suggests. 

 
Figure 1: The slope item 

To make this more concrete, we present the following item about slope developed by 
Thompson (2016). Subjects are shown the graph in Figure 1 and told that it represents 
the relationship between two co-varying quantities P and Q, whose measures 𝑥 and 𝑦 
are related by 𝑦 = 𝑚𝑥 + 𝑏. Students are first asked to give an approximate numerical 
value of 𝑚 given that the 𝑥 – axis and the 𝑦 – axis use the same scale. In a second 
question, they are asked for the numerical value of 𝑚 if the scale of the y-axis is 
changed so that the distance between 0 and 1 is two times as large as the original one.  
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Thompson (2016) presents results from high school teachers to the slope item. We have 
informally presented the same item to mathematics education MA students. The results 
were similar. Most respondents give values between 2 and 3 to the first question. Most 
of these respondents doubled or halved their value in response to the second question.  
The value of m in the relationship between the co-varying quantities P and Q does not 
depend on the scales of the axes in the graph used to represent this relationship. Hence, 
respondents whose meaning of slope in the above situation is the ratio between the 
relative changes in P and in Q, will not change the value of m from the first to the 
second question. Respondents who change the value of m from the first to the second 
question, hold a meaning for slope as a property of the triangle representing the 
relationship rather than a meaning of slope as a property of the relationship itself.  
INDIVIDUAL BMMs ARE NOT PERSONAL MEANINGS  
Our motivation for writing this paper is a question addressed to us repeatedly when 
presenting initial results from a project investigating Israeli high school students’ 
personal meanings for derivative and integral (e.g., Elias et al., 2022; Noah-Sella et al., 
2022). We were asked why we did not use individual BMMs as theoretical framework 
for our research. This question appears to be well taken since individual BMMs are, at 
least in the case of the definite integral, well elaborated, an instrument for assessing 
them exists, and this instrument has been used with a large sample of first year 
mathematics students in German universities: Why should we not use the existing 
instrument, whose reliability and validity have been shown, and administer it to a 
suitable sample of Israeli high school students? 
The brief version of our answer to this question is that BMMs do well what they are 
designed to do namely to reveal students’ knowledge about mathematical concepts, 
and about integrals specifically. Such knowledge may be assumed to have been 
constructed (or memorized) during an epistemic journey led by a teacher. However, 
BMMs have not been designed to assess students’ personal meanings. In the remainder 
of this paper, we will present three examples illustrating differences between BMMs 
and personal meanings. We will conclude the paper by giving a more elaborate answer 
to the question why we do not use BMMs as theoretical framework.  
EXAMPLES 
The examples for students’ personal meanings presented below have been selected 
from among more than 50 task-based interviews held for the purpose of designing a set 
of questionnaires to assess high school students’ meanings for derivative and integral. 
Using Thompson’s definition of personal meaning, we decided on the following five 
criteria as being potentially indicative of the interviewee’s personal meaning. 
Distinctive language. Utterances may reveal personal meaning if they refer to 
mathematical notions in terms distinctive to the interviewee. By this we mean that the 
terms have not been used by the interviewer or in the task, and were not prompted in 
any way, but are the interviewee’s own terms. 
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Repetition. Utterances may allude to personal meaning if they contain terms that repeat 
themselves, whether within a certain task, or across different tasks and contexts. 
Repetition signifies that the concepts associated with these terms are readily available 
and relevant to the interviewee, and therefore are a salient part of their thinking.  
Reasoning. Utterances that are intended to explain or justify mathematical notions or 
claims are indicative of the interviewee’s thought process, and therefore may point to 
personal meaning. 
Unexpectedness. If an utterance by the interviewee is unexpected for the interviewer, 
then it was not solicited by the interviewer or the task and may be an expression of the 
interviewee’s personal meaning. 
Statement of opinion. Utterances explicitly qualified by the interviewee as their own 
belief, opinion or interpretation will be regarded as indicative of personal meaning. 
This includes, for example, utterances containing phrases such as “to me”, “in my 
opinion”, “the way I understand it”. 
Nathan  
Nathan is an experienced high school teacher. He had completed several analysis 
courses at university and is very skilled in the subject. He was interviewed with the 
aim of clarifying his personal meaning for integral (see Noah-Sella et al., 2022, for 
details). The three tasks used in the interview with Nathan dealt with the length of a 
segment of the graph of a function, with the mass of a wire, given its mass density, and 
with the amount of money in a bank, given the cash flow. 

 
Figure 2: Nathan’s markings on the cash flow graph 

The cash flow task was presented in a graphical setting, leading Nathan to draw vertical 
(red) lines from the horizontal time-axis down to the graph representing the cash flow 
(Figure 2, between about time 8:50 and 9:30), and to explain  

Nathan:  My logic is that when Δ𝑥 approaches zero, or is even equal to zero, the size 
of the – I don’t want to say rectangle, it’s a line - it has no width. It’s just a 
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line, and since its width is zero, when we add up all these lines, we will get 
the area under the curve. 

Nathan sums little bits, thus using the accumulation BMM. He “adds up” all the lines 
to obtain the area and interprets the area as amount of cash, thus using the area BMM. 
And when asked how he would add up the lengths in practice, he said “adding up the 
y-coordinates of all the points, the infinite number of points”. To Nathan, that was what 
the integral was doing, and for the computation he would find an antiderivative and use 
the second part of the fundamental theorem, that is the reconstruction BMM. Thus, 
Nathan’s personal meaning for integral encompassed the three BMMs.  
Nathan’s personal meaning for integral was consistent across tasks. When asked about 
the curve length, Nathan wanted to “take all the points and add them up”, which he 
elaborated as “take two points, calculate the distance between them, and make Δ𝑥 
approach zero. Then I’ll get the length of a single segment… If I integrate this, I will 
get the length of this segment”. Nathan first lets Δ𝑥 approach zero, and then 
“integrates” or sums the values. We mention in passing that Nathan’s explanations are 
completely in line with what Oehrtman (2019) has called the collapse metaphor. 
What exactly Nathan imagines adding became most clear in the mass from density 
task; in this task, Nathan claimed that the given mass density function did not serve 
him to find the mass of the wire; rather that he needed a function giving the mass at 
each point, and then he could integrate these point masses to find the mass of the wire.  
We conclude that Nathan’s personal meaning for integration is that the integral is a 
technique that sums the values of the integrand at each point of the interval of 
integration. From Nathan’s explanation in the curve length task, it appears that he may 
have developed this meaning in an effort to tackle the role of limit in the definition of 
the integral. He uses this meaning explicitly in combination with the accumulation 
BMM in all three tasks; he combines it with the area BMM in the cash flow task; and 
he combines it with the reconstruction BMM in both, the cash flow and the curve length 
task. He is familiar with the three BMMs and uses them freely in his explanations. But 
what he interprets the integral to be, to do and to mean is to add values of the integrand. 
This interpretation is independent of the BMMs and reaches across all three of them.   
Oren 
Oren is a 12th grade student who is taking advanced track mathematics. The task on 
which Oren’s interview was based relates to ∫ 𝑓(𝑡)𝑑𝑡!

" , where 𝑓 is a step function with 
two positive values (Figure 3).  
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Figure 3: the graph presented to Oren 

Oren related to ∫ 𝑓(𝑡)𝑑𝑡!
"  as an “accumulating integral” and distinguished it from a 

“regular integral”. When asked what accumulates, Oren explained that “what 
accumulates are values” and “I like to look at it as with some image, for example 
accumulation of money in the bank. If we accumulate positive values, the amount of 
money grows.” The discontinuity of 𝑓 did not disturb Oren – he explained that the 
integral simply did not accumulate a value there, whereas at all other x’s it does. So, 
one might conclude that Oren’s individual BMM for integral was accumulation. 
However, this was not at all the case. When presented with a hypothetical student K 
who used antiderivatives in the same situation, Oren explained that “the integral is the 
opposite of derivative, and that’s what K did when he took the antiderivative. If it were 
a regular integral, I would agree with him, but since it is an accumulating integral, he 
makes a mistake”. Similarly, when presented with a hypothetical student A who used 
area in the given situation, Oren explained that “the integral is the area caught between 
the graph – the ceiling – and the x-axis - the floor. What’s between them, that’s really 
our integral”. But for Oren, an accumulating integral is not represented by area: “When 
I think about an accumulating integral, I don’t think about area; I think about values 
that I accumulate, y-values.” 
Finally, when presented with a student C who added a constant of integration, Oren 
was “in a dilemma how to relate to the constant of integration. In a regular integral, we 
add a constant of integration. I am not sure whether we do that in an accumulating 
integral; my intuition says no. In an accumulating integral, you don’t speak about a 
primitive function, to which you could add an arbitrary constant that would then 
disappear when you differentiate. I don’t agree with C. He would be correct if we spoke 
about a regular integral, but we don’t.” 
Like Nathan, Oren flexibly relates to the three BMMs, rather than preferring one of 
them. However, there is a disconnect for him. He links the expression ∫ 𝑓(𝑡)𝑑𝑡!

"  to the 
“accumulating integral” or the accumulation BMM, which is separate from and 
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behaves differently from a ״regular integral״ that can be thought about using the area 
BMM or the reconstruction BMM. 
In contrast to Nathan who linked the three individual BMMs by a common way of 
thinking about them, Oren separates the accumulation BMM as being a completely 
different entity with different properties from the “regular” area and reconstruction 
BMMs. Oren’s personal meaning consists of two distinct notions of integral, “regular” 
and “accumulating”. His meaning for integral does not reside in an individual BMM 
but rather in how he views, connects, or separates the three BMMs. The “regular” 
integral is evaluated by means of an antiderivative (reconstruction) and returns the 
value of the area of a fixed static region enclosed by the graph of the function and the 
x-axis. The “accumulating” integral, on the other hand, has nothing to do with area or 
reconstruction; it sums values.  
Nadia 

Nadia was interviewed on an item parallel to Oren’s, about 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡!
" , where 

𝑓 is a step function with two positive values (Figure 3). Her item was slightly different, 
however: The integral was described as representing the area under the graph of f. 
Nadia was presented with the thinking of 5 hypothetical student. With the thinking of 
two of them she did not at all identify; we discuss the other three.  
Hypothetical student V said that to find the integral, one needs to find the antiderivative 
in each of the two subdomains. Nadia explained V’s reasoning as follows: V splits the 
domain into two subdomains, notices that f is the derivative of g, and hence does, in 
each subdomain, the operation inverse to differentiation, which is finding the 
antiderivative. Hypothetical student T said that area accumulates at a certain rate up 
the point of discontinuity and then continues to accumulate at a different rate. Nadia’s 
reaction was that she was familiar with both ways, the one of V and the one of T, but 
that she slightly prefers V’s way. Hypothetical student P looked at the integral as 
describing area accumulation like T but claims that the accumulation starts again from 
0 at the point of discontinuity. Nadia points out the similarity between P and T, but not 
the difference. She identifies with both, the thinking of T and of P, but not as closely 
as with the thinking of V. 
Our interpretation, so far, is that Nadia appears to be at ease with and able to explain 
the area BMM, the reconstruction BMM and the accumulation BMM, with a slightly 
higher affinity for the reconstruction BMM than for the other two.  
Next, Nadia was presented with four potential graphs for g (Figure 4). All graphs are 
positive and have the correct slopes; the only difference between them is at the point 
of discontinuity of f. Nadia was asked, which of the graphs represent the function 𝑔(𝑥). 
Nadia kept vacillating between the three discontinuous graphs for about 10 minutes, 
giving no clear reasons for her choices, and struggling: “it’s a bit difficult to explain” 
and “it feels strange”. At one stage, she explained that “it can’t start from a lower point 
as in 1 and 3” because “if you do an integral, if you separate the two parts…, you like, 
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have to add one to the other”, and later “because we do the addition… there is a jump 
between them because it can’t be 100% continuous”. Indeed, she preferred, at different 
times, Graphs 1, 3 and 4, but never Graph 2. 

 
Figure 4: The graphs proposed to Nadia for 𝒈(𝒙) 

As the conversation went on, she ventured “it depends how I look at this... you can take 
it as a question about definite integral, and you can take it as question about area; and 
each one has a very different meaning”; “I say they [the graphs] can all be correct; it’s 
just a question of how I try to look at them”; ”Graph 3, for example, can be if I look at 
the first segment, and then I like restart the area”; “I choose Graph 1 because I don’t 
completely restart from zero”; and she concluded with “[if the horizontal axis 
represents x and the vertical one 𝑔(𝑥)] then I would choose Graph 4”. 
Nadia’s only definite argument was against Graph 2; her exclusion of Graph 2, as well 
as her acceptance of Graphs 1 and 3, contradict accumulative thinking. We conclude 
that her earlier support for the way of thinking of students T and P may have been only 
declarative. The BMMs of area, and reconstruction play an explicit and recurring role 
in Nadia’s thinking about the graphs; however, she expresses a clear disconnection 
between definite integral and area, claiming that they lead to different graphs (209); 
these different graphs are incompatible with each other, as well as with a meaning of 
area for the definite integral – the growth of area can’t be discontinuous. 
Nadia’s meaning for integral contains elements of all three BMMs, but the elements 
from each BMM lead her to ways of thinking that are incompatible with the other 
BMMs. For example, Nadia’s seemingly strong grounding in the reconstruction BMM 
was too weak to play a role for her when choosing a graph. Nadia’s meaning for integral 
at the time of the interview cannot be associated with a specific BMM, nor with a 
coherent fusion of two or all three BMMs.  
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CONCLUSION 
BMMs and meanings are not orthogonal, as the examples show. In Oren’s meaning for 
integral, all three BMMs play a role, but this meaning decomposes into two notions for 
integral, something that might not have become evident, had we only looked for 
BMMs. BMMs may also blend rather incoherently in a student’s mind as for Nadia. 
On the other hand, a student’s meaning for integral may be consistent across all three 
BMMs, as for Nathan; Nathan has a strong but mathematically erroneous meaning for 
integral that is quite independent of the BMMs. The meaning of none of the three 
students can be clearly associated with one BMM; quite the contrary: for each of the 
students, all three BMMs play some role, and these roles differ greatly from student to 
student.   
The test developed by Greefrath et al. (2021) lets students choose between 4 options. 
This is useful for the purpose for which the test has been designed. But as pointed out 
in the previous paragraph, the test is not likely to reveal students’ meanings. Students’ 
meanings are not neat enough to be categorized into 4 slots that have been defined by 
theoretical content analysis. In addition, the BMM a student uses may strongly depend 
on the context of the situation presented to the student. For Oren, the area BMM played 
a minor role. For Nadia, who was presented with what may appear to an expert to be 
the same problem (except that the area interpretation was mentioned in the description 
of the integral), the area BMM played a central role. 
As epistemological constructs, BMMs are useful for comparing students’ meanings to 
desired meanings for integral, for assessing how close students’ meanings are (or are 
not) to the desired meanings offered by the BMMs. We note that Greefrath et al. (2021) 
themselves explicitly distinguish between BMMs and concept images; this seems a 
reasonable conclusion. We conclude that the role of BMMs in assessing students’ 
meanings that differ from the desired meanings is limited.  
The researcher who intends to investigate meanings should certainly be aware of 
BMMs and ask whether and how these meanings are related to BMMs. But when we 
ask about a student’s meaning, we do not, or not mainly ask in terms of which models 
students think with. We ask how the student thinks about and with these models. In the 
BMM instrument, Nathan might have expressed the same high appreciation for the area 
and for the accumulation answers; and we would not have learned how he thinks about 
the integral, namely as a sum of values (or lengths) rather than a sum of products or 
areas (or small rectangles).  
The BMM instrument is doing well what it was designed to do, but it does not assess 
students’ meanings. BMMs have an epistemological role in the design of instruction. 
Designers will want to introduce several BMMs sequentially and coherently. Going 
beyond epistemology, Thompson (2013) has pointed out the importance of meanings 
for mathematics teaching and learning to become productive. The investigation of 
meanings requires suitable tools, and the development of these tools requires intensive 
interviewing (Thompson, 2016).  It is a complex long-term effort.  
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This mixed mode longitudinal study compares the level of attainment between a face-
to-face and an online class of Calculus 3 during the Spring 2021 semester, considers 
the attainment level of the students in the prior Calculus 2 course, and then goes on to 
compare the results of the same students when they all returned to campus to take the 
subsequent Differential Equations course. The results show that although the students 
were of a similar level of ability when entering the Calculus 3 course, the face-to-face 
students did much better once the semester began, with a statistically significant 
difference in the scores on both the first midterm exam and at the end of the course. 
This difference was maintained in Differential Equations. We discuss the causes of the 
disparity using the quantitative and qualitative data collected, along with the 
implications for how to best allocate resources in a way that blends the positive aspects 
of different teaching modalities. 
Keywords: Teaching modalities, online learning, attainment, calculus, Covid-19. 
INTRODUCTION 
The Covid-19 pandemic led to a substantial increase in the amount of attention given 
to teaching modalities, with much of it concentrated on the rapid and forced transition 
to online learning and its effect on students and instructors. In this paper, we look at 
aspects of online education in the context of the pandemic and use data from students 
taking the university calculus sequence in the United States to see whether weaker 
students had a greater propensity to take online alternatives to regular face-to-face 
classes, how the online students performed compared with face-to-face students when 
taking the same course, and how students who have taken classes online during the 
pandemic adjusted when returning to the classroom. 
LITERATURE REVIEW 
Looking across all disciplines, a small number of the initial studies discussing the 
changes to teaching and learning modalities caused by the Covid-19 pandemic reported 
a benefit to the enhanced use of digital technologies. Almusharaaf and Khahro (2020) 
reported that of the 283 undergraduate students surveyed in Saudi Arabia, most were 
highly satisfied with the (online) course modality, the knowledge and skills that they 
gained, and the level of engagement, while Gopal et al. (2021) found that a clear 
majority of the 544 business and hotel management students that they questioned in 
India considered online teaching to be valuable even though their first experience of it 
came during the pandemic. An often-cited caveat is that students must have the 
necessary internet connection and related support needed to make the transition and 
this is especially relevant in developing countries. A study of 115 students in Indonesia 
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by Bahasoan et al. (2020) found that almost all of them experienced difficulties related 
to network connectivity and data quotas. 
By contrast, a large number of studies have brought to light the disadvantages caused 
by the sudden shift to distance learning. A study of 270 undergraduates conducted by 
Aguilera-Hermida (2020) found that the students had a strong preference for face-to-
face instruction, and that those with this preference struggled to adapt to the change in 
modality. Students reported their biggest challenge to be concentrating while being at 
home due to the distractions of family members, having a tendency to view their home 
as a space for relaxation rather than work. Even among mature students studying 
professional disciplines (Bączek at al., 2021; Sarwar et al. 2020), technological issues 
and the lack of interaction reduced the perceived effectiveness of online classes. 
Academic struggles during the pandemic were found to be exacerbated by issues 
related to student mental health. A study by Pragholapati (2020) emphasized that the 
academic performance of students is affected by issues that go beyond the modality of 
instruction and found that at least a quarter of the student participants suffered from 
Covid-19 induced anxiety. Research carried out by Mendoza et al. (2021) confirmed 
the existence of severe anxiety in a significant part of the sample of mathematics 
students sampled during the pandemic. 
Given the documented struggles that students endured during the transition to online 
classes, it is not surprising that many wanted to return to campus as soon as possible. 
In a study of 604 students in Romania, Gherhes et al. (2021) found that most of the 
respondents wanted to return to face-to-face learning after the pandemic. This is in line 
with the study of students in Florida by Griffiths (2020) that found a significant 
proportion of undergraduate students still believe that on-campus instruction offers the 
highest level of education, with a difficulty in maintaining focus and the lack of 
interaction with the instructor and other students cited as the primary drawbacks to 
taking classes online.  
Quantitative studies of student attainment using different modalities are more difficult 
to conduct, especially during the Covid-19 pandemic, as there was often no choice 
given to students. Such studies are challenged by the need to maintain the same 
pedagogical practices and must also consider whether any discovered disparities were 
present at the beginning of the course. As a result, the first articles involving attainment 
relied mostly on student perceptions. A study by Hashemi (2021) of 1231 students in 
Afghanistan found that academic performance during the pandemic was reduced, while 
88% of the undergraduate biology students surveyed in Florida by Hacisalihoglu 
(2020) indicated that their education had been negatively impacted by the enforced 
switch to online learning.  
In this study, we consider many of the issues described above, along with how students 
in a Calculus 3 course taught using two different modalities fared once they all returned 
to campus to take the subsequent Differential Equations course. We look at the results 
from both semesters, as well as those from the previous semester when the students 
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took Calculus 2, to ensure that any disparities between the two groups were not present 
at the outset. As a result, we consider the following three research questions: 
1. As measured by their grade in Calculus 2, was there a difference in ability between 
those who registered for the online class of Calculus 3 and those who registered for the 
face-to-face class? 
2. Was there a difference between the scores of the two groups of Calculus 3 students 
at the beginning of the course, and did that change by the end of the semester? 
3. When all the students returned to the campus to take Differential Equations, was 
there a difference in performance between those who had taken Calculus 3 online and 
those who had taken it face-to-face? 
THEORETICAL FRAMEWORK 
While it is the body of recent literature described earlier that frames this study in the 
context of the pandemic, a more general framework comes from the community of 
inquiry model, which was applied to online learning by Garrison et al. (1999). It 
emphasizes how the overall educational experience is affected by a combination of the 
teaching presence, the social presence, and the cognitive presence (see Figure 1). 

 
Figure 1: Elements of the educational experience 

Teacher presence refers to the design of the curriculum, the creation of course 
materials, and the nature of the assessments, which will typically be adapted according 
to the instructional modality. Social presence refers to how students are able to project 
their own identity into the learning experience through interaction with their instructor 
and their peers. This is perhaps the most difficult aspect to replicate when moving from 
face-to-face instruction to online learning, especially if the instruction is asynchronous. 
Cognitive presence refers to how students develop understanding through reflection 
and communication, and is again dependent on the learning environment, something 
that is often beyond the control of the instructor when students are outside the 
classroom.  
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METHOD  
The population initially consisted of 49 students taking an online class of Calculus 3 
during the Spring 2021 semester, and another 49 students taking the course face-to-
face with the same instructor. Aside from the instructional modality, the students in the 
two classes were taught in the same manner, with lectures, midterm exams, and the 
final exam being almost identical to one another. The first research question caused us 
to analyse the grades obtained by the students in the two classes when they took and 
passed the prerequisite course, Calculus 2. After filtering out students who took the 
course either in high school or at a two-year college (which led to unequal sample sizes 
– 36 in the online class and 35 in the face-to-face class), we converted their grades to 
GPA points according to the usual four-point scale (A = 4, B = 3, C = 2, D = 1, F = 0) 
and ran a Welch’s t-test to see if there was a difference in the mean values.  
The second research question required us to analyse the difference in performance 
between students in the online class of Calculus 3 and those in the face-to-face class 
by considering the scores from the first midterm exam and the end of semester scores. 
A Mann-Whitney U test was performed in both cases. The third research question 
caused us to analyse the performance of the online students when returning to campus 
to take the subsequent Differential Equations course and compare it with those whose 
face-to-face modality did not change. By converting their grades to GPA points 
according to the usual four-point scale we were able to run a Welch’s t-test to analyse 
the mean values. At the conclusion of the semester, students were sent a brief survey 
questionnaire to gather qualitative data regarding their perception of online courses.  
RESULTS 
Was there a difference in attainment between the two groups before entering the 
class? 
Since the two groups were non-overlapping and the sample sizes different, a Welch’s 
t-test was applied to determine if there was a difference in the course grades (as 
measured by GPA) between the scores of the 36 online students and the 35 face-to-
face students in the prerequisite Calculus 2 class, which everyone took face-to-face. 
No statistically significant difference was found (t = -0.26, df = 66, p = 0.80), although 
the online students in Calculus 3 had a slightly lower GPA in Calculus 2 (2.96) than 
the face-to-face students (3.00). 
Was there a difference in attainment between the two groups during the course? 
Given the nonparametric nature of the data, and the fact that the two groups were 
independent, a Mann-Whitney U test was applied to calculate whether there was a 
difference between the scores of the 49 face-to-face students (median = 70) and the 49 
online students (median = 60) on the first midterm exam. A statistically significant 
difference was found (U = 868, z = 2.077, p = 0.038), with the face-to-face students 
performing better. 
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Similarly, when the overall semester scores were tabulated, the Mann-Whitney U test 
was again applied to calculate whether there was a difference between the scores of the 
face-to-face students (median = 81.05) and the online students (median = 75.6). Again, 
a statistically significant difference was found (U = 461.5, z = 2.095, p = 0.037), 
resulting in an average GPA of 2.83 in the face-to-face class and 2.36 in the online 
class. 
Was there a difference in attainment between the two groups when taking the next 
class? 
Since the two groups were non-overlapping and the sample sizes different, a Welch’s 
t-test was applied to determine if there was a difference in the course grades (as 
measured by GPA) between the scores of the 22 students who took Differential 
Equations after taking the online class of Calculus 3 and the 28 students who took 
Differential Equations after taking the face-to-face class of Calculus 3. The average 
difference was almost half a grade (0.43 GPA points, compared with a difference of 
only 0.1 GPA points in their Calculus 2 grades), with the mean GPA in the former class 
being 2.27 and the mean GPA in the latter class being 2.70 (t = -1.16, df = 40, p = 
0.13). These results are summarised in Figure 2. 

 
Figure 2: A comparison of attainment by modality among the different courses 

Qualitative data 
Having recently taken classes both face-to-face and online, students were asked for 
their preferred modality, with the most representative feedback included below. Even 
though some students believed online classes to be easier, almost all preferred the face-
to-face format, believing that they learned more and were better able to focus, with 
many citing how they value the increased interaction with the instructor and their peers. 

I firmly believe that face-to-face classes are better for interaction and learning since 
they are more personable. Online classes have their purpose, but face-to-face delivery 
makes the material stick more easily. In addition, being able to connect and learn from 
the professors and with other students makes dry content more tolerable and usually 
helps to secure foundational knowledge. Another advantage to face-to-face classes is 
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being able to ask questions and receive immediate answers which leads to quicker 
comprehension and subject clarity. Overall, I would only choose online classes if I 
knew the class was very easy, if I knew the class material was not important to my 
goals, or if I needed more time for other classes. 

Students were asked whether they believe that learning mathematics is easier in a face-
to-face class rather than one taught online. There was unanimous agreement among the 
participants that this was the case. 

I believe that online math classes make the subject matter more difficult to comprehend 
for most students. They are much less engaging. I am okay with self-learning but 
reading the textbook constantly is not my strength. This especially matters in a class 
where I need to fully comprehend the material for application and future classes. 

Finally, students were asked if they believe the pandemic will have a long-term effect 
on the number of classes taught using either online or mixed mode modalities. Again, 
there was unanimous agreement that this will happen. 

Absolutely. I think many courses will choose to offer hybrid classes so that they 
include the benefits of both modalities, including flexibility and interactivity. I also 
think that many general education courses will continue to stay online as many students 
require this flexibility due to time conflicts, other priorities, or perhaps a disability. I 
think it is good to have the choice so students can find a balance which works for them. 

DISCUSSION 
The first research question led to an analysis of whether the students in the online class 
were weaker to begin with versus their counterparts in the face-to-face class, as 
measured by their performance in the prerequisite course. It was found that the 
difference between the two cohorts was negligible. This contrasts with the paper by 
Protopsaltis and Baum (2019) which found that weaker students are more likely to take 
online college classes but end up doing worse in them. However, in this instance, the 
unique circumstances surrounding the pandemic caused enrolment in the various 
modalities to go beyond educational strategies, with many students choosing online 
classes due to health concerns and the scarcity of face-to-face options. 
Despite there being little variation in the calibre of the two groups of students upon 
entering the Calculus 3 class, the results show a statistically significant difference 
between the scores of those taking the class face-to-face and those taking it online, with 
the former group doing better from the outset. There was a statistically significant 
difference between the two groups on the first midterm exam, and this disparity was 
maintained throughout the semester. The results are in line with several studies (Alpert 
et al., 2016; Dynarski, 2017) that have questioned whether online classes are as 
effective as the equivalent classes taught in-person. Protopsaltis and Baum (2019) 
described how there is a strong body of evidence that has emphasized the critical role 
of frequent and meaningful interaction between students and instructors, which is often 
lacking in online courses. The difficulties that students appear to have in online classes 
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appear to be magnified in theoretical disciplines such as mathematics (Griffiths, 2020; 
Smith et al., 2008; Xu & Jaggars, 2014). 
That being said, one needs to consider the circumstances caused by the pandemic when 
putting the results in context, given the unique challenges faced by students and 
instructors. One important factor is the effect that the Covid-19 pandemic had on the 
mental health of students, which almost certainly contributed to the relatively poor 
performance of those taking online classes. Several studies have found that students 
across the globe struggled with aspects of mental health during the pandemic (Essadek 
& Rabeyron, 2020; Wang et al., 2020), leading to a detrimental effect on learning 
outcomes. In addition, faculty were forced to adapt to new teaching modalities at short 
notice and without much training. Although every effort was made in this instance to 
ensure a level playing field in terms of the quality of instruction and the integrity of the 
testing process, it is difficult to ensure that the level of interaction is maintained when 
teaching an online class. Jones and Sharma (2020) caution that teachers who are good 
in a physical classroom will not suddenly transform into great online instructors. 
There have been few longitudinal studies assessing the longer-term impact of taking 
classes online, but the results here, showing an average difference of 0.43 GPA points 
between the students in Differential Equations who had taken a face-to-face class of 
Calculus 3 and those who had taken an online class is very much in line with the 
comprehensive study including this topic conducted by Bettinger et al. (2017) who 
found a difference of 0.42 GPA points for courses in the same subject area as the treated 
course. This indicates that some initial remediation might be needed for students 
returning to the campus having taken classes online. 
The qualitative data collected by this study indicates that students believe that the 
pandemic will have a lasting effect on higher education, with a wide range of teaching 
modalities continuing to be offered. However, there was general agreement that the 
increased level of engagement with faculty and other students offered by face-to-face 
courses aids comprehension, and that this is particularly true with regard to theoretical 
disciplines such as mathematics. These findings are in line with other studies which 
indicate that learning mathematics is different from learning other subjects (Mullen et 
al., 2021) and that, more broadly, students prefer face-to-face instruction when 
theoretical concepts must be deeply understood (Paechter & Maier, 2010). 
CONCLUSION 
While some contend that face-to-face instruction will remain the dominant method of 
educational delivery (Gilbert et al., 2021), there is little doubt that online courses will 
continue to be offered in greater numbers compared with the situation before the 
Covid-19 pandemic. However, the results of this study are in line with several others 
in showing a significant difference in the level of attainment between students taking 
classes online and those taking the same class face-to-face. The central issue therefore 
is how to best implement the positive aspects of online instruction in a way that retains 
the elements of engagement that enable students to do better in face-to-face classes. 
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This appears to be magnified in mathematics and other scientific disciplines. 
Significant pedagogical development is needed to overcome the reduced interaction 
that students experience when taking online classes and educators should be 
particularly aware of this when designing courses where a significant amount of 
theoretical material must be understood. Trenholm et al. (2016) indicated the urgency 
of moving toward student-centred pedagogies when designing online mathematics 
courses, and this issue will become increasingly acute post-pandemic when more and 
more such courses are expected to be offered. 
This study also confirms that any disadvantage experienced by students in online 
courses can have a lasting effect when they return to the classroom. As a result, 
educators and administrators need to be judicious in how resources are allocated, 
especially in courses that begin a sequence such as Calculus 1. While it is tempting to 
take heavily populated lower-level courses and deliver them online, it has been 
repeatedly shown that weaker and less experienced students struggle more with the 
aspects of self-motivation and time management required to succeed in online classes 
(Bettinger et al., 2017; Kalman et al., 2020; Xu & Jaggars, 2014). Blended modalities 
that incorporate the positive aspects of both online and face-to-face courses perhaps 
offer a better alternative, with several studies making the case that technology adds to 
the learning experience when it supplements rather than replaces face-to-face 
interaction (Griffiths, 2015; Protopsaltis & Baum, 2019). An initial period of 
remediation may also be required for students transitioning within the same discipline 
from online courses to face-to-face instruction, especially when part of a sequence. 
There are several avenues for further research that follow on from this study, including 
an exploration of whether similar results are obtained when broadening the research 
questions to larger populations and different subject areas within mathematics. Over 
time we would expect a convergence in outcomes among the different modalities as 
students and instructors adjust to the new normal. 
REFERENCES 
Aguilera-Hermida, A.P. (2020). College students’ use and acceptance of emergency 

online learning due to COVID-19. International Journal of Educational 
Research Open, 100011. 

Almusharraf, N., & Khahro, S. (2020). Students’ satisfaction with online learning 
experiences during the COVID-19 pandemic. International Journal of Emerging 
Technologies in Learning, 15(21), 246-267. 

Alpert, W., Couch, K., & Harmon, O. (2016). A randomized assessment of online 
learning. American Economic Review, 106(5), 378–382. 

Bączek, M., Zagańczyk-Bączek, M., Szpringer, M., Jaroszyński, A., & Wożakowska-
Kapłon, B. (2021). Students’ perception of online learning during the Covid-19 
pandemic: A survey study of Polish medical students. Medicine 100(7): e24821. 

161



  
Bahasoan, A., Ayuandiani, W., Mukhram, M., & Rahmat, A. (2020). Effectiveness of 

online learning in pandemic Covid-19. International Journal of Science, 
Technology & Management, 1(2), 100-106. 

Bettinger, E., Fox, L., Loeb, S., & Taylor, E. (2017). Virtual classrooms: How online 
college courses affect student success. American Economic Review, 107(9), 
2855-2875. 

Dynarski, S. (2017). Online schooling: Who is harmed and who is helped? The 
Brookings Institution, October 26. Retrieved from 
www.brookings.edu/research/who-should-take-online-courses/ 

Essadek, A., & Rabeyron, T. (2020). Mental health of French students during the 
Covid-19 pandemic. Journal of Affective Disorders, 277, 392-393. 

Garrison, D. R., Anderson, T., & Archer, W. (1999). Critical inquiry in a text-based 
environment: Computer conferencing in higher education. Internet and Higher 
Education, 2(2-3), 87-105. 

Gherhes, V., Stoian, C., Farcasiu, M., & Stanici, M. (2021). E-learning vs. face-to-face 
learning: Analyzing students’ preferences and behaviors. Sustainability, 13(8), 
4381. 

Gilbert, H., Hodds, M. & Lawson, D. (2021). ‘Everyone seems to be agreeing at the 
minute that face-to-face is the way forward’: Practitioners’ perspectives on post-
pandemic mathematics and statistics support. Teaching Mathematics and its 
Applications: An International Journal of the IMA, 40(4), 296-316. 

Gopal, R., Singh, V., & Aggarwal, A. (2021). Impact of online classes on the 
satisfaction and performance of students during the pandemic period of Covid 
19. Education and Information Technologies, 26, 6923-6947. 

Griffiths, B. (2015). Perspectives of exchange students on the role of classroom 
technology: A law of diminishing returns? International Journal for Infonomics, 
8(1), 974-978. 

Griffiths, B. (2020). Returning to campus during the Covid-19 pandemic: Perceptions 
of calculus students in Florida. In I. Sahin & M. Shelley (Eds.), Educational 
Practices during the Covid-19 Viral Outbreak: International Perspectives (pp. 
239-251). ISTES Organization. 

Hacisalihoglu, G. (2020) From face-to-face to online modality: Implications for 
undergraduate learning while the world is temporarily closed in the age of 
Covid-19. bioRxiv preprint. Retrieved from 
https://europepmc.org/article/ppr/ppr208012#S2 

Hashemi, A. (2021). Effects of Covid-19 on the academic performance of Afghan 
students and their level of satisfaction with online teaching. Cogent Arts & 
Humanities, 8(1), article 1933684. 

162



  
Jones, K., & Sharma, R. (2020). Reimagining a future for online learning in the post-

COVID era. Social Science Research Network. Retrieved from 
https://doi.org/10.2139/ssrn.3578310 

Kalman, R., Esparaza, M., & Weston, C. (2020). Student views of the online learning 
process during the COVID-19 pandemic: A comparison of upper-level and 
entry-level undergraduate perspectives. Journal of Chemical Education, 97(9), 
3353–3357.  

Mendoza, D., Cejas, M., Rivas, G., & Varguillas, C. (2021). Anxiety as a prevailing 
factor of performance of university mathematics students during the COVID-19 
pandemic. Obrazovanie i Nauka (The Education and Science Journal), 23(2), 
94-113. 

Mullen, C., Pettigrew, J., Cronin, A., Rylands, L., & Shearman, D. (2021). 
Mathematics is different: student and tutor perspectives from Ireland and 
Australia on online support during COVID-19. Teaching Mathematics and its 
Applications, hrab14. 

Paechter, M., & Maier, B. (2010). Online or face-to-face? Students’ experiences and 
preferences in e-learning. Internet and Higher Education, 13(4), 292-297. 

Pragholapati, A. (2020). Covid-19 impact on students. EdArXiv preprint. Retrieved 
from  https://edarxiv.org/895ed/ 

Protopsaltis, S., & Baum, S. (2019). Does online education live up to its promise? A 
look at the evidence and implications for federal policy. Center for Educational 
Policy Evaluation. Retrieved from https://jesperbalslev.dk/wp-
content/uploads/2020/09/OnlineEd.pdf 

Sarwar, H., Akhtar, H., Muhammad, M., Javeria, N., Khan, A., & Waraich, K. (2020). 
Self-reported effectiveness of e-learning classes during Covid-19 pandemic: A 
nation-wide survey of Pakistani undergraduate dentistry students. European 
Journal of Dentistry, 14(1), 34-43. 

Smith, G., Torres-Ayala, A., & Heindel, A. (2008). Disciplinary differences in E-
learning instructional design. Journal of Distance Education, 22(3), 63-88. 

Trenholm, S., Alcock, L., & Robinson, C. (2016). The instructor experience of fully 
online tertiary mathematics: A challenge and an opportunity. Journal for 
Research in Mathematics Education, 47(2), 147-161. 

Wang, X., Hegde, S., Son, C., Keller, B., Smith, A., & Sasangohar, F. (2020). 
Investigating mental health of US college students during the COVID-19 
pandemic: Cross-sectional survey study. Journal of Medical Internet Research. 
22(9), e22817. 

Xu, D., & Jaggars, S. (2014). Performance gaps between online and face-to-face 
courses: Differences across types of students and academic subject areas. 
Journal of Higher Education, 85(5), 633-659. 

163



  

Vertical coherence in the teaching of integrals? An example from 

complex analysis 

Erik Hanke1 

1Leibniz University Hannover, TH Köln – University of Applied Sciences, Germany, 

hanke@idmp.uni-hannover.de  

Students encounter integrals in a wide range of mathematical domains, often in 

relation to the ideas of measuring and mean values. Using the integral as an example, 

this paper discusses one aspect of the teaching and learning of advanced mathematics, 

namely, the use of core ideas of mathematical concepts to establish vertical coherence 

between mathematical domains in teaching. It will be explained to what extent the ideas 

of measuring and mean values can be used for complex path integrals. Then, the 

epistemological considerations in this paper are enhanced with a case from an expert 

interview. This case exemplifies the application of the two aforementioned ideas to 

complex path integrals, but it also points to a potential overgeneralisation from real to 

complex analysis.  

Keywords: Teaching and learning of specific topics in university mathematics, 

epistemological studies of mathematical topics, complex analysis, integrals, mean 

values. 

INTRODUCTION 

Mathematics educators at university are driven by the question what thriving teaching 

at the university level may look like. The transition to university mathematics, the 

double discontinuity in mathematics teacher training, or teaching mathematics in 

service courses or for the workplace have already been studied quite a lot (e.g., Biza et 

al., 2016; Gueudet et al., 2016). In addition, mathematics education research has 

emphasised that learners’ previous conceptions of a mathematical concept influence 

their mathematical thinking when the mathematical concept reappears in other 

contexts, has been further abstracted or modified (e.g., Biza, 2021; Kontorovich, 2018; 

McGowen & Tall, 2010). Moreover, some authors suggest grounding mathematics 

teaching in core ideas (e.g., “basic ideas” and “aspects”, vom Hofe & Blum, 2016; 

Greefrath et al., 2016; “fundamental ideas”, Vohns, 2016). However, less research and 

didactic materials are available for more advanced mathematics (≈2nd year at 

university onwards). In this vein, Winsløw et al. (2021) summarise: 

Material that identifies fundamental or central ideas, provides insight into learning 

difficulties or obstacles for the students and that shows possible remedies. Such content-

specific mathematics education knowledge (didactics) is available for teaching at school 

level, for instance to know about different ways to approach and organise the teaching of 

derivatives or integrals (cf. Greefrath, Oldenburg, Siller, Ulm, & Weigand, 2016). Similar 

expositions are inaccessible or unavailable when it comes to more advanced subjects (e.g., 

linear algebra) and their teaching at university level. (p. 74) 
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Particularly in the context of the sequencing and modularisation of mathematics study 

programmes, it is important to create at least some kind of coherence, for example in 

the sequence from calculus and analysis in one and several variables to metric space 

theory or complex analysis (cf. Hochmuth et al., 2021). Generally speaking, if 

mathematics educators intend to create coherence between different mathematics 

courses in undergraduate curricula, they need to identify intersections where lecturers 

can draw on students’ prior knowledge. 

In this paper, this issue is investigated using the example of integration. Accordingly, 

the paper is mainly of epistemological nature. The growing body of literature in 

mathematics education on complex analysis (e.g., Gluchoff, 1991; Hancock, 2018; 

Hanke, 2020; Oehrtman et al., 2019; Soto & Oehrtman, 2022) indicates a lack of 

endorsed, but also idiosyncratic, interpretations of complex path integrals. For 

example, Hancock’s (2018), Oehrtman et al.’s (2019), Hanke’s (2020), and Soto’s and 

Oehrtman’s (2022) case studies indicate that both students and experts struggle to 

interpret complex path integrals or to express what is accumulated here, and that they 

occasionally blend interpretations from real to complex integrals. Therefore, I address 

the question “Which epistemological challenges arise when the ideas of mean value 

formation are transferred to complex path integrals?” mostly from a subject-matter 

didactical point of view (Greefrath et al., 2016). Additionally, excerpts from an 

interview with a lecturer of complex analysis illustrate the transfer of the two 

aforementioned ideas to complex path integrals and a potential overgeneralisation from 

real to complex analysis. Finally, this epistemological study is more broadly embedded 

into challenges for the teaching and learning of advanced mathematics. 

THE CROSS-CURRICULAR CONCEPT OF INTEGRAL AND MEAN VALUE 

Different kinds of integrals appear at various places in undergraduate curricula. Thus, 

they may be considered as polysemous “cross-curricular concepts”, that is, they are 

“reconsidered in different domains” and their “domanial shift and the substantial 

change are potential sources for students’ difficulties and mistakes” (Kontorovich, 

2018, p. 6). Therefore, it seems quite likely that learners may wonder how a newly 

introduced integral connects to previously encountered integrals—after all, all these 

notions are baptised “integral” and symbolised with the sign ∫ . Thus, it is important 

to know what the interpretations of some integrals look like in the context of the others 

and which constraints arise when these interpretations are transferred. 

Aspects and basic ideas of real integrals 

As mentioned in the quote by Winsløw et al. (2021), there are guidelines for the 

teaching of Riemann integrals (e.g., Greefrath et al., 2016). The pairing of basic ideas 

(or sometimes also translated with basic mental models; vom Hofe & Blum, 2016) and 

aspects of a mathematical concept (Greefrath et al., 2016) was developed in German 

subject matter didactics. An aspect of a mathematical concept is “a subdomain of the 

concept that can be used to characterize it on the basis of mathematical content” 

(Greefrath et al., p. 101). In this sense, an aspect of a mathematical concept is an idea 
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that can lead to a definition of the mathematical concept. A basic idea of a 

mathematical concept is a “conceptual interpretation that gives it meaning” (Greefrath 

et al., 2016, p. 101). Basic ideas link the mathematical concept “back to a familiar 

knowledge or experiences, or back to (mentally) represented actions” (vom Hofe & 

Blum, 2016, p. 230). Greefrath et al. (2016, pp. 114–116) identified three aspects of 

the Riemann integral: 

(i) The product sum aspect characterises it in terms of limits of Riemann sums and empha-

sises the idea of a generalised sum. 

(ii) The anti-derivative aspect characterises it as the difference between a primitive function 

of the integrand at the upper and lower limits of integration. 

(iii) The measure aspect asserts that Riemann integrals satisfy “fundamental properties of 

measure” when applied to measure areas, lengths, or volumes (p. 115). 

Basic ideas for Riemann integrals are as follows (Greefrath et al., 2016, p. 116–121): 

(i) The basic idea of area interprets Riemann integrals as the signed area enclosed by the 

graph of the integrand. 

(ii) If one considers the integrand as the rate of change of a quantity, the basic idea of (re)con-

struction asserts that this quantity can be reconstructed in terms of the integral. 

(iii) The basic idea of accumulation identifies integrals as accumulations of quantities. 

(iv) The basic idea of average value relates integrals to averages. 

In the basic idea of accumulation, the integral is interpreted as a continuous version of 

sum “obtained by accumulating or aggregating multiple partial products” (Greefrath et 

al., 2016, p. 120). Similarly, in the basic idea of (re)construction, integrals reconstruct 

a quantity whose derivative is the given integrand. The basic idea of average is 

reasonable for two reasons. First, by the mean value theorem, there is a 𝜉 ∈ [𝑎, 𝑏] such 

that ∫ 𝑓(𝑡)
𝑏

𝑎
d𝑡 = 𝑓(𝜉)(𝑏 − 𝑎) if 𝑓 is continuous. Second, the integral is like a 

continuous version of the arithmetic mean: If [𝑎, 𝑏] is partitioned into 𝑛 equidistant 

subintervals [𝑡𝑘−1, 𝑡𝑘] and 𝜉𝑘 ∈ [𝑡𝑘−1, 𝑡𝑘] (𝑘 = 1, … , 𝑛), the arithmetic means 
1

𝑏−𝑎
∑

𝑏−𝑎

𝑛
𝑓(𝜉𝑘)𝑛

𝑘=1  converge to 
1

𝑏−𝑎
∫ 𝑓(𝑡)d𝑡

𝑏

𝑎
 as 𝑛 → ∞ if the integral exists. In 

addition, for 𝐴 ≡
1

𝑏−𝑎
∫ 𝑓(𝑡)d𝑡

𝑏

𝑎
 we have ∫ 𝐴

𝑏

𝑎
d𝑡 =  ∫ 𝑓(𝑡)

𝑏

𝑎
d𝑡. 

The bottom line is this: All these aspects or basic images emphasise different facets of 

integrals, but it is always the integrand that is summed up, used for (re)constructions, 

or averaged. Having encountered one or multiple of these aspects or basic ideas, it is 

quite natural to wonder what these may look like for “new” integrals (e.g., double 

integrals, Lebesgue integrals, and of course, complex path integrals). 

Complex path integrals 

As in calculus and analysis of one or several variables, integrals appear in complex 

analysis along with the concept of derivative for complex functions. These complex 

path integrals ∫ 𝑓(𝑧)
𝛾

d𝑧 are path integrals since the domain of integration is a path 

𝛾: [𝑎, 𝑏] → ℂ and the integrands are complex-valued functions 𝑓 on the trace tr(𝛾) (for 
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simplicity, we will assume that 𝛾 is continuously differentiable and 𝑓 is continuous). 

One can define complex path integrals via product sums and accordingly connect them 

to the product sum aspect (e.g., Needham, 1997), or directly set 

(∗)          ∫𝑓(𝑧)
𝛾

d𝑧 ≔ ∫ 𝑓(𝛾(𝑡)) ⋅ 𝛾′(𝑡)
𝑏

𝑎

d𝑡 

(e.g., Lang, 1999). This is very similar to the definition of real path integrals, where 𝛾′ 
is also multiplied to the integrand [1]. The difference, however, is in the choice of 

product (e.g., complex multiplication vs. scalar product in ℂ ≅ ℝ2). 

Complex path integrals satisfy properties like “∗↦ ∫ ∗
𝛾

d𝑧 is ℂ-linear”, “∗↦ ∫ 𝑓(𝑧)
∗

d𝑧 

is additive”, and the inequality “|∫ 𝑓(𝑧)
𝛾

d𝑧| ≤ 𝐿(𝛾) max
𝑧∈tr(𝛾)

|𝑓(𝑧)|”, where 𝐿(𝛾) is the 

length of 𝛾 (Lang, 1999). These are quite similar to properties of Riemann integrals, 

which are also linear with respect to the integrand, additive with respect to boundaries 

of integration, and satisfy |∫ 𝑔(𝑡)
𝑏

𝑎
d𝑡| ≤ |𝑏 − 𝑎| max

𝑎≤𝑡≤𝑏
|𝑔(𝑡)|. Alongside these 

properties, the interchangeability of complex path integrals with uniform limits of 

integrands, only a small number of properties are required to reach the first milestones 

in a first course on complex analysis, such as Cauchy’s integral theorem or the residue 

theorem (e.g., Lang, 1999) [2]. However, even though complex path integrals share 

properties like those of Riemann integrals, they also behave quite strangely. Gluchoff 

(1991) summarises this succinctly: 

My experience is that students are mystified on first exposure to this concept, and working 

examples by the formula ∫ 𝑓(𝛾(𝑡))𝛾′(𝑡) d𝑡
𝑏

𝑎
 can be a baffling experience; what sense is a 

beginning student to make of the results 

∫ Re 𝑧 d𝑧
|𝑧|=1

= 𝜋𝑖   or   ∫
𝑖

𝑧
d𝑧

𝑖

1
=

−𝜋

2
? (pp. 641–642; notation adopted) 

For example, in the left integral, the integrand is purely real and the path of integration 

is distributed uniformly around the origin, yet the integral is purely imaginary.  

An average interpretation of complex path integrals 

We can now ask what is measured in the case of complex path integrals. If ℎ = 𝑢 + 𝑖𝑣 

is a complex-valued function on tr(𝛾), then av
𝑧∈tr(𝛾)

[ℎ(𝑧)] ≔
1

𝐿(𝛾)
∫ 𝑢

𝛾
d𝐬 + 𝑖

1

𝐿(𝛾)
∫ 𝑣

𝛾
d𝐬 

is the mean value of ℎ along 𝛾, directly analogous to the case of Riemann integrals [1]. 

However, this is not what the complex path integral measures. For simplicity, assume 

that 𝛾 is regular and has length 𝐿(𝛾) ≠ 0, and 𝑇 is the “unit tangent vector” 𝛾′/|𝛾′|. 
Then, for each 𝑛 ∈ ℕ consider an equidistant partition 𝑧0, 𝑧1, … , 𝑧𝑛 of tr(𝛾) such that 

|𝑧𝑘 − 𝑧𝑘−1| = 𝐿(𝛾)/𝑛 and points 𝜉𝑘 between 𝑧𝑘−1 and 𝑧𝑘 on tr(𝛾) (𝑘 = 1, … , 𝑛), 

Gluchoff (1991, p. 642) shows that 

(⋆)          
1

𝐿(𝛾)
∫𝑓(𝑧)

𝛾

d𝑧 = lim
𝑛→∞

1

𝑛
∑ 𝑓(𝜉𝑘)

𝑧𝑘 − 𝑧𝑘−1

|𝑧𝑘 − 𝑧𝑘−1|

𝑛

𝑘=1
= av

𝑧∈tr(𝛾)
[𝑓(𝑧)𝑇(𝑧)]. 
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In contrast to the basic idea of average value for Riemann integrals, the average here 

does not refer to the integrand 𝑓, but to 𝑓 ⋅ 𝑇! This is remarkable and odd at the same 

time because (⋆) is derived analogously to the basic idea of average value in the real 

case (Gluchoff, 1991). Therefore, it cannot be said that complex path integrals (modulo 

the constant 𝐿(𝛾)) represent the average of 𝑓 along 𝛾. 

Gluchoff’s (1991) average interpretation also conflicts with other properties of 

integrals and mean values students encounter in courses on calculus and analysis: 

• The mean value theorem (see above) does not directly generalise: For example, if 𝛾 is the path 

from along the line segment from 𝑐 ∈ ℂ to 𝑑 ∈ ℂ, there need not exist a 𝜉 ∈ tr(𝛾) such that 

∫ 𝑓(𝑧)
𝛾

d𝑧 = 𝑓(𝜉)(𝑐 − 𝑑) (e.g., 𝑓(𝑧) = 𝑒𝑖𝑧, 𝑐 = 0, 𝑑 = 1). Instead, there are 𝜉1, 𝜉2 ∈ tr(𝛾) 

such that ∫ 𝑓(𝑧)
𝛾

d𝑧 = (𝑑 − 𝑐) (Re (𝑓(𝜉1)) + 𝑖 Im (𝑓(𝜉2))) (Rodríguez et al., 2013, p. 109). 

• If 𝐴 is the average of 𝑓 along tr(𝛾) (i.e., = av
𝑧∈tr(𝛾)

[𝑓(𝑧)]), it is not true that ∫ 𝐴
𝛾

d𝑧 =

∫ 𝑓(𝑧)
𝛾

d𝑧. Let me repeat: This is because the “correct” average involves 𝑓 ⋅ 𝑇! 

Gluchoff’s (1991) average formula seems rather unknown (at least, I could barely find 

references to it in the literature). This suggests that average values are misleading or 

do not occur in complex analysis, doesn’t it? No: 

Cauchy’s integral formula, average values, and another example 

Recall that Cauchy’s integral formula for a holomorphic (i.e., complex differentiable) 

function 𝑓 on an open neighbourhood of the ball 𝐵𝑟(𝜔) of radius 𝑟 around 𝜔 ∈ ℂ 

asserts that 𝑓(𝜔) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝜔𝜕𝐵𝑟(𝜔)
d𝑧 =

1

2𝜋
∫ 𝑓(𝜔 + 𝑟𝑒𝑖𝑡)

2𝜋

0
d𝑡 (Lang, 1999, p. 145). 

Hence, 𝑓(𝜔) is the average of 𝑓 on the boundary of the ball (Needham, 1997, p. 428). 

However, this average is not the complex path integral of 𝑓 along 𝜕𝐵𝑟(𝜔) itself modulo 

one of the constants 1/2𝜋, 1/2𝜋𝑖, or 1/2𝜋𝑟 (2𝜋𝑟 is the length of 𝜕𝐵𝑟(𝜔)). In fact, the 

complex path integral ∫ 𝑓(𝑧)
𝜕𝐵𝑟(𝜔)

d𝑧 is 0 by Cauchy’s theorem (Lang, 1999, p. 116)! 

Another example may once again illustrate what we have seen so far. Take 𝑓(𝑧) ≡ 7 

and a path that traverses the boundary of the unit circle 𝜕𝐵1(0) once anticlockwise. 

Then, the average of 𝑓 along that path clearly is av
𝑧∈𝜕𝐵1(0)

[𝑓(𝑧)] = 7. Moreover: 

• ∫ 𝑓(𝑧)
𝜕𝐵1(0)

d𝑧 = 0 by explicit computation or Cauchy’s integral theorem, 

• 7 = 𝑓(0) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−0𝜕𝐵1(0)
d𝑧 =

1

2𝜋
∫ 𝑓(𝑒𝑖𝑡)

2𝜋

0
d𝑡 by Cauchy’s integral formula for 𝜔 = 0 and 

𝑟 = 1, but 

• av
𝑧∈𝜕𝐵1(0)

[𝑓(𝑧)𝑇(𝑧)] = av
𝑧∈𝜕𝐵1(0)

[7𝑖𝑧] = 7𝑖 av
𝑧∈𝜕𝐵1(0)

[𝑧] = 0 (since 𝑇(𝑧) = 𝑖𝑧 for 𝑧 ∈ 𝜕𝐵1(0)). 

THE CASE OF SEBASTIAN 

In an interview study of mine, lecturers in complex analysis were asked how they 

interpret complex path integrals (cf. Hanke, 2020). Sebastian is a professor of 

mathematics, who has also taught complex analysis. His case is chosen for this paper 

to underline the previous observations on the interpretation of integration as measuring 
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or averaging, but also to underline the subtleties when applying these interpretations to 

complex path integrals. Before asking for an interpretation of ∫ 𝑓(𝑧)
𝛾

d𝑧, the 

interviewer recalls the basic image of area for integrals in real analysis. Sebastian 

immediately interrupts and rejects it by saying “I find this bad”. Instead, he explains 

his general view on integration (excerpts were translated from German and slightly 

polished for better readability): 

Sebastian: […] I would always tell my pupils: Actually, one should think about mean 

values, in particular when one has Lebesgue integration in mind, and 

measures. It is about measuring. And, uhm, this geometric intuition [of area; 

EH.] can destroy this higher dimensional situation. […] And therefore I find 

it much better if one imagines: integration is mean value formation. 

By referring to Lebesgue integration, Sebastian presents integration as a cross-

curricular concept. The pedagogical decision that students “should think about mean 

values […] and measures” with respect to integration underscores the potential practise 

of including core ideas to the teaching of integrals. Doing so, Sebastian rephrases the 

basic idea of average value and the measure aspect for a broader context of integration. 

In particular, he does not only not take up the basic idea of area the interviewer 

mentioned, but additionally, he values this idea as unhelpful since it “destroy[s] this 

higher dimensional situation”. At this point, Sebastian is likely referring to ℂ as ℝ2, 

which eventually implies that the graphs of complex functions are subsets of ℂ × ℂ ≅
ℝ4. 

So far, Sebastian’s utterances are about integrals in general, not specifically complex 

path integrals. Accordingly, the interviewer asks what the mean value is taken of: 

Interviewer: And which/ mean value of what? 

Sebastian: Yes, of what’s, uh, in the integrand, so to speak. […] Yes, uh, for me this is 

simply the mean value of the complex numbers, which I grab along this path. 

Therefore this is again a complex number because it does not have a 

geometrical area meaning, but mean value formation over the objects, which 

one quasi sees along the path. And, uhm, in my view this has nothing to do 

with area. […] This is actually the rotation that one measures on the plane. 

And this/ here we are again at what we discussed previously, that these, uh, 

complex numbers always have this character of an amplitwist. 

Sebastian describes himself as an actor who “grab[s]” complex numbers along the path 

to find their mean value. Since this mean value is a complex number, he rejects the 

area interpretation again. However, Sebastian emphasises another geometric idea: 

When repeating his general view on integration as measuring “the objects, which one 

sees along the path”, Sebastian links this process to “the rotation […] on the plane” and 

“complex numbers” to “amplitwists” (cf. Needham, 1997). 

Sebastian: […] And on the other hand, I just have these values of the function f of z and, 

uh, f of z does now what we have seen previously, yes, this now maps some 
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portion of what one has here with this [grid; EH.; see Fig. 1] […]. And, uhm, 

geometrically speaking, this involves such a stretching and a twist probably, 

yes, so where the grid points are somehow distorted or so. […] And I average 

this effect along this path so to speak. [… a few turns later:] Okay, for me the 

imagination is that I think of a small neighbourhood at each point and from 

that I see how the effect of f is in some abstract [plane; EH.; see the right part 

of Fig. 1] lying somewhere else. […] I have not thought about that before, 

uh. Simply/ this four dimensionality is a hurdle, at least for me, to imagine 

this better. In particular when it comes to those path integration issues. So the 

number f of z really is a linear amplitwist for me. And this effect is averaged 

along this path and this is what the integral means to me. 

Here, Sebastian describes that the integrand 𝑓 acts on grids in small neighbourhoods 

of the points on tr(𝛾) by mapping them to another plane (right part of Fig. 1). This 

“effect” is “averaged along this path” and the values 𝑓(𝑧) are identified with “linear 

amplitwist[s]”. Additionally, Sebastian emphasises that “four dimensionality is a 

hurdle” for him, particularly at this point when imagining the “path integration issues”. 

 

Figure 1: Sebastian’s drawing of a path 𝜸 and the effect of a function 𝒇 as amplitwist. 

It seems that Sebastian omits the 𝛾′ or 𝑇 in his interpretation and focuses mainly on 

𝑓(𝑧). In particular, while drawing the arrow at the thickened point in Fig. 1 (possibly 

representing 𝛾′ or 𝑇), he explains that “the parametrisation of the path […] will be 

quasi cancelled or neutralised right by the definition of the path integral”. Although the 

“parametrisation” is in fact not negligible (see, e.g., (∗) and (⋆)), let me emphasise 

again that Sebastian is adopting the measuring and mean value interpretation to 

complex path integrals during the interview for the first time. Thus, even though his 

interpretation may not be fully compatible with those in the literature, it takes into 

account the geometrical operation induced by the function values on the trace of the 

path as “amplitwists” (see in particular Needham, 1997): Since holomorphic functions 

are linearly approximable, small changes in the input (Δ𝑧; “small grid” in Fig. 1) cause 

small changes in the output (Δ𝑓), which are approximately given as copies of Δ𝑧 rotated 

and dilated by the derivative: Δ𝑓 ≈ 𝑓′(𝑧)Δ𝑧 (“distorted grid” to the right of 𝑓 in Fig. 1). 

DISCUSSION 

This paper investigated the teaching of a cross-curricular topic of integration using the 

ideas of measuring and mean value formation, especially in relation to complex path 
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integrals. It has been shown that these ideas are applicable to complex path integrals, 

but they do not work the same way as for real integrals. Gluchoff (1991) showed that 

∫ 𝑓(𝑧)
𝛾

d𝑧/𝐿(𝛾) is the average of 𝑓 ⋅ 𝑇 along 𝛾 rather than 𝑓. Additionally, Cauchy’s 

integral formula relates a function value to the mean value of the function along the 

boundary of a circle. The fact that the expert Sebastian applied the ideas of measuring 

and mean value formation to complex path integrals underlines their relevance. 

However, this case also illustrated the potential overgeneralisation of the relationship 

between integrals and mean values for Riemann or Lebesgue integrals in the sense that 

Sebastian thought that complex path integrals yield the mean values of the integrands 

instead of the mean value of their products with the unit tangential vectors attached to 

the path of integration (modulo the constant 𝐿(𝛾)). 

Now, since the transfer of some interpretations of integrals to complex analysis is 

subtle, it is important to ask what this means for the epistemology, teaching, and 

learning of integrals in advanced lectures, in particular complex analysis. For example, 

one may ask whether the ideas of measuring or averaging are locally important for 

some integrals or globally for the cross-curricular concept of integral per se, which then 

must be worked out locally for each integral again. Of course, one might simply dismiss 

these ideas for the case of complex path integral in teaching. Then, lecturers still face 

the question where discrepancies between different interpretations of integrals like 

measuring or means values occur and what their possible resolutions may look like. 

Additionally, appropriate interpretations of integrals in complex analysis remain 

missing. Besides, it seems that one can get along in complex analysis quite well without 

any interpretation of complex path integrals at all. For building theory in courses on 

complex analysis, it seems sufficient to state and use a few properties of complex path 

integrals, which are stored in propositions (e.g., that it is ℂ-linear, additive with respect 

to paths, and restricts to the Riemann integral for real functions on paths along real 

intervals, etc.). At least, this is what most texts on complex analysis I consulted do. Is 

this satisfactory? Probably not as Gluchoff (1991) illustrated. 

One difference between the teaching of calculus / real analysis and complex analysis 

seems to me that in calculus / real analysis visual, physical, or other vivid 

interpretations are readily available and well known so that it is hard to not mention 

them in class. Therefore, the “real” concepts connect quite well to real life experiences 

and applications. Perhaps this abundance of interpretations of real integrals leads to the 

assumption that there should be similar (or new) interpretations for complex path 

integrals as well (cf. Hanke, 2020). Hence, it seems relevant, at least to me, to reflect 

on the use of interpretations of cross-curricular topics for their potential applicability 

in more advanced courses. 

At present, we cannot yet foresee how the transfer or potential overgeneralisation of 

the mean value or measure interpretation may affect the way students interpret or work 

on tasks on complex path integrals. Rather, more research is needed on how individuals 

interpret complex path integrals or how they relate the various types of integrals they 

have encountered (cf. Kontorovich, 2018).  
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NOTES 

1. Recall that real path integrals for a scalar function ℎ and a vector field (𝑢, 𝑣)𝑇  are given by ∫ ℎ
𝛾

d𝐬 ≔

∫ 𝑔(𝛾(𝑡)) ⋅ |𝛾′(𝑡)|
𝑏

𝑎
d𝑡 and ∫ (𝑢, 𝑣)𝑇 d𝐓

𝛾
≔ ∫ (𝑢(𝛾(𝑡)), 𝑣(𝛾(𝑡)))

𝑇

∗ 𝛾′(𝑡)
𝑏

𝑎
d𝑡, where ∗ represents the scalar product. 

2. I cannot “prove” this claim in this short paper but a careful look at a textbook on complex analysis of your choice will 

reveal that only a handful of properties of complex path integrals are required to prove milestones such as Cauchy’s 

theorem, Cauchy’s integral formula, and the residue theorem (e.g., Lang, 1999). 
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An epistemological gap between Analysis and Calculus: the case of 
Nathan 

Anatoli Kouropatov1, Lia Noah-Sella2, Tommy Dreyfus2, Dafna Elias2 
1Levinsky College of Education, Tel Aviv, Israel,  

2Tel Aviv University, Israel  
The terms Analysis and Calculus are widely used in mathematics. It seems that the 
professional community dealing with research on the teaching and learning of analysis 
and calculus is gradually realizing that Mathematical Analysis and Calculus are not 
one and are not the same subject, no matter how closely related they are. We agree 
that there is a substantial difference between them, leading to genuine didactical 
challenges. The study reported below provides empirical evidence supporting this 
claim.  
Keywords: Teaching and learning of analysis and calculus, Integral, Fundamental 
Theorem of Calculus, Meanings  
INTRODUCTION 
Being mathematics educators, we teach mathematics. Some of our students are future 
mathematicians. Some of our students are future engineers. Some of our students don’t 
know yet what they want to do after graduation. Considering this, we should ask 
ourselves: what are we teaching to whom?  
Let us consider the known controversies between Newton and Leibniz (Hall, 1920; 
Meli, 1993; Garber, 2008). Newton’s approach was to use mathematics as a tool to 
explain and further understand natural phenomena. Leibniz’s approach to mathematics 
was intra-mathematical, math for math’s sake. He sought to better understand and to 
investigate mathematical objects and their abstract structures. 
In this paper, we will distinguish between Mathematical Analysis and Calculus, 
building on the work of Topic Study Group 12 “Research and development in the 
teaching and learning of Calculus” (ICME, 2004) and of the Working Group “Didactic 
contrasts between Calculus and Analysis” (PME-NA, 2021). The difference and 
possible tension between Mathematical Analysis and Calculus is under discussion in 
the professional community (additionally to the groups mentioned above see, for 
example, Katz & Tall, 2012; Moreno, 2014). As there is currently no solid theoretical 
framework for this issue, we will describe our own developed approach. 
By Mathematical Analysis, we invoke the formulations of Cauchy, Weierstrass, etc. 
Mathematical Analysis therefore deals with functions, limits, variables. This is done in 
a logical-symbolic and formal way. On the other hand, Calculus deals with quantities 
that vary in magnitude, rate of change and accumulation. The quantities covary with 
each other and have dimensions and units. Calculus requires a variational way of 
thinking within a natural extra-mathematical context. In this paper we will focus on 
integration and accumulation, it is therefore important to note that “The central idea of 
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Calculus to quantify accumulation is not that of antiderivative; it is ‘isolate in small 
intervals-multiply-add’” (PME-NA, 2021). The multiplication is a multiplication of the 
relevant average rate of change by the length of the small interval. 
It seems that the professional community dealing with research on the teaching and 
learning of analysis and calculus, is gradually realizing that Mathematical Analysis and 
Calculus are not one and are not the same subject, no matter how closely related they 
are (see for example: Katz & Tall, 2012; Moreno, 2014; PME-NA, 2021; Rogers, 
2005). Analysis is more pure mathematics. Calculus is more applied mathematics. We 
agree that there is a substantial difference between them, leading to genuine didactical 
challenges. The study reported below provides empirical evidence supporting this 
claim.  
THE STUDY 
Nathan is a valued and experienced teacher at Middle and High School (Advanced 
Level). Nathan has completed several Analysis courses at university and is very skilled 
in the subject. 
Nathan volunteered to be interviewed in the framework of a research project aiming at 
identifying students’ meanings for rate of change (RoC) and accumulation. 
The semi-structured interview with Nathan included the following tasks: 

1. Evaluating the accumulated amount of cash, given a graph of the cash flow 
function. 

2. Calculating the length of a curve representing a smooth function. 
3. Finding the mass of a thin wire, given its mass density function.  

The interview was recorded and transcribed.  
FINDINGS 
First task – accumulated cash given the RoC graph 
In the first task, Nathan was given a graph of cash flow at a certain bank as a function 
of time from 8:30 to 11:30. Nathan was able to give reasoned and appropriate estimates 
regarding the behavior of the accumulated cash in this scenario, by effectively linking 
the accumulated cash with the area between the graph and the x-axis. This included, 
for example, an estimation of when the bank had less cash than the initial sum (Error! 
Reference source not found.; inscriptions in blue and orange are Nathan’s), which 
was given to be 5 million Shekels. 
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Figure 1: The area marked orange shows when the bank has less cash than initially  

Even though Nathan identified the area as representing the amount of cash, and used 
this to correctly answer the questions he was asked, the collapse metaphor (Oehrtman, 
2009) was prevalent throughout his explanations (translated from Hebrew) – “How 
much money exited the bank? The sum of the length of this segment and the length of 
this segment and the length of this segment, etc. etc., an integral on the graph of the 
function between 8:40 and 10:00” (Error! Reference source not found.). 

 
Figure 2: Nathan explains that the amount of money exiting the bank is the sum of the 
lengths of the red lines 

Nathan’s conception of integral is based on notions of limit. This is evident from both 
his use of the collapse metaphor, which is a way of reasoning about limits, and from 
the mathematical terms he invokes (for more details regarding the collapse metaphor 
manifestation in Nathan’s case, see Noah-Sella et.al., 2022). Example of this can be 
seen in the following two exchanges: 

Nathan:  My logic is that when Δ𝑥 approaches zero, or is even equal to zero, the size 
of the – I don’t want to say rectangle, it’s a line. It has no width. It’s just a 
line, and since the width of this line is zero, when we add up all of these lines, 
we will get the area trapped under the curve. 

Interviewer:  Can you explain to me what adding up lines is? 
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Nathan:  Adding up lines? Or attaching lines? 

Interviewer:  Whichever is more convenient for you. 

Nathan:  Adding up, actually adding up the y-coordinate of every, I mean adding up 
the lengths of all the lines, meaning adding up the y-coordinate of all the 
points, the infinite number of points. 

Interviewer:  You’re adding up an infinite number of values, how are you doing that in 
practice? 

Nathan:  Using limits, and using an integral on a graph of a function. 

… 

Nathan: [The integral] sums the y-values when Δ𝑥 approaches zero. I mean, that’s the 
visualization I have in my head for an integral, that’s how I perceive it, like 
rectangles with zero width – straight perpendiculars. 

Interviewer: Is there such a thing as a rectangle whose width is zero? 

Nathan: There is a straight line. A rectangle whose width approaches zero. It comes 
from Riemann and Darboux sums. 

Two examples how to interpret points on the graph had been presented by the 
interviewer in the introduction of the item: “at 8:30 am (time 𝑥 = 0 seconds), 𝑦 = 2, 
that is 2000 Shekel per second entered the bank’s accounts; at 9:30 (time 𝑥 = 3600 
seconds), 𝑦 = -4.1, that is 4100 Shekel per second left the bank’s accounts”. Although 
Nathan read these statements aloud accurately, when he recalled the first statement, he 
omitted the “per second” from the units of measurement.  
Although Nathan answered all of the questions correctly, and provided detailed 
justifications involving the areas, when the interview concluded he expressed a lack of 
confidence that stems from not having an algebraic representation of the cash flow 
function – “I felt like I was missing something. The lack of ability to see the function, 
even if I don’t know how to integrate it, even if I can’t actually feel it, something here 
felt very amorphic, and made me somewhat insecure”. 
In response, Nathan was presented with the algebraic representation of the cash flow 
function. He exclaimed – “Great! This I can work with!” and proceeded to say “Now I 
feel like I have something to fall back on, if I’m completely at a loss. […] If I want to 
substantiate the answer I gave, and to make sure I answer correctly, I know I have the 
analytical tools, the actual analytical tools to deal with this thing”.  
Second task – evaluating the length of a curve 
In this task Nathan was asked to evaluate the length of a curve given both the formula 
and graph of a function, and a closed line segment. This question has no extra-
mathematical context and is well suited for a Mathematical Analysis approach. 
Nathan described how he intends to find the length: “I want to take two points, calculate 
the distance between them, and make Δ𝑥 approach zero. Then I’ll get the length of a 

177



  
single segment, and that’s going to be for any pair of points on the graph of the function. 
If I integrate this, I will get the length of this segment along the graph of the function”. 
At first, Nathan struggled with the development of a formula for the length of the curve. 
This prompted the interviewer to ask for an estimated length. While one might expect 
Nathan to divide the curve into segments of width h, and repeat the above calculation 
for some finite h, he instead gave an upper and lower bound using secants and tangents. 
In spite of his initial struggles, Nathan eventually managed to derive the formula for 
the general case (Figure 3). While it is possible that he had learned the formula at 
university, his behavior and responses during the interview suggest that he is at the 
very least reformulating it, and not reciting it from memory. 

 
Figure 3: Nathan’s solution to find the length of a curve (Hebrew text translation: When 
we add up all the lengths of the segments we will get the length of the segment) 

It seems that Nathan dealt with the second task using a well-established approach from 
Analysis. He approximated the required length by summing the lengths of small 
chords. He calculated the length of each small chord using the Pythagorean theorem. 
Then he used a limit for the purpose of formalizing the idea that the length of the chord 
is getting progressively smaller (Figure 3). As a result, Nathan gets a formula 

(lim
!→#

01𝑓(𝑥 + ℎ) − 𝑓(𝑥)8
$
+ ℎ$) that structurally (!) doesn’t fit with Nathan’s 

knowledge regarding Riemann sums – an expression multiplied by Δ𝑥. This is where 
Nathan started to struggle with the task. Eventually, Nathan succeeded to manipulate 
the formula algebraically to get a known (to him) representation of the limit of Riemann 

sum (lim
!→#

01𝑓′(𝑥)8
$
+ 1 	Δ𝑥). Only after this process, he was ready “to replace” this 

representation by definite integral. 
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Third task – finding the mass given its density 
In this question, Nathan was asked to calculate the mass of a straight wire, given its 
density (Error! Reference source not found.; for the original task in Hebrew, see 
Figure 5). At first, Nathan immediately replies with the correct integral, reasoning that 
“at point X, if the density is [the length of the segment] AX then the mass is x, and 
therefore ∫ 𝑥%# 𝑑𝑥 will give the mass of the wire”. Though his result is correct, he does 
not distinguish between density and mass in his explanation. When the interviewer 
reminds him of the units of measurement, a conflict arises for Nathan which causes 
him to lose confidence: “I’m in a spiral with myself”.  

 
Figure 4: Mass from density task 

In response to the conflict, Nathan retracts his answer and decides to change course, 
attempting to find a function representing the mass at each point. This causes him 
within two minutes to exclaim “all of my confidence is lost”, citing that “the density 
versus mass thing is really confusing me” and “I can’t decide with myself what will be 
the mass at a specific point, I want to take a certain point, express the mass there, and 
this function will be the integral”. He further explains this by saying that if the mass at 
every point is given by 𝑔(𝑥) then the total mass will be ∫ 𝑔(𝑥)%

# 𝑑𝑥 (Error! Reference 
source not found.). 
 
 

 
Figure 5: 𝒇(𝒙) denotes the density at each point. 𝒈(𝒙) denotes the mass at each point, 
and the integral is the mass of the entire wire 

Below is an 8 meters long wire AB. 
B__________________________________________________A 

This wire is made from cutting edge material. The density of the material 
is not constant. 
The density can be calculated in the following way: the density (measured 
in grams per meter) at any point X on the wire is numerically equal to the 
length of the segment AX. 
Find the mass of the wire (in grams). 
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DISCUSSION 
Nathan’s conception of integral is greatly influenced by the collapse metaphor. In the 
second task, he invokes the collapse metaphor in the beginning – “I want to take all the 
points and add them up”. When asked what adding up points means, he describes a 
procedure of calculating the distance between two points on the graph and taking the 
limit as Δ𝑥 approaches zero. This illustrates his use of the collapse metaphor to make 
sense of limits. Thus, Nathan’s thought process is rooted in limits, which is a 
characteristic of Analysis. 
Nathan’s use of the collapse metaphor seems to lead him to develop the misconception 
that integrating is summing the y-values of the integrand. Thus, to him the integrand 
does not represent the rate of change of the quantity accumulated, and 𝑑𝑥 is a notation 
and not a quantity, and therefore unitless. This might explain why Nathan changed the 
given RoC function’s units of measurement to Shekel in the first task, and to grams in 
the third task. It appears that he unwittingly omitted “per second” and “per meter” 
respectively to amend these quantities to better fit his own meaning of integration and 
accumulation. Unsurprisingly, when this omission was pointed out to him in the last 
task, a cognitive conflict followed. This is consistent with Nathan having a background 
in Analysis, since variable quantities in Calculus have units, while in Mathematical 
Analysis variables and functions are dimensionless. 
It is also important to contemplate why Nathan performed better in the first and second 
task than in the third. In the second task, one might suggest that the absence of extra-
mathematical context means that units of measurement will not be a cause of conflict. 
However, the first task is set within an extra-mathematical context. We suggest that the 
graph given in the first task allowed Nathan to convert the problem to a geometric 
problem involving areas, thus circumventing the need to identify the given function as 
a rate of change function. This is important to note, since rate of change is a concept 
central to Calculus. In the third task, since there was no graph given, relating to 
quantities, rate of change and accumulation was necessary. Consequently, Nathan was 
unable to complete the task. 
The connection between the collapse metaphor and Mathematical Analysis can also be 
seen in Nathan’s use of language. When explaining the dimensional collapse, he isn’t 
referring to the extra-mathematical context of the task, to rate of change nor to 
accumulation, but to function, limit, and Riemann and Darboux sums. This suggests 
that Nathan’s meaning for integral was formed within Mathematical Analysis. 
In addition, Mathematical Analysis deals mainly with functions, whose properties are 
analyzed mostly using algebraic and symbolic tools. Thus, Nathan’s wish for the 
formula of a function in the first task, and his reaction upon receiving it support the 
notion that he is more at ease in Mathematical Analysis than in Calculus.  
This claim is also supported by Nathan’s performance in the second task. When asked 
to find the length of a curve, he uses formulas and limits. While the development of 
these formulas could be interpreted as based on the practice of “isolate in small 
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intervals-multiply-add”, which is a Calculus practice, when explaining his reasoning, 
it appears that Nathan operated with the intent of “isolate in small intervals-add”, with 
the multiplication arising as a byproduct, due to his familiarity with the structure of 
Riemann sums. The multiplication is essential to ‘Calculus thinking’ since it embodies 
accumulating from a rate of change. Furthermore, when prompted for an estimate of 
the length he did not use the same principle. One might expect that Nathan would 
divide the curve into small segments, approximate their length using a chord, and sum 
the lengths of all the chords, thus using accumulation reasoning. Instead of dividing 
the curve into smaller segments, he examined the curve as a whole, looking for an 
upper and a lower bound for the entire length, using a tangent and a secant. This 
suggests that he views the length of the curve as a static value (Analysis), and not as 
an accumulated quantity (Calculus). Consequently, it seems that the Riemann sum 
technique is only available to Nathan in an algebraic or symbolic context, central to 
Mathematical Analysis, and not in a numerical context, central to Calculus. Finding 
the formula for the general case, rather than finding a solution for the given curve is in 
accordance with the preference for formal proof in Mathematical Analysis. 
Considering all of the above, we argue that Nathan shows a high proficiency in 
Mathematical Analysis problems, and difficulties in Calculus problems, strengthening 
the assertion that these are epistemologically distinct. 
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Especially in higher education, mathematical procedures must not only be mastered in 
isolation, but also selected and applied flexibly. Considering the growing importance 
of digital learning, we report on the results of a pilot study to investigate how 
interactive tasks in instructional videos may help to enhance students’ flexible 
procedural knowledge in deriving polynomials. Economics students (N=43) were 
given a digital self-learning environment with videos and follow-up learning tasks. In 
a randomized controlled trial, they either watched videos that were interrupted by 
interactive tasks or videos without interaction. We found that the students with the 
interrupting interactive tasks performed significantly better in the post test and 
therefore seem to have gained greater procedural flexibility.  
Keywords: Digital and other resources in university mathematics education, Teaching 
and learning of analysis and calculus, Derivations of polynomials, Procedural 
flexibility, Procedural knowledge 

INTRODUCTION 
In university mathematics, flexible procedural knowledge is considered a key skill 
(Maciejewski & Star, 2016). It is particularly important for first-year students who, 
according to Maciejewski and Star (2016), have “only rote procedural ability” (p. 299) 
at their disposal. Digital learning environments offer special potential for practicing 
mathematical procedures independently of time and location. They may include 
instructional videos that explain and illustrate procedures or convey strategies. 
Videos have become increasingly popular in higher education, at the latest since the 
outbreak of the pandemic. However, whereas tasks naturally promote cognitive 
activation for students, instructional videos typically lack activities that help students 
to maintain their attention. Therefore, instructional videos often lead to only passive 
use which might limit the learning effect.  
The promotion of flexible procedural knowledge has been investigated in several 
classroom settings and has been applied to solving equations (e.g. Rittle-Johnson et al., 
2012; Rittle-Johnson & Star, 2009) and deriving polynomials (e.g. Maciejewski & Star, 
2016). To our knowledge, it is unclear how these findings can be adapted to digital 
learning environments. In this paper, we focus particularly on how instructional videos 
can support students’ cognitive activation. 
We created instructional videos on the product and chain rule to derive polynomials 
and enriched them with interrupting interactive tasks using the H5P-tool. In a 
randomized controlled trial, we investigated their effect on students’ performance. Our 
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research question is as follows: How do the interactive tasks affect students’ learning 
regarding the acquisition of procedural flexibility? 

THEORETICAL BACKGROUND 
Procedural flexibility  
Star and Newton (2009) define procedural flexibility as the “knowledge of multiple 
solutions as well as the ability and tendency to selectively choose the most appropriate 
ones for a given problem and a particular problem-solving goal” (p. 5). Their term 
“appropriate” refers to the most efficient strategy which is determined by the fewest 
steps to execute, the effort involved and one’s familiarity with the problem type. Later, 
Liu et al. (2018) put forward a finer classification of the concept by distinguishing 
potential and practical flexibility. By potential flexibility, they refer to the knowledge 
of multiple strategies for solving mathematical problems without demanding their 
correct application. In contrast, the term practical flexibility addresses the performance, 
thus the concrete use of those strategies. 
According to Maciejewski and Star (2016), flexible procedural knowledge can be 
taught. In a study on calculating derivatives, they successfully conducted an 
experiment using side-by-side, multiple solution comparison assignments. They found 
that these assignments had a greater effect on the students’ procedural flexibility than 
a standard set of exercises without any comparison. They also figured out that self-
reflection enriches the development of procedural flexibility. It is rather unclear, 
however, to what extent these results can be transferred to digital learning settings and, 
in general, how to design online environments for self-directed learning to foster 
students’ flexible procedural knowledge. 
Rittle-Johnson et al. (2012) essentially propose two ways to improve both conceptual 
and procedural flexibility heavily drawing on learning with worked examples: 
comparison of worked examples and self-explanation. While comparing two correct 
solutions, students should also consider whether one procedure is more efficient that 
the other. In this context, the so-called tri-phase flexibility assessment is proposed by 
Xu et al. (2017). During the first phase, students must solve problems as quickly and 
accurately as possible. Then, they are asked to generate multiple strategies for each 
problem. In the third phase, they evaluate their procedures and select the most 
innovative and appropriate one. The assessment has been evaluated in a study on 
equation solving. Xu et al. (2017) found that potential flexibility was higher than 
practical flexibility and that most students were not able to use innovative strategies. 
 
 

Cognitive activation in digital learning environments with instructional videos  
Instructional videos offer specific benefits for self-directed learning. They especially 
enable dynamic presentations of contents (Cooper & Higgins, 2015) and offer multiple 
options for visualisation. In mathematics, the speaker can demonstrate how to correctly 
use mathematical language in oral and is able to add colloquial explanations to lower 
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the threshold. Instructional videos consider the potential heterogeneity as learners can 
adjust the playback speed, rewind, stop, and watch the video repeatedly. 
However, instructional videos lack any means for cognitive activation because they are 
typically passively consumed. Kulgemeyer (2022) indicates that instructional videos 
might support an illusion of understanding since animations make explanations appear 
easier to understand than they are. An illusion of understanding is therefore “the false 
belief that an explanation was easy, a topic has been thoroughly understood and 
requires no further instruction” (Kulgemeyer, 2022, p. 3).  
Combining instructional videos with follow-up tasks might be a way to counteract the 
low level of cognitive activation. This idea is supported by Lehner (2018) who states 
that tasks are powerful means to manage cognitive activation both in analog and digital 
learning settings. According to Lehner (2018), especially tasks with multiple solutions 
are useful to enhance cognitive activation.  
H5P (https://h5p.org) is a tool to create in-video tasks that can be integrated in moodle. 
It offers a variety of task formats such as single-choice and multiple-choice questions, 
cloze texts, and true/false questions. They can pop up automatically during the video 
and one can adjust that the video stops until the task is completed. In terms of possible 
didactic scenarios, those in-video tasks can be used to check prior knowledge, to 
underline central cognitive conflicts, to summarize or to review newly gained 
knowledge or to think ahead.  

METHODS 
Participants 
We started the study with 51 economics students from a German university. Since eight 
students did not complete the session, we restrict our analysis to the 43 students who 
participated until the final tasks were answered. The participants attended a 
mathematics bridging course which has been offered as an optional support for the 
course “Mathematics I for Economics”. Due to the pandemic, the bridging course took 
place virtually via Zoom.  
Procedure 
The participants were randomly assigned to one of two breakout rooms. The digital 
learning environment, the pre- and the post-test and the questionnaire were uploaded 
to a moodle course in which the students were inscribed. The learning environment 
was intended for self-learning, but the first author and another researcher familiar with 
digital learning each supervised one breakout room. The students could contact them 
in case of technical or organizational issues. The procedure took 60 minutes.  
Before the self-learning unit, the participants completed two introductory tasks in 
which they had to apply the product rule and the chain rule. After the treatment, the 
students were given four final tasks. For given functions, students were to decide which 
of two proposed strategies was more efficient.  
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Treatment 
During the treatment, the participants independently worked on a digital learning 
environment. The learning environment consisted of two instructional videos, one on 
the product rule (03:48 min for the intervention group, 04:02 min for the control group) 
and one on the chain rule (06:08 min for the intervention group, 06:39 min for the 
control group), each followed by three follow-up tasks on the respective rule. We opted 
for screencasts and handwritten style when producing the videos. The tasks were 
implemented in the videos using the H5P-tool. 
In each video, we formed the derivations of two to three polynomials by contrasting 
two solutions. The application of the power or chain rule was compared to first 
transforming the function term, e.g., by applying the power laws or the binomial 
formulas, and then deriving it without the respective rule (see Fig. 1). The number of 
calculation steps and the effort involved were considered the main criteria to select the 
most reasonable strategy. The cognitive demand of the strategies and what is 
considered a step still need to be elaborated.  

 
Fig. 1: Multiple solutions on the task “Calculate the derivative of the function 	
𝒉: ℝ → ℝ, 𝒉(𝒙) = +𝒙 + √𝟑/+𝒙 − √𝟑/" 

The two treatment conditions differed by the presence of interactive tasks in the videos. 
Each video comprised three interactive tasks, see Table 1. Whilst the intervention 
group was confronted with these tasks popping up automatically during the video, the 
control group was given videos without interaction. In their videos, however, the 
interactive single-choice questions (see Table 1) were asked verbally, and the summary 
provided by the cloze text was also given verbally. The other parts of the learning 
environment were kept equal.  
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Video 1: Product rule   Video 2: Chain rule  
1. (single choice): „Transform the term  
𝑥! ⋅ 𝑥" using the power laws. What does 
the transformed term look like? “   

1. (single choice): „We can form the 
derivation of 𝑓:ℝ → ℝ, 𝑓(𝑥) = (𝑥 + 1)# 
with the chain rule. What are the 
functional equations of the outer function 
𝑢 and the inner function 𝑣 here? “  

2. (single choice): „What is the first 
derivative of 𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥$ + 𝜋 ⋅
𝑥 − √3 ⋅ 𝑥 − 𝜋 ⋅ √3 ?”  

2. (single choice): „Transform the term 
(𝑥$)! using the power laws. What does 
the transformed term look like? “   

3. (cloze text): „For products of two 
monomials, for example 𝑥! ⋅ 𝑥", it is 
reasonable to transform the term with the 
(power laws/binomial formulas/product 
rule) before forming the derivative.  
For products of two sums that are 
difficult to multiply out, it is reasonable 
to apply the (product rule /chain rule 
/power rule) to form the derivative.  
For the special case (𝑎 + 𝑏)(𝑎 − 𝑏) 
meaning that the summands match in 
each case, we can transform the term with 
(third binomial formula /sum rule 
/product rule) before forming the 
derivative.” 

3. (cloze text): „For sums with two or 
more summands that are exponentiated 
with a (high/low) exponent, the (product 
rule/chain rule/power rule) is the best 
choice to form the derivative.  
For monomials, for example 𝑥$, that are 
potentiated, it is more reasonable to 
transform the term with the (power 
laws/binomial formulas/chain rule) 
before forming the derivative.” 
 

Table 1: Overview of the in-video interactive tasks   

After having watched the video on the product rule, the students completed the 
following tasks. The follow-up tasks after the video on the chain rule have been 
structured analogously.  
Task 1: Form the derivative of the function 𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥$ ⋅ 𝑥%, once by 
applying the product rule and once again by first transforming the term and then 
forming the derivative.  
Task 2: Decide which of the following strategies is the most reasonable to form the 
derivative of the function 𝑓:ℝ → ℝ, 𝑓(𝑥) = 4𝑥! ⋅ 2𝑥& (without calculation).  

a) Applying the product rule 
b) Applying the power laws and then forming the derivative  

Task 3: Decide which of the following strategies is the most reasonable to form the 
derivative of the function g: ℝ → ℝ, 𝑔(𝑥) = (𝑥 − 1)(𝑥 + 1) (without calculation).  

a) Applying the third binomial formula and then forming the derivative 
b) Applying the product rule 
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We developed the components of the digital learning environment presented above 
mainly building upon research on procedural flexibility as well as on cognitive 
activation. The definition of procedural flexibility according to Star and Newton (2009) 
comprises two essential aspects: the knowledge of multiple solutions and the ability to 
select the most suitable one for a given task. We aimed to address both facets of the 
definition in the videos and follow-up tasks. 
The videos on the product and chain rule primarily address students’ knowledge of 
multiple solutions by presenting different procedures to derive the given polynomials. 
Considering the distinction between potential and practical flexibility put forward by 
Xu et al. (2017), the videos therefore aim to foster potential flexibility because students 
were not prompted to carry out any procedure in terms of practical flexibility.  
The concrete performance was demanded in the follow-up tasks after the videos that 
were therefore intended to enhance students’ practical flexibility. Especially the first 
task after each video served this purpose. Students had to find the derivative of a 
polynomial using two different procedures (applying the product or chain rule vs. 
transforming the term before forming the derivative). The second and third task aimed 
rather at the ability to select a suitable procedure to form the derivative of a given 
function. Thus, these tasks address the second facet of procedural flexibility mentioned 
above.  
Considering cognitive activation, we opted for a combination of instructional videos 
and follow-up tasks to counteract the typically low level of cognitive activation of 
instructional videos. As quizzes are considered useful to activate learners (Lehner, 
2018), we decided to enrich our videos with small interactive tasks not only to provide 
activating tasks outside the videos but also while watching them (only for the 
intervention group). Unlike the follow-up tasks after the videos, the interactive tasks 
(see Table 1) were not intended to directly foster procedural flexibility but to maintain 
students’ attention. On a more functional level, the tasks served to activate students’ 
prior knowledge (the first two tasks in Table 1) or to reflect the main aspects of the 
video (the third tasks in Table 1).   
Instruments and data analysis  
Before the intervention, students had to complete two introductory tasks, one on the 
product rule and one on the chain rule. The tasks were to find the derivation of a product 
of two polynomials (𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥$ ⋅ (3𝑥 − 1)) and of two chained polynomials 
(g: ℝ → ℝ, 𝑔(𝑥) = (2𝑥 + 5)!). To get better insights into potential mistakes, we 
structured the tasks using cloze texts. First, the learners had to give the functional 
equations of the two polynomials, then they had to type in their derivatives before they 
finally applied the respective rule. The participants could achieve a maximum of eight 
points for each task.  
For both introductory tasks, we calculated the mean value and standard deviation for 
every group. Additionally, we carried out a two-sided t-test to check whether the 
students were randomly assigned to the two groups.  
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After the intervention, we used the following tasks to measure students’ knowledge 
gain. During the treatment, students already completed analogous tasks. In the 
treatment section, we already described that these tasks addressed the ability to select 
an appropriate solution for a given task, thus the second aspect of procedural flexibility. 
We put emphasis on this facet because it appears crucial to us that students can estimate 
the effort of a procedure before performing it. We developed all tasks (including the 
in-video and follow-up tasks) on our own.  
Final task: Decide for each of the following functions which of the proposed strategies 
is the most reasonable to calculate its derivative (without performing the calculation). 

1.		𝑓': ℝ → ℝ, 𝑓'(𝑥) =
'
!
𝑥$ ⋅ 3𝑥(  

a) Applying the product rule  
b) Applying the power laws and then forming the derivative (correct answer) 

 
2.		𝑓$: ℝ → ℝ, 𝑓$(𝑥) = (3𝑥 + 2)(3𝑥 − 2)  

a) Applying the product rule 
b) Applying the third binomial formula and then forming the derivative (correct answer) 

 
3.		𝑓!: ℝ → ℝ, 𝑓!(𝑥) = (𝑥$ − 1)"  

a) Applying the chain rule (correct answer) 
b) First expanding the term and then forming the derivative  

 
4.		𝑓(: ℝ → ℝ, 𝑓((𝑥) = (2𝑥!)"  

a) Applying the chain rule 
b) Applying the power laws and then forming the derivative (correct answer)  

Each correct answer has been awarded one point, incorrect answers yielded zero points. 
We used SPSS statistics 28 for data analysis. For each task, we calculated the mean 
value and the standard deviation for both groups. To compare the intervention group 
and the control group and to see whether the former performed significantly better than 
the latter, we conducted two-sided t-tests for independent samples.  

RESULTS  
We first give some descriptive statistics. In Table 2, the means, and standard deviations 
(SD) for both the introductory tasks and the final tasks are listed. The intervention 
group (IG) got the in-video tasks during the treatment, the control group (CG) had no 
in-video tasks.  
For both introductory tasks, there is only a slight difference between the means of the 
two groups that is not significant, t(44)=1.386, p=.173 (product rule); t(43)=.316, 
p=.754 (chain rule). This indicates that the randomization worked as intended.   
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Task  Mean SD 

Introductory tasks (min=0, max=8) IG 
(n=27) 

CG 
(n=19) 

IG 
(n=27) 

CG 
(n=18) 

𝑓:ℝ → ℝ, 𝑓(𝑥) = 𝑥$ ⋅ (3𝑥 − 1)  7.81 7.21 0.68 2.12 

𝑔:ℝ → ℝ, 𝑔(𝑥) = (2𝑥 + 5)!  5.07 4.89 1.80 2.11 

Final tasks (min=0, max=1)  IG 
(n=24) 

CG 
(n=19) 

IG 
(n=24) 

CG 
(n=19) 

1.		𝑓': ℝ → ℝ, 𝑓'(𝑥) =
'
!
𝑥$ ⋅ 3𝑥(  .63 .58 .50 .51 

2.		𝑓!: ℝ → ℝ, 𝑓!(𝑥) = (3𝑥 + 2)(3𝑥 − 2)  .54 .58 .51 .51 

3.		𝑓!: ℝ → ℝ, 𝑓!(𝑥) = (𝑥$ − 1)"  .67 .58 .48 .51 

4.		𝑓(: ℝ → ℝ, 𝑓((𝑥) = (2𝑥!)"  .75 .42 .44 .51 

Table 2: Mean values and standard deviations for the introductory and final tasks1 

In the data on the final tasks, we can see that, except for the second task, the students 
in the intervention group performed slightly better than the control group. We find the 
biggest difference between the means in the fourth task. The t-tests revealed that only 
the difference for this task was statistically significant, t(41) = 2.27, p=.029. The 
differences in the other tasks could also be explained by random, |t(41) |< 0.579, 
p>.565. Thus, the group with the interactive tasks performed significantly better in the 
last task. Cohen’s d is .70 indicating a rather high effect size.  
Due to the dichotomous coding, the scores can be interpreted as solutions frequencies. 
Instead of just under half of the control group, 75% of the participants in the 
intervention group were able to solve the task. However, the data overall indicate a 
small learning effect, especially in the control group. Solving approximately 50 % of 
tasks with two choices could simply be explained by chance. In the intervention group, 
those percentages are slightly higher, especially for the last task.   

DISCUSSION 
Coming back to our research question “How do the interactive tasks affect students’ 
learning?”, we can state that in-video tasks in a digital learning environment on the 
flexible use of derivation rules have affected our students’ learning gain positively. We 
found that students completing those tasks performed significantly better in one task in 
the post-test.  

 
1 The group sizes differ in the intervention group because three participants completed the introductory and follow-up 
tasks after the videos but not the final task. Since all data was collected anonymously, we cannot retrace the students who 
did not finish all tasks.  
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However, the overall learning gain appears rather small to us. Possible reasons might 
include the format of the final tasks that only offer two options to respond and the short 
duration of the treatment (60 minutes). Since the students in the intervention group 
performed better in the post-test and especially significantly better in one of its tasks, 
we conclude that the additional cognitive activation via in-video tasks is fruitful for 
digital learning. 
Limitations  
Certain limitations of this study must be considered to correctly classify its results, 
including limitations concerning the sample and frame conditions, the measures, and 
the results.  
The small sample size and the short duration of the treatment are created by the 
explorative design of the study. As some students did not finish the treatment, the 
sample size further reduced during the session. Despite the successful randomization, 
we did not get equally sized groups. Our study thus has low statistical power and we 
may have missed results that could be gained in larger samples. 
The measures have great potential for improvement as they were not piloted. The first 
task used for the randomization check showed a ceiling effect (i.e., it was too easy). 
The final tasks do not correspond to the length of usually extensive performance tests. 
Therefore, we could not expect a precise measurement. Again, imperfect instruments 
likely blur results so might expect more clear effects in future studies. 
Implications and future research  
This study contributes to the promotion of procedural flexibility in digital learning 
settings we still know little about. Therefore, we adapted non-digital approaches that 
have been approved in classroom settings (see Maciejewski & Star, 2016; Xu et al., 
2017). We think that we successfully developed a digital learning environment with 
interactive videos as most of the participants managed to complete the treatment and 
stated that they were satisfied with it.  
We aimed at addressing both facets of procedural flexibility with our videos and 
follow-up tasks. The instructional parts, the videos, aimed rather at the knowledge of 
multiple solutions and the in-video tasks served to maintain the students’ attention. The 
follow-up tasks addressed the concrete performance of those solutions and the ability 
to select the most appropriate one.  
On a theoretical level, future research will be needed to investigate the participants’ 
learning processes as they might show us how the learners really deal with the material 
and to what extent they reflect on it. On a methodical level, researching the use of a 
digital learning environment via Zoom turned out to be challenging. Research will be 
required on valid methods for digital settings. Finally, as practical implication, we 
recommend enriching instructional videos with in-video tasks that can be rather easily 
integrated with tools such as H5P.  
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The total derivative is an essential concept in first-/second-year university mathematics 

many students struggle with. However, its concrete teaching and learning gained little 

attention in mathematics education research. We present an analysis of the meaning 

of the concept “total derivative” for multivariable functions, providing a “model of 

meaning” using a framework including several relevant contexts of interpretation. 

Then, we comparatively analyze three different German “Analysis II”-textbooks 

dealing with differentiation in the multidimensional case with respect to our model 

concerning their use of contexts of interpretation. We find variability on the semantic 

level, especially pertaining to geometric interpretations of the total derivative. 

Keywords: teaching and learning of analysis and calculus, epistemological studies of 

mathematical topics, textbook analysis. 

INTRODUCTION AND THEORETICAL BACKGROUND 

While the teaching and learning of derivatives in the one-dimensional case at the school 

level have been studied for some years, studies focusing on differentiation concepts in 

the multidimensional case are scarce. Martínez-Planell and Trigueros (2021) give an 

overview of studies regarding the teaching and learning of multivariable calculus. Most 

of these studies focus on functions ℝ2 → ℝ and especially on a geometric approach to 

concepts of derivatives. Additionally, Weber (2012) addresses the interpretation of the 

directional derivative as a local rate of change in space. However, extensive subject-

matter analyses of differentiability concepts in the multidimensional case are lacking 

but could provide suggestions for teaching in a way that might enrich students’ concept 

images. We, therefore, want to address the total derivative comprehensively, analyzing 

its meaning in different contexts of interpretation which results in a “meaning model” 

for the total derivative, fusing and structuring parts of concept images shared by the 

mathematical community, and looking for these in several German textbooks.  

Hußmann and Prediger (2016) formulate a framework for specifying and structuring 

mathematical topics to be learned. In particular, they differentiate between the formal 

and semantic level for a didactical analysis of a subject. The formal level includes the 

mathematical objects and phenomena in their formal presentation and logical structure, 

whereas the semantic level addresses the sense and meaning of a concept. The notion 

of “concept image” is often used to describe the meaning of a concept. Tall and Vinner 

(1981) define the concept image as “the total cognitive structure that is associated with 

the concept, which includes all the mental pictures and associated properties and 

processes” (p. 152). This includes verbal associations as well as non-verbal ones. In 
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this article, we do not analyze an individual’s concept image but rather describe parts 

of a comprehensive concept image for the total derivative, which can be seen as an 

attempt for a structured fusion of the mathematical community’s concept images 

(similar to Zandieh’s (2000) framework for the ℝ1-derivative), and analyze to which 

extent components of those are addressed in different textbooks. As Sierpinska et al. 

(2002) point out, the meaning of a concept is based on its relations with other concepts. 

We, therefore, also discuss relationships of the total derivative to related concepts like 

directional derivatives and partial derivatives.  

Building on analyses of the meaning of the derivative in the one-dimensional case 

(Greefrath et al., 2016; Kendal & Stacey, 2003; Zandieh, 2000), we elaborated a 

framework for describing a comprehensive concept image for multivariable 

differentiation. It contains conceptually different definitions of the concepts (we call 

them “definition variants”) and then provides several relevant contexts of 

interpretation. We identify the following relevant interpretive contexts: geometric, 

analytic-algebraic, approximation, and real-world models. The geometric context of 

interpretation is further subdivided into the abstract-geometric one, which deals with 

interpretations related to the graph of functions, and the real-geometric one, in which 

the abstract-geometric interpretations are transferred to the idea of hilly landscapes in 

the real world. The geometric context includes all interpretations in the Cartesian 

coordinate system, in relation to function graphs and the use of words such as “tangent” 

or - in the multi-dimensional context - tangent (hyper)planes, as well as all “classical” 

geometric terms such as straight lines and planes. In the analytic-algebraic context, 

inner-mathematical properties of the definition and the concept, motivations for the 

concept and relations to other concepts are dealt with that do not belong to other 

interpretive contexts. “Approximation” means that the derivative is used for a local 

approximation. Here, on the one hand, the derivative can be understood locally as a 

linear approximation for the difference of the values of the function at two (nearby) 

points. On the other hand, the derivative can be used in a local affine-linear 

approximation of the function. The interpretation in the “real-world model” includes 

the model-like application of the concept to real situations, for example in the context 

of a function ℝ → ℝ that represents the location dependent on time, the interpretation 

of the ℝ1-derivative as the instantaneous velocity.  

We will apply our conceptual analysis to various textbooks. However, we are aware 

that textbooks represent only offers for student learning. Studying students’ usage of 

these textbooks is another topic, but we hypothesize that the meaning of derivatives we 

will reconstruct will constrain students’ learning.  

RESEARCH QUESTIONS 

1. Which interpretations (from the one-dimensional context and beyond) in the 

various contexts are valid for the total derivative, and how do relationships of 

the total derivative to related concepts (e. g., partial derivatives, directional 

derivatives) enrich interpretations of the total derivative on the semantic level? 
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2. Which interpretations of the total derivative and its relations with other concepts 

can be found in various textbooks used in German Analysis II courses? 

We thus carried out a subject-matter analysis of the concept of the total derivative, 

including its relations to related concepts using the framework described above. To do 

so, we discussed possible interpretations for the total derivative in each of the identified 

contexts extensively. We present our results as a model of meaning – providing a 

suggestion for a shared concept image of the mathematical community that can be 

discussed – in the following section. Our model of meaning is comparable to reference 

models in ATD (cf. for example Wijayanti & Winsløw, 2017), but we are not 

reconstructing praxeologies here. The model is then used for a textbook analysis of 

relevant books, for which we explain our method separately before showing results.  

MODEL OF MEANING OF THE TOTAL DERIVATIVE 

We can formulate various equivalent but conceptually different definitions of the total 

derivative (sometimes also called “derivative” or “(total) differential”) on the formal 

level. There are two facets in which the definitions differ. On the one hand, the total 

derivative of a function 𝑓: ℝ𝑛 → ℝ𝑚 at a point 𝑥0 can be either defined as a linear 

mapping ℝ𝑛 → ℝ𝑚 or as a matrix ∈ ℝ𝑚×𝑛. Matrices and linear mappings can be 

identified with each other since every linear mapping has a distinctive transformation 

matrix when ℝ𝑛 and ℝ𝑚 are equipped with the canonical basis. The other facet is the 

formulation of the defining property for total differentiability of a function. A possible 

definition is the following: 

A function 𝑓: ℝ𝑛 → ℝ𝑚 is called totally differentiable at 𝑥0 ∈ ℝ𝑛 if a linear mapping 

𝐴𝑥0
: ℝ𝑛 → ℝ𝑚 exists such that in a neighborhood of 𝑥0 the following condition holds: 

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + 𝐴𝑥0
(ℎ) + 𝜑𝑥0

(ℎ), with 𝜑𝑥0
 being a function that is defined in a 

neighborhood of 0 ∈ ℝ𝑛 with values in ℝ𝑚 and lim
ℎ→0

𝜑𝑥0
(ℎ)

||ℎ||
= 0. If it exists, this linear 

mapping 𝐴𝑥0
 is unique and is called the total derivative of 𝑓 at 𝑥0, written as 𝐷𝑓(𝑥0).  

Instead of introducing an “error function” 𝜑𝑥0
 and thus needing two equations, the 

condition could also be written out in the limit: lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)−𝐴𝑥0
(ℎ)

||ℎ||
= 0.  

Another possibility is a definition explicitly using partial derivatives. We assume that 

𝑓 is partially differentiable at 𝑥0. We can determine the Jacobian matrix 𝐽𝑓(𝑥0) 

containing the partial derivatives. The function 𝑓 is called totally differentiable iff  

lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)−𝐽𝑓(𝑥0)⋅ℎ

||ℎ||
= 0. In this case, 𝐽𝑓(𝑥0) is the total derivative represented as 

a matrix. The latter definition is a constructive one in the sense of Richenhagen (1985) 

while the former possibilities are relational-descriptive definitions in his sense, not 

telling how to compute the total derivative (which can be derived in a further step).  

On the semantic level, we now take a look at the different contexts of interpretation, 

keeping relations with related concepts in mind.  
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Analytic-algebraic context: If a relational-descriptive definition is used, it must be 

shown that the total derivative of a given function at a point is unique. The question 

how to compute it remains open at first. While it can be done “by hand” by computing 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) and finding the linear term, the connection to partial derivatives 

can also be used since it can be shown that total differentiability implies partial 

differentiability and the total derivative is given by the matrix whose components are 

the partial derivatives, which can be computed easily using techniques from the one-

dimensional case. It is important to note that the matrix containing the partial 

derivatives is not always the total derivative because this matrix can be computed when 

all partial derivatives exist which, however, does not automatically imply total 

differentiability. There are two possibilities to check this: showing that 

lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)−𝐽𝑓(𝑥0)⋅ℎ

||ℎ||
= 0 (necessary and sufficient condition) or that all partial 

derivatives are continuous (𝐶1-criterion, not necessary, but sufficient condition). These 

are applications of theorems that need to be proven on the formal level. The connection 

of the total derivative and directional derivatives makes it possible to interpret the total 

derivative at 𝑥0 as the linear function that maps each vector 𝑣 ∈ ℝ𝑛 to the local rate of 

change of 𝑓 at 𝑥0 in the direction of 𝑣. For 𝑛 = 𝑚 = 1, the total derivative is the same 

as the usual ℝ1-derivative. However, the definition of the total derivative does not look 

similar to the usual definition of the ℝ1-derivative using the differential quotient. Like 

ℝ1-differentiability and in contrast to other differentiability concepts in ℝ𝑛, total 

differentiability of 𝑓 at 𝑥0 implies continuity of 𝑓 at 𝑥0. If the total derivative of 𝑓 at 

𝑥0 is seen as a linear mapping ℎ ↦ 𝐷𝑓(𝑥0)(ℎ), it is clear that this function is always 

continuous (being a linear mapping between finite-dimensional vector spaces). A 

different question, however, is whether the function 𝑥 ↦ 𝐷𝑓(𝑥) is also continuous. 

This is not automatically the case, thus introducing the need for the term “continuously 

differentiable” which is equivalent to all partial derivatives being continuous. These 

distinctions can cause confusion for learners.  

Approximation context: In the first definition shown, the total derivative is introduced 

as a linear mapping that can be used to approximate the course of the function 𝑓 near 

𝑥0. This idea is furthered by the equation in the definition, resulting in the 

approximation 𝑓(𝑥0 + ℎ) ≈ 𝑓(𝑥0) + 𝐴𝑥0
(ℎ). The “roughly equal”-sign can be 

specified by the “error function” 𝜑𝑥0
. In the other definitions, the approximation 

interpretation is also already contained, but more hidden than in the first case, since 

here, the definitions do not contain an equation of the form 𝑓(𝑥0 + ℎ) = ⋯. However, 

through the limit expression, it is also indicated here that the relative error made when 

writing 𝑓(𝑥0 + ℎ) ≈ 𝑓(𝑥0) + 𝐽𝑓(𝑥0) ⋅ ℎ is small. 

Geometric context: Like the tangent in the one-dimensional case, the abstract 

geometric interpretation of the total derivative using a tangent plane does not follow 

directly from any of the definitions. Visualizing a tangent plane is only possible for 

𝑛 = 2, 𝑚 = 1, but the wording is often used in other cases as well, generalizing the 

idea. The total derivative can be used to describe the tangent plane / tangent space as 
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an 𝑛-dimensional affine subspace of ℝ𝑛+𝑚. This can be understood as the graph of the 

total derivative (shifted so that the point (𝑥0, 𝑓(𝑥0)) corresponds to the origin) if the 

total derivative is understood as a mapping. Using the definition variant “matrix of 

partial derivatives”, the tangent plane / tangent space can be understood as the set 

{(ℎ, 𝑓(𝑥0) + 𝐽𝑓(𝑥0) ⋅ (ℎ − 𝑥0)) |ℎ ∈ ℝ𝑛}, where the entries of the matrix correspond 

to the “slopes” of the tangent plane in the directions of the respective coordinate axes.  

If all directional derivatives exist, tangents to the graph exist in all directions. If the 

mapping that maps 𝑣 to the directional derivative 𝐷𝑣𝑓(𝑥0) is linear, these tangents 

form a plane. That plane does not have to be a tangent plane to the graph of 𝑓 at 𝑥0. 

This geometric interpretation can help visualize that directional differentiability does 

not imply total differentiability, not even if additional linearity is given. The real-

geometric interpretation is a transfer of this phenomenon to the three-dimensional 

visual space: If 𝑓: ℝ2 → ℝ describes the height as a function of a point given by two 

coordinates, i.e., if its graph results in the relief map of a hilly area, then its total 

differentiability means that the corresponding hill appears locally like a plane (the 

tangent plane). Another geometric interpretation of the total derivative 𝐷𝑓(𝑥0) can be 

formulated using the composition of 𝑓 with a curve 𝛾: 𝐼 → 𝑈 ⊆ ℝ𝑛 with 𝛾(0) = 𝑥0 

and 𝛾′(0) = ℎ ∈ ℝ𝑛: The composed curve  �̃� = 𝑓 ∘ 𝛾 has then  �̃�(0) = 𝑓(𝑥0) and 

�̃�′(0) = 𝐷𝑓(𝑥0)(ℎ). This can be imagined as follows: If 𝑥 moves from 𝑥0 with 

instantaneous velocity ℎ, then 𝑓(𝑥) moves from 𝑓(𝑥0) with instantaneous velocity 

𝐷𝑓(𝑥0)(ℎ). Using this curve 𝛾, we introduced a notion of time to illustrate the meaning 

of the total derivative. The directional derivative can then be seen as the particular case 

of this, with 𝛾 being a specific curve that is a straight line (𝛾(𝑡) = 𝑥0 + 𝑡 ⋅ 𝑣).  

Real-world model: In the multidimensional case, the “standard application” from the 

one-dimensional situation, instantaneous velocity, could only be used for one of the 

partial derivatives because there can only be one time dimension. There are many other 

applications for functions ℝ𝑛 → ℝ𝑚. Suppose 𝑓 describes a real-world application, e. 

g. the temperature at each point of a room. In that case, the interpretation of a local rate 

of change can be used for the different components of the total derivative. The total 

derivative itself cannot be interpreted as “the local rate of change” in any way (only as 

the mapping that maps every direction to the local rate of change in this direction as 

described above). It can be used to approximate quantities in a small neighborhood, 

and the linear approximation itself can then be used for other applications, e. g. when 

the linearization of a vector field (for example, a force field) makes working with 

differential equations easier.  

ANALYSIS OF TEXTBOOKS BASED ON THE MEANING MODEL OF THE 

TOTAL DERIVATIVE 

Method for the textbook analysis 

Textbooks are essential resources for students’ learning. However, it is important to 

note that in mathematics lectures at German universities, there are usually no selected 

course books that are mandatory: The lectures typically stand on their own, and 
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lecturers often recommend some textbooks for additional reading. In our analysis, we 

include three different “Analysis II” textbooks and call them “(F)” (Forster, 2008), 

“(G)” (Grieser, 2019) and “(H)” (Heuser, 1992). Two of them, (F) and (H), are 

“standard textbooks” that lecturers regularly recommend to their students for additional 

reading. (G) is not yet a published textbook but a lecturer’s script (published online 

and published as a book soon). We decided to include (G) even though it is not yet 

published as a book due to its particularly rich presentation of the topic with a focus on 

fostering understanding that we felt would enrich our sample. The script can be used 

like a textbook already because it can be found online. We are interested in 

mathematical intentions of the textbooks (Pepin & Haggarty, 2001) and our analysis is 

“vertical” in the sense of Charalambous et al. (2010) since we looked at the various 

interpretations of the total derivative in the relevant chapters using our meaning model 

as a comparison and coding scheme. We used Bowen’s (2009) approach to document 

analysis. At first, we selected the relevant chapters – those dealing with differentiation 

concepts in ℝ𝑛. We are interested in the introduction of the respective concepts and 

first theories about them. Therefore, we excluded the sections dealing with higher 

derivatives, Taylor’s theorem, submanifolds, the implicit function theorem, etc. from 

our analysis. Then we divided the relevant chapters into small sections of meaning, 

e.g., definitions, theorems, examples, and accompanying text. We coded if and which 

interpretative context from our framework for the total derivative could be found for 

each section. Let the reader be reminded that in the analytic-algebraic context of 

interpretation, by our definition of this context in the framework, only comments on 

the semantic level (e. g., when it is explicitly stated that the relationship between total 

derivative and partial derivatives implies its uniqueness) are counted and not all 

properties that might be stated in theorems on the formal level. Since the analytic-

algebraic interpretation contains many different possibilities, we work with several 

subcategories (see Table 1). In the geometric context, we differentiate between the 

notion of the tangent plane / tangent space and other geometric interpretations 

regarding the total derivative.  

Results of the textbook analysis 

In book (F), we identified 14 relevant pages. In sum, we found very few comments on 

the semantic level. The introduction of the chapter about the total derivative comments 

on the meaning of the total derivative on the analytic-algebraic and the approximation 

context:  

“In this paragraph, we define the total differentiability of functions from open subsets of 

ℝ𝑛 into ℝ𝑚 as a certain approximability through linear mappings. In contrast to partial 

differentiability, one does not need to refer to the separate coordinates in the process; 

additionally, a totally differentiable function is automatically continuous.” 

(Forster, 2008, p. 62, translated by the authors) 

As can be seen from this excerpt, partial derivatives are defined before the total 

derivative is introduced. Total differentiability is then defined similarly to the first 

definition we stated above, but this is the only time the approximation interpretation 
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is explicitly mentioned. In the analytic-algebraic context, it is explicitly remarked that 

the theorem stating that the transformation matrix of the total derivative contains the 

partial derivatives implies the uniqueness of the linear mapping and thus makes the 

definition of the total derivative possible. There are no geometric interpretations or 

interpretations in the real-world model for the total derivative (and not for partial 

derivatives, either), even though the chapter about partial derivatives starts with 

definitions and figures of level sets and contour lines.  

In contrast, book (G) provides very rich interpretations. We found and analyzed 21 

relevant pages. Concerning the analytic-algebraic context of interpretation: After the 

definition of the total derivative is stated, the question is asked whether an 

interpretation as a local rate of change as in the one-dimensional case is possible. In 

this book, partial derivatives and directional derivatives are not defined before the total 

derivative, and the desire to be able to compute the total derivative and interpret it as a 

local rate of change is presented as motivation for their respective definitions. The 𝐶1-

criterion is introduced as an essential criterion for checking for total differentiability. 

The approximation context is mentioned as well: It is explicitly stated that total 

differentiability means that the change of function values depends “almost linearly” on 

the change of x-values. The idea is then used for a heuristic argument for proving the 

chain rule. The geometric idea of the tangent plane is found throughout the chapter. 

The motivation for the total derivative is given by the idea of trying to generalize the 

idea of tangents for the ℝ1-derivative. The illustrative idea of a tangent plane is 

introduced early, later the tangent plane is defined as the graph of the total derivative. 

This idea is also taken up later in argumentations about the total differentiability of 

example functions. It is mentioned that the Jacobian matrix contains the “slopes” of the 

tangent plane, and the idea of tangent plane and tangents of curves is used to make the 

connection of total derivative and partial derivatives plausible in an illustrative way. 

Another geometric interpretation of the total derivative, the idea of the transformation 

of a curve (described above), is also mentioned. Regarding the interpretation in real-

world models, there is a section listing different real-world situations that could be 

modeled using functions ℝ𝑛 → ℝ𝑚 and the meaning of the total derivative in these 

contexts, e. g. the air pressure depending on the location (for which the meaning of the 

gradient – related to the total derivative – as the direction of strongest increase is 

thematized).  

In book (H), we found and analyzed 33 relevant pages. Here, partial derivatives are 

defined first, then the change behaviour of 𝐶1-functions is addressed, and in the course 

of this, the approximating property of the total derivative is explained before the total 

derivative itself is defined. The motivation for looking at more than partial derivatives 

is the desire to analyze the change behavior of the function when change occurs in 

more than one direction. Like in book (F), the relationship between total derivative and 

partial derivatives is used to show the uniqueness of the total derivative on the analytic-

algebraic level. Additionally, the 𝐶1-criterion is introduced as the most important 

criterion for total differentiability. The approximation interpretation is given 
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explicitly: The total derivative is introduced using the idea of approximating a function 

with “especially easy,” i.e., linear, functions, with reference to the theorem about 

approximation of 𝐶1-functions and explicitly mentioning that change in different 

directions should be possible (in contrast to partial derivatives). The tangent plane is 

not introduced. A geometric interpretation is only given for other differentiability 

concepts: the partial derivative as the slope of the tangent of a curve, the gradient as 

the direction of greatest ascent, etc. Real-world models are considered throughout the 

sections regarding partial derivatives, especially in exercises at the end of chapters (e. 

g. concerning fluid mechanics or oscillating strings). The idea of a function modeling 

temperature on a thin panel is used for motivating that partial derivatives are not 

enough. The approximating idea is also applied to real-world models in tasks for 𝐶1-

functions, e. g. when propagation of uncertainty in a harmonic oscillator is addressed. 

These tasks are given before the total derivative is defined; after that, no explicit real-

world applications are presented.   

An overview of these results can be found in Table 1. An “x” indicates the 

interpretation was found in the book, “pd” in the abstract-geometric and real-world 

model contexts of interpretation means that the interpretation in this context for the 

total derivative was not in the book, but something similar for partial derivatives.  

 Analytic-algebraic Approx. Abstr.-geom. Real 

world 

model 
Compu-

tation 

using pd 

Uniqueness 

using pd 

Local 

rate of 

change 

𝐶1-

crit. 

Tangent 

plane 

other 

(F)  x   x    

(G) x  x x x x x x 

(H)  x  x x  pd pd 

Table 1: Overview of interpretations of the total derivative found in the three textbooks 

DISCUSSION  

We have worked out a variety of possible interpretations of the total derivative in the 

different contexts that we identified. We have also shown how the related concepts of 

partial derivatives and directional derivatives, as well as the relations with the ℝ1-

derivative and the concept of continuity, enrich the meaning of the total derivative. 

This is a plea for Sierpinska et al.’s (2002) notion of a theoretical system instead of 

considering only isolated concept images for each concept. A comparison of our 

meaning model with different textbooks shows that not all textbooks mention each of 

the possible interpretations. Not surprisingly, there are differences between the three 

books. The approximation context of interpretation is mentioned at least briefly in all 

three books and in two of the books in more detail. The geometric context is not always 

discussed. While (G) emphasizes geometric interpretations, (F) does not mention these 

at all, and (H) only includes geometric interpretations of other differentiability 

concepts. This lack of focus on geometric interpretations, not only in textbooks but 

also in many lectures, makes it difficult to apply findings from studies mentioned by 

200



  

Martínez-Planell and Trigueros (2021) to German classes. In some but not all 

textbooks, real-world applications of the total derivative are given. Book (F) shows 

very few interpretations and mostly stayed on the formal level, not explicitly trying to 

further enrich the reader’s concept image. Since (F) is a relatively thin book and only 

14 pages regarding differentiability were identified, it was expected that this might 

show fewer contexts of interpretation than the other books. However, the number of 

pages addressing differentiability does not seem to be a reliable indicator for how rich 

the provided concept image is: At least in our case, we found fewer pages relevant but 

more different interpretations for the total derivative in (G) than in (H). Differing from 

Harel’s (2021) findings when investigating six multivariable calculus books, none of 

the books in our study omitted the definition of the total derivative, and the idea of a 

tangent plane was not given in two of the books while it was important in all books in 

Harel’s study. On the other hand, the idea of linear approximation was not as important 

in the books in Harel’s investigation. These differences might illustrate a disparity 

between Calculus and German “Analysis” classes, usually more formal and abstract.  

An analysis of three textbooks (which is a tiny sample) can only be the beginning of 

an analysis of the landscape of textbooks regarding differentiability concepts in the 

multidimensional case. It would be interesting to find prototypes of different textbook 

styles (first only regarding differentiability, but this could be extended to other subject 

areas, too). This would make recommendations for learners easier, knowing what style 

the different textbooks use. Important questions are what contexts are addressed and 

what is done to enrich readers’ concept images. For lecturers, it might be a good idea 

to know which meaning of the total derivative in which contexts they want to convey 

and which textbooks go well with this. For example, if a lecturer focuses on tangent 

planes, working with a textbook that does not mention the abstract-geometric context 

of interpretation or the other way round might confuse learners. Further follow-up 

questions would be why lecturers address contexts of interpretation the way they do, 

how students work with the textbooks and what kinds of concept images evolve after 

working with these, and how these help or hinder them in their further studies.  
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We use Action-Process-Object-Schema theory (APOS) to study the development of the 

differential calculus Schema for two-variable functions. This allows us to obtain 

information about students’ constructions and also gives us information about the 

notion of Schema. We performed semi-structured interviews with a group of eleven 

students that had completed an introductory multivariable calculus course. We use 

data from two students to exemplify the types of constructions observed. To analyze the 

data, we use the Schema development triad and the notions of correspondence, 

transformation, and equivalence relations between Schema components. Our study 

contributes to a better understanding of these notions, how students relate differential 

calculus concepts, and how to support their learning and Schema development. 

Keywords: Teaching and learning of specific topics in university mathematics, 

teaching and learning of analysis and calculus, APOS theory, schema, two-variable 

functions. 

INTRODUCTION 

The notion of Schema is an important component of APOS Theory. However, there is 

not much research using Schema to analyze students’ constructions of different topics. 

The first research to further the study of the notion of Schema was by Clark et al. 

(1997), who introduced the notion of the Schema triad from Piaget and Garcia’s work 

(1982) into APOS theory to study the development of the chain rule Schema for one-

variable functions. More recently, Trigueros (2019) studied the development of the 

linear algebra Schema, underscoring for the first time the types of relations between 

Schema components. She operationalized the use of Schemas into the study of its 

constituent components and types of relations between them. Further research needs to 

explore the notion of Schema and its application to the study of the teaching and 

learning of mathematics. One of the goals of this study is to contribute to the discussion 

of Schemas in APOS theory.  

This study is part of a second research cycle based on previous work by Martínez-

Planell et al. (2015, 2017) and Trigueros et al. (2018). These studies explore students’ 

constructions of plane, partial derivatives, tangent planes, directional derivatives, and 

the total differential, applying, for the most part, the APO part of the theory. The second 

goal of this study is to contribute to the second cycle of research on students’ 

understanding of the differential calculus of two-variable functions. 
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THEORETICAL FRAMEWORK  

The notion of Schema from APOS Theory is used as the theoretical framework in this 

study. Schema is a structure defined as the individual’s collection of Actions, 

Processes, Objects, and other previously constructed Schema which are linked by 

different types of relations and that he/she brings to bear upon a problem situation 

related to a specific mathematical concept or topic (Arnon et al., 2014). Using the 

Schema point of view, the data analysis focuses on the possible changes in the 

components of the Schema and particularly on the relations that an individual shows 

to have constructed among the components of the Schema. A Schema can be 

considered coherent when the individual can discern between those problems that are 

within its scope and those that are not. A Schema may become an Object through 

thematization. This mechanism involves the possibility to apply new Actions or 

Processes to the Schema. An important characteristic of Schemas is that they are in 

continuous development. They are dynamic structures, but this development can be 

described through three recognizable stages, Intra-, Inter-, and Trans-, characterized by 

differences in the type of relations constructed among the Schema’s components.  

Any relation constructed between the components of a Schema may be classified as a 

correspondence, transformation, or equivalence relation. This classification of relations 

was introduced by Trigueros (2019) and is further detailed and explored here. 

Correspondence relations are those that result from the superficial comparison of 

structures in terms of similarities or differences. They may arise from the repeated 

observation of pairs of component structures that appear jointly in problem-solving 

situations, so the individual knows they are somehow or other related, but is not yet 

able to justify the relation. Transformation relations are developed when the individual 

discovers that some structures in the Schema can be grouped and related to each other 

in terms of other structures. These other structures play a role in the reasoning and 

justification of the connections in accordance with disciplinary practices. A relation 

between two components of such a grouping or that plays a role in explaining or 

justifying the interrelation between other component structures of a grouping, will be 

considered a transformation relation. Transformation relations can be distinguished 

when the relation is somehow justified. Equivalence or conservation relations involve 

the conservation of properties in which one structure is dependent upon the others. 

Equivalence relations can be distinguished when one structure is interchangeably used 

when solving a problem situation involving the other in accordance with disciplinary 

practices. 

We will consider that a Schema is at the Intra-stage of development when its 

components are mainly isolated from one another and the type of relations that exist 

between components are for the most part correspondence relations. At an Inter-stage 

of Schema development, groupings of different components start to appear. At this 

stage of Schema development, transformation relations will be more prevalent so that 

the individual will be able to justify some of the relations by referring to others. At the 
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Trans-stage of Schema development, all the different components are related, 

conservation relations appear and there is evidence of coherence of the Schema. 

Research questions for this study are: How can the study of the Differential Calculus 

Schema development inform us about students’ learning? How does the study of 

students’ construction of the Differential Calculus Schema for two-variable functions 

enable us to better understand the types of transformations between Schema 

components? 

METHODOLOGY 

The component structures of the Differential Calculus Schema we consider are slope, 

partial derivative, directional derivative, tangent plane, total differential, function, and 

gradient. These are the same components that were studied in the first research cycle, 

now explicitly including the pre-requisite components of functions and slope, and 

adding gradient vector, for which questions were added to the new interview 

instrument. While clearly there are other components that may be called upon in a 

problem situation involving the differential multivariable calculus, our interview 

instrument will only allow us to examine the chosen components. 

For correspondence relations, we look for relations that only point to commonalities 

between Schema components or appear to result from memorized procedures. For 

example: given a graphical representation of a tangent plane to the graph of a function 

at a point, a student might be able to correctly do computations to approximate the 

change in the values of the function for a small change in input values but might not 

recognize it is only an approximation and not the exact value of the change, or might 

not be able to explain why it is an approximation. Such a student would be grouping 

function, tangent plane, and perhaps even total differential components in a 

correspondence relation. 

For transformation relations, we look for some reasoning explaining or justifying the 

relation in accordance with disciplinary practices. In the example above, a student that 

is able to recognize that his computations will only give an approximation, or who 

argues that close to the base point the tangent plane and surface are very close to each 

other, will be giving evidence consistent with a transformation relation grouping the 

components of function and tangent plane. 

For equivalence relations, we look for evidence of one structure being used 

interchangeably for another in a way that agrees with disciplinary practices, 

consistently when solving different problem situations. For example, a student who is 

asked to approximate the value of a function near a base point, given graphical 

information of the tangent plane might immediately recur to the total differential at the 

base point, using the Schema components of tangent plane and total differential 

interchangeably or a student might be able to understand the role partial and directional 

derivatives play in terms of local change of the function. The student would be giving 

evidence of an equivalence relation among Schema components. 
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Eleven students spanning the range from above-average (3), average (5), to below-

average (3), as chosen by the professor, were interviewed twice (Interviews I, II) two 

weeks after completing an introductory multivariable calculus course at a mid-tier 

Iranian university. The two interviews were held on different days and each one lasted 

approximately 1 hr. Interviews were video and audio recorded, transcribed, 

individually analyzed by the researchers, and discussed among them until consensus 

was reached. Interviews were analyzed in terms of the relations established between 

the seven chosen Differential Calculus Schema components. 

There were six problems in Interview I and eight in Interview II. Some of these 

problems were multipart. Students were familiar with some problem types (see below: 

I-3b, I-4, I-6a, I-7c) and unfamiliar with others (II-1, II-6). In this report we will be 

referring to the following problems, which we label to include the interview and 

problem number: 

I-3b. Suppose the graph of   is as follows (Figure 1a). State the sign 

(positive, negative, zero) of .  Justify your answer. 

I-4. The following is a table of values of a differentiable function f of two variables 

(Figure 4). Approximate the value of  the best you can. 

I-6a. The plane in the figure below (Figure 1b) is tangent to the graph of a differentiable 

function  at a point (1,2,0). What can you say about the change in the value 

of the function if x increases 0.02 units and y decreases 0.02 units? 

II-1. The graph of  is given in the figure below (Figure 1a). If 

, draw how the graph of  may look for . 

II-6 Suppose point P moves towards point Q at a constant speed along the curve that 

joints  them (Figure 1c). How may the graph of  as a function of time look? 

II-7c. The following figure (Figure 1d) shows the contour diagram of the tangent plane 

of a function  at the point (0,3). Approximate the value of f(0.04,2.97) the 

best you can. 

a. 

 

b. 
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c. 

 

d. 

 

Figure 1: Figures for the interview problems 

RESULTS 

We show the results of two students, Hamid and Koorosh, relative to their Differential 

Calculus Schema development. With this, we show how we operationalized the study 

of Schemas by defining a collection of components and investigating the type of 

relations between components that have been established by students.  

We found that Hamid interconnected all seven component structures with equivalence 

relations. So, we use him as an example of the Trans-DC (Differential Calculus) 

Schema development. We only show some excerpts from the interview to exemplify 

how he generally responded as it will not be possible to address all Schema components 

in this report. 

In II-1, Hamid was given the graph of a function and was asked for the graph of 

 (Figure 2). He showed to have an equivalence relation grouping the 

components of partial derivative, slope, and function. 

Hamid: I draw two axes, the vertical axis named H(t) and the horizontal one named t. I 

need to compare the slope of tangent lines to graph f at the points (t,0) in the 

x direction when t goes from 2 to 4.  

Interviewer: You should draw H. 

Hamid: Okay, the derivative with respect to x at the point (2,0) is the slope of this tangent 

line, the slope is positive so in the graph H(t) we have a point here above the 

t axis and umm for t=2. If I continue in such a way for t=3 we have the point 

(3,0), based on the figure the tangent line is a horizontal line like this so the 

slope is 0. I now plot point (3,0) in the graph. From t=2 to t=3 the slopes of 

the tangent lines are decreasing. From t=3 to t=4 the values of slopes of the 

tangent lines are negative and they going to more negative and more negative, 

so we have a decreasing curve like this from t=3 to t=4. 

In this problem, Hamid considered partial derivative and slope as interchangeable (“I 

need to compare the slope of tangent lines…). This suggests that the components of 
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function, slope, and partial derivative are grouped in an equivalence relation where the 

properties of partial derivatives are conserved in the slopes of tangent lines.  

 

Figure 2: Hamid’s work on problem II-1 

In I-6a, Hamid was given the graph of a tangent plane and was asked to discuss change 

in value of a function. He grouped the components of tangent plane, function, total 

differential, partial derivative, and slope. Hamid related the components of tangent 

plane (given) and function (requested) through the total differential while treating total 

differential and tangent plane as interchangeable. 

Hamid: I know . Here we have and . I have to find 

the values of and  at the point . Since it’s a tangent line to the 

function f at the point  so  is mx and  is my. Based on the figure 

mx is 1 over umm 2 minus 1 which is 1 so it will be 1, so mx is 1, and my is 3 

units to the up over 3 minus 2 which is 1 umm it will be 3 over 1 which is 3, 

so my is 3. The change in the value of the function is 0.02 times 1 plus  

times 3 and umm the answer is . 

Note that he justified the relation between tangent plane, partial derivative, and total 

differential when, while computing total differential, he says “since it’s a tangent line 

[part of the tangent plane] to the function f at the point (1,2,0) so  is mx and  is 

my.” As we previously saw, in another problem (II-1) he evidenced an equivalence 

relation between slope and partial derivative, and in the next problem (II-7c) will show 

such a relation between tangent plane and function. 

In problem II-7c Hamid was given a contour diagram of the tangent plane of a function 

 at the point (0,3). He was asked to approximate the value of f(0.04,2.97) as 

best as he could. In this problem, Hamid treated function and tangent plane as 

interchangeable in recognizing that approximate change is conserved. He gave 

evidence consistent with an equivalence relation grouping function and tangent plane. 

Hamid: The point (0.04,2.97) is very close to the point (0,3), so to find the value of f at the 

point (0.04,2.97) I can find the value of z at the point (0.04,2.97) on the 

tangent plane.  

Interviewer: Why? 
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Hamid: Because the graph of f and the graph of tangent plane are very similar to each other 

for the small neighbourhood of the point (0,3). I mean the tangent plane is an 

approximation for the function f. 

Interviewer: Okay, approximate the value of f(0.04,2.97). 

Hamid: At the point (0,3) the value of z or f(0,3) based on the contour diagram is 6. The 

equation of the tangent plane is so we have 

. If I put x=0.04 and y=2.97 then I have z equal to 

, and this is an approximation for f(0.04,2.97). 

Hamid was not just doing a rote computation, he justified the relation when he said: 

“because the graph of f and the graph of tangent plane are very similar to each other 

for the small neighbourhood of the point (0,3) …” 

While we only showed a few examples, Hamid related all components of the 

Differential Calculus Schema with equivalence relations. The interview instrument we 

designed does not allow us to inquire into the coherence of the Schema. Students knew 

they were being asked about the Differential Calculus Schema. They did not have to 

decide if a problem situation fell in the scope of the Schema. Nevertheless, we 

tentatively classify him as in the Trans-DC stage of Schema development. 

Now we consider Koorosh as an example of a student at the Inter-DC stage of Schema 

development. At this stage transformation relations are starting to form, grouping 

different components of the Schema. There will still be some components related by 

correspondence relations and there may be some unrelated components. Again, we are 

only able to show a few examples of his work.  

In problem I-3b, Koorosh gave evidence of a transformation relation grouping 

components of function, directional derivative, and slope. When given the graph of a 

function (Figure 3a) and asked for the sign of a directional derivative: 

Koorosh: We are at this point umm if we move in the direction umm -2 units in the x 

direction and 1 unit in the y direction it’s like we are moving in this direction 

(see Figure 3a for his direction). Looking at the figure we see the tangent line 

in this direction has a positive slope because the values of z increase so the 

sign of D which is the directional derivative is positive. 

Note that he justified his answer. So, we classified this relation between function, 

directional derivative, and slope as a transformation relation. We did not classify it as 

an equivalence relation since, in problem II-6, when asked for the graph of  as 

a function of time as P moves towards point Q (Figure 3b), he did not evidence an 

equivalence between directional derivative and slope as may be seen in his answer; 

here, the directional derivative is initially negative but his graph of this derivative starts 

above the horizontal axis. There were however many instances where he showed the 

construction of correspondence relations as the next example shows. 
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a. 

 

b. 

 

Figure 3: Koorosh’s work on problems I-3b and II-6 

In problem I-4, Koorosh was given a table of values (see Figure 4) and was asked to 

approximate the value of   the best he could. 

Koorosh: I need to compute the change of z over the change of y by holding x equal to 1. 

When y changes from 1 to 2 then z changes from 6 to 10, therefore  is 

 and it’s 4. 

Interviewer: Is your answer the best approximation? 

Koorosh: It’s the derivative in the y direction and so my answer seems to be correct. 

x  /  y 1 2 2.01 

0 5 7 7.04 

1 6 10 10.06 

2 8 14 14.10 

Figure 4: Table of values for problem I-4 

Observe that Koorosh seems to be rigidly applying a procedure he could not justify. 

The difference between correspondence, transformation, and equivalence relation in 

this problem is best understood by comparing with the response of Hamid.  

Hamid: It’s the partial derivative with respect to y. I need to find it at the point (1,2). I need 

to fix the x equal to 1 so we are in the third row of the table where x is 1. For 

this row when y is 2 umm f(1,2) is 10. When y changes from 2 to 2.01 then 

the value of the function changes from 10 to 10.06 so the derivative at the 

point (1,2) and with respect to y is approximately equal to 

 which is 6. 

Here, Hamid aimed to relate the component of function (the given table) with that of 

partial derivative (the request of the problem). To do so, he related the components of 

partial derivative and slope as seen in the computation of slope as a quotient of 

“change”. Here we consider average rate of change as another way to think about slope. 

The structures of slope and partial derivative are grouped and related to each other in 

terms of the structure of function (the table). Function plays a role in the reasoning of 

the connection when he recognizes the partial derivative “is approximately equal” to 

the slope he computed and uses the closest point to the base point in doing so. So, the 

relation between the slope, partial derivative, and function components in this problem 
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f

y





yf
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satisfies the definition of transformation relation However, considering Hamid’s 

overall performance, he consistently treated slope and partial derivative 

interchangeably in his other problem solving so we may classify this relation as an 

equivalence relation. 

We may also compare Koorosh with Hamid in problem II-7c where he uses a contour 

diagram of the tangent plane to approximate a functional value: 

Koorosh: The value of f at the point (0,3) is 6. When x increases 0.04 units then z changes 

as 0.04 times 1 which is 0.04 so f(x=0.04,3) will be 6.04. Now if y decreases 

as 3-2.97 which is 0.03 then z decreases umm 0.03 times 2/3. So the value of 

f at (x=0.04, y=2.97) will be 6.04-(0.03)2/3. 

Observe that Koorosh could do computations relating tangent plane (the given contour 

diagram) with function (the requested value), but his argument lacks justification, 

suggesting a correspondence relation. Similarly, in problem I-6a, when given a 

graphical representation of the tangent plane and asked about the change in the value 

of the function if x increases 0.02 units and y decreases 0.02 units: 

Koorosh: I first find  umm it’s the change in z over the change in y which is umm using 

this line it will be (3-0)/(3-2) which is 3. Now I find which is (4-3)/(2-1) 

umm which is 1. 

Interviewer: You need to find the change in the function. 

Koorosh: To compute it I use the differential formula which is . So it will 

be umm the answer is  and this means the 

function decreases 0.04 units. 

Again, Koorosh grouped several Schema components: tangent plane (given graph), 

function (the requested approximation), total differential (what he chose to use to do 

the computations), partial derivative (to compute total differential), and slope (to 

compute partial derivative). He did this without any justification and without showing 

awareness in this or any other problem of the interview instruments of the relation 

between tangent plane and total differential, other than to do computations.   

DISCUSSION AND CONCLUSION 

The cases of Hamid and Koorosh exemplify how Schemas may be used to better 

understand students’ construction in the differential calculus of two-variable functions. 

The types of responses these students showed were very different from each other. We 

found that Hamid showed evidence of a Trans-DC Schema development. This is 

assuming a Schema coherence we can’t justify or inquire into with our instruments. 

Koorosh showed evidence consistent with an Inter-DC Schema development. 

Although it has not been stressed in this report, a closer examination of the relations 

established or not, can inform instruction and result in improvement of didactical 

activities. 

yf
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This study enabled us to consider the definitions of the types of relations between 

Schema components and interpret them in a new context. In doing so, we gained a 

deeper understanding of the relations involved in the development of the Differential 

Calculus Schema. In future studies, we need to be more insistent in teasing out 

explanations and justifications from students in order to better distinguish the 

difference between the types of relations. Our study contributes to furthering the 

understanding of Schemas, their stages of development, and the correspondence, 

transformation, and equivalence relations among Schema components together with 

understanding how students’ constructions may evolve in the course. Considering the 

work of all eleven students, we find there are many possible ways in which the DC-

Schema stage of development appears, varying from weak to strong transition levels 

from Intra-DC to Inter-DC, and from Inter-DC to Trans-DC stages of Schema 

development. We also found that students showed a deeper understanding of the 

different Schema components in this second research cycle than in the first research 

cycle (Martínez-Planell et al., 2015). A constraint we have in the present study is that 

the interview instrument was not designed to allow for an investigation into Schema 

coherence. More research is necessary to study Differential Calculus Schema 

coherence. 

REFERENCES 

Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa, S., Trigueros, M., & Weller, K. 

(2014). APOS theory: A framework for research and curriculum development in 

mathematics education. New York, Heidelberg, Dordrecht, London: Springer. 

Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, 

G., & Vidakovic, D. (1997). Constructing a schema: The case of the chain rule. The 

Journal of Mathematical Behavior, 16, 345–364. 

Martínez-Planell, R., Trigueros, M., & McGee, D. (2015). On students’ understanding 

of the differential calculus of functions of two variables. Journal of Mathematical 

Behavior, 38, 57–86. https://doi.org/10.1016/j.jmathb.2015.03.003 

Martínez-Planell, R., Trigueros, M., & McGee, D. (2017). Students’ understanding of 

the relation between tangent plane and directional derivatives of functions of two 

variables. The Journal of Mathematical Behavior, 46, 13–41. 

Piaget, J., & García, R. (1982). Psicogénesis e Historia de la Ciencia. México: Siglo 

XXI. 

Trigueros, M. (2019). The development of a linear algebra schema: learning as result 

of the use of a cognitive theory and models. ZDM: Mathematics Education, 51(7), 

1055–1068. https://doi.org/10.1007/s11858-019-01064-6 

Trigueros, M., Martínez-Planell, R., & McGee, D. (2018). Student understanding of 

the relation between tangent plane and the total differential of two-variable 

functions. International Journal of Research in Undergraduate Mathematics 

Education, 4(1), 181-197.  

212
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In this study, we redesigned successful paper-and-pencil activities and implemented 

them in an introductory multivariate calculus course supported by 3D dynamic 

geometry software. We used semi-structured interviews and students’ written 

productions during the semester to analyze the use of technology in supporting 

students’ learning. Considering the work of two students, we find that the software has 

transformative potential but that it did not promote students’ learning as expected. We 

discuss possible reasons for this. 

Keywords: Functions of two variables, APOS theory, 3D dynamic geometry, University 

mathematics. 

INTRODUCTION 

The modelling of natural phenomena generally does not depend on a single variable. 

Over the past decade, several researchers have studied students' understanding of two-

variable functions (for a review see Martínez-Planell & Trigueros, 2021). Among these 

studies, there are some results exploring the use of physical manipulatives for the 

teaching of two-variable functions. For example, McGee et al. (2012) developed a set 

of tangible manipulatives and support materials for visualizing concepts related to 

points, vectors, surfaces, curves, and contours in 3D space and report their positive 

effect on student learning. Martínez-Planell and Trigueros (2019) used these 

manipulatives in their teaching and then researched student understanding, also 

reporting positive effects. Wangberg (2020) observed improved student understanding 

when using a different manipulative. Some articles consider digital technologies as a 

means to support visualization in multivariable calculus (e.g., Alves, 2012). 

The use of tangible and virtual manipulators in teaching and learning situations is 

attracting growing interest due to the new possibilities offered by digital technologies 

(Soury-Lavergne, 2021). One of the possibilities offered by the digital is the passage 

from static supports (for example, paper and pencil), which allow us fixed figures, to 

dynamic supports, which would enable us to experiment with mathematical ideas in 

dynamic figures (Roschelle et al., 2017). Computer algebra systems (CAS), 

spreadsheets, and dynamic geometry environments (DGE) are the technologies most 

used in mathematics classrooms. According to Soury-Lavergne, "dynamic geometry is 

a generic term for a type of software that allows the construction on the screen of 

dynamic figures that can be deformed while retaining the geometric properties used at 

the time of their construction" (2020, p. 7). DGEs such as Cabri 3D or GeoGebra 3D 

can represent three-dimensional surfaces and thus can potentially support student 

learning of two-variable functions. However, if the student's activity is reduced only to 

typing algebraic expressions and seeing their representation on the screen, the dynamic 
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aspect of dragging their free elements and observing what geometric properties of the 

figure are preserved is missed, thus limiting the technology’s didactic potential. In this 

study we report on results obtained while using GeoGebra 3D together with didactic 

activities in the learning of two-variable functions. 

Our research questions are: What mental constructions do college students show when 

using graphing activities of functions of two variables supported by 3D dynamic 

geometry? How do these constructions compare to those shown by students who 

worked with the same activities on paper and pencil? 

THEORETICAL BACKGROUND 

In APOS theory (Arnon et al., 2014), an Action transforms a previously constructed 

mathematical object and is perceived as external, i.e., it will be relatively isolated from 

the individual’s other mathematical knowledge. Performing Actions does not allow per 

se the individual to justify them. Actions may correspond to mechanically executing a 

procedure by following explicitly available or memorized instructions. When an 

Action is repeated, and the individual reflects on it, he/she might interiorize it into a 

Process. A Process is perceived as internal, which means that the individual can think 

about the result of its application without following all the necessary steps and without 

recurring to external support. Different Processes can be coordinated into new 

Processes and can be reversed. These coordinations allow the individual to justify, 

imagine, and generate dynamic imagery of the Process. When an individual can think 

of a Process as a whole and can do or imagine doing Actions on it, the Process is 

encapsulated into an Object. The essential aspect of the Object structure is that Actions 

can be performed on it. We will not need to refer to Schemas in this article. APOS 

structures and mechanisms can be used to design a model of how students might 

construct a mathematical notion; such a model is called a genetic decomposition (GD). 

A GD is not unique, multiple GDs of the same concept can coexist, or different 

researchers can propose other models. What is important is that it is tested by data 

obtained from students. In general, a GD is used to design teaching activities that help 

students achieve the constructions conjectured in the GD. These activities are used in 

the classroom, then research is conducted with students, and, depending on the results 

obtained from the analysis of data, it may turn out that it needs to be revised and thus 

also the designed teaching activities. This opens the door to further research using the 

newly revised GD. One can continue doing research cycles until a GD is stable, that is, 

until the analysis of the data obtained reflects what the GD predicts about the 

construction of the mathematical notion at stake. 

From its beginning, APOS theory considered technology as part of its teaching 

methodology by promoting programming as an instrument to encourage exploration, 

reflection, and concept building. Today, various tools offer new possibilities to 

promote student reflection. Drijvers (2015) distinguished three didactic functionalities 

for digital technology: (a) to do mathematics, (b) to practice skills, and (c) to develop 

conceptual understanding. To examine the different forms in which technology can be 

used in the classroom, Hughes (2005) developed three categories: technology as (a) 
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Replacement, (b) Amplification, and (c) Transformation. She defined technology as a 

replacement when "the technology serves as a different means to the same instructional 

end"; Technology as an amplifier when it "capitalizes on technology’s ability to 

accomplish tasks more efficiently and effectively, yet the tasks remain the same"; and 

technology as transformation when it can change "students’ learning routines, 

including content, cognitive processes, and problem-solving" (p. 281). 

METHODOLOGY 

Two groups of approximately 30 students each from a Mexican public university 

participated in this study in synchronous teaching, due to the Covid-19 pandemic, in 

the fall of 2021. Both groups worked with the activities based on the GD designed for 

the third cycle of the study by Martínez-Planell and Trigueros (2019). The activities 

were redesigned to enable the use of a 3D dynamic geometry environment (GeoGebra). 

The professor who taught this course is one of the authors of this article. Students first 

worked individually on each activity, then discussed it in teams of four students; during 

these discussions, the teacher visited the teams –these discussions were video recorded 

but have not been analyzed in this paper– and finally, a teacher-led whole group 

discussion was held. At the end of the semester, one student from each of the eleven 

teams was chosen to be interviewed. The researchers designed an instrument consisting 

of seven multitask questions to conduct semi-structured interviews with eleven 

students to test their understanding of the different components of GD. All the students 

were engineering students who had just completed this introductory multivariate 

calculus course. Each of the interviews lasted between 60 and 80 minutes and was 

video recorded. All the data were independently analysed by the researchers and 

conclusions were negotiated. The written work from the GeoGebra-based activities 

produced during the semester was obtained from all students and was used in the 

analysis. 

The seven interview questions focused on functions of two variables. For the purpose 

of this report, only four of these questions are addressed. All of these questions were 

to be worked with paper and pencil, except where otherwise stated. 

1. Draw in three-dimensional space the collection of points in space that satisfy the 

equation 𝑦 = 2 and that are also on the graph of the surface 𝑧 = 𝑥2 + 𝑥3(𝑦 − 2) + 𝑦2. 

2. Let 𝑓(𝑥, 𝑦) = 𝑥2. 

a. Represent in three-dimensional space the intersection of the plane 𝑦 = 1 with the 

graph of 𝑓. 

b. Draw the intersection of the plane 𝑧 = 1 with the graph of 𝑓. 

c. Draw the graph of 𝑓. 

3. Let 𝑓(𝑥, 𝑦) = 𝑥𝑠𝑖𝑛(𝑦). 

a. What can you say about the intersection of the plane 𝑥 = 0 with the graph of the 

function 𝑓(𝑥, 𝑦) = 𝑥𝑠𝑖𝑛(𝑦)? Represent the intersection in three-dimensional space. 
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b. Draw the graph of 𝑓(𝑥, 𝑦) = 𝑥𝑠𝑖𝑛(𝑦). 

c. You can use the GeoGebra scenario to graph [one was provided, as in Figure 2b]. 

4. State which figure corresponds to 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑦. Carefully justify your 

answer (see the figures below). 

 

Figure 1: Surfaces for problem 4, the graph appears on the first row, second column. 

Problems 1, 2a, 2b, and 3a directly deal with students’ understanding of “fundamental 

planes” (planes of the form variable=constant) and the geometric meaning of 

substituting a number for a variable. Problems 2b, 2c, 3a allow to obtain information 

on students’ understanding of “free variables” (situations represented by an equation 

with fewer variables than its geometric context). Problem 2c, 3b, 3c, and 4 may give 

information on students' graphing of two-variable functions. They may also give 

information on students’ use of transversal sections, and thus, of fundamental planes. 

Design of the Interactive Math Environment (IME) 

We developed an IME based on the DGE, GeoGebra 3D. For the design, we considered 

the first five sets of activities used in the third research cycle of Martínez-Planell and 

Trigueros (2019). These had shown to be successful in helping students construct 

functions of two variables in a paper-and-pencil environment. IMEs consist of two or 

three Views (see Figures 2a and 2b). In the first activity, students are asked to make 

point-by-point constructions in which they intersect fundamental planes with surfaces, 

for example, students are given the set 𝑆 = {(𝑥, 𝑦, 𝑧): 𝑧 = 𝑥2 + 𝑥𝑦2} and are asked to 

draw its intersection with the plane 𝑥 = 1; IME helps the student observe their Actions 

on the screen, allowing for an automatic response that helps them identify whether a 

point they enter belongs to both the plane and the surface. Students are expected to 

interiorize those Actions into a Process where they can imagine the relation between 
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the equation of a fundamental plane, its geometric representation, and placement in 

space. 

 

Figure 2: A scenario where students do a) Actions to construct a fundamental plane and 

b) Actions on fundamental planes. 

Another activity guides the student to plot the graph of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦 by drawing 

and placing a few curves using specific transversal sections, leading to reflection on 

the effect of giving different values to different variables. The student chooses the 

variable and value (e.g., 𝑦 = −1, 𝑦 = 0, 𝑦 = 1, 𝑥 = 0), GeoGebra plots the curve, and 

the student may verify by plotting points if desired. The dynamic imagery necessary to 

make sense of the situation was expected to help students construct a graphing Process. 

The need to do Actions on fundamental planes was expected to help then encapsulate 

fundamental planes into an Object (see Figure 2b). 

RESULTS 

The results obtained in this study were not as good as those of the third research cycle 

of Martínez-Planell et al. (2019) or the reproducibility study of Borji et al. (2022) in 

which the original GD-based activities were done with paper-and-pencil. In this report, 

we consider the results of two of the best students. This will enable us to discuss why 

activities with GeoGebra were successful in promoting some of their constructions but 

failed for other students. In doing that, we also give a more detailed account of specific 

student difficulties with free variables. 

In question 1, both Julio and Gael showed the Process of relating graphical and 

algebraic representations of fundamental planes, as well as imagining their position in 

3D space. The results suggest they had constructed the Process on the geometric 

meaning of substituting a number for a variable. This is consistent with a Process 

conception of fundamental plane. This construction seems to have been fomented by 

the use of GeoGebra during the in-class activities, as suggested by the fact that they 

graphed using the same colours for the axes as the GeoGebra activity (Figure 3). 
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Figure 3. Graphical and algebraic representations of the fundamental planes. 

In problem 2a, Julio and Gael could locate the intersection of 𝑦 = 1 with the graph of 

𝑓(𝑥, 𝑦) = 𝑥2 correctly in space (see Figure 4). Although this question involves the free 

variable 𝑦, all variables are explicit: students set 𝑧 = 𝑥2 and are told that 𝑦 = 1. This 

gives further evidence of their understanding of fundamental planes, this time in the 

case of a “cylinder,” meaning the graph of a two-variable equation that is to be 

interpreted in the 3D context. 

 

Figure 4. Intersection of the fundamental plane 𝒚 = 𝟏 with the graph of 𝒇(𝒙, 𝒚) = 𝒙𝟐. 

In problem 2c, both students used transversal sections to draw the graph of f(x,y)=x2 

(see Figure 5). They drew parabolas resulting from giving positive and negative values 

to 𝑦, then connected these parabolas with straight lines (see Figure 5). Based on the 

interview and in-class work where they graphed cylinders and justified their reasoning, 

it seems that they could generate the needed dynamic imagery to join the curves. This 

is consistent with a Process conception of graphing two-variable functions. Moreover, 

as they did Actions on such planes in order to graph the cylinder, we considered they 

had constructed an Object conception of fundamental planes. Students’ work on the 

GeoGebra scenario used during in-class activities to graph cylinders gives evidence of 

their use of technology as a Replacement since they did Actions of intersecting 

fundamental planes with surfaces when plotting point-to-point graphs. The evidence 

also shows its use as Amplification since it allowed them to automatically validate their 

calculations and display the points and/or curves in the 3D view (Hughes, 2005), 

enabling them to imagine the entire surface. However, this was not the case for most 

other students. Even though the instructions for the activities were careful to request 
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justifications, most students did not construct a graphing Process. They tended to take 

the output of the computer in itself as a valid justification, and used technology as 

replacement, sidestepping the necessary reflection to interiorize Actions into 

Processes. In this case, we also considered that as lectures and group discussions were 

conducted virtually, because of the pandemic, it was difficult to develop a culture of 

discussion and justification in the classroom. 

 

Figure 5. Graphs of 𝒇(𝒙, 𝒚) = 𝒙𝟐 during the interview. 

Responses to question 2b suggest that some situations involving free variables are 

treated differently by students. This difficulty had been observed before (Martínez-

Planell & Trigueros, 2019). Both Julio and Gael wrote 𝑧 = 𝑥2 and substituted 𝑧 = 1 to 

obtain 1 = 𝑥2. It can be observed that contrary to the situation of problem 2a, the 

variable 𝑦 does not appear in their computations. So, both of them seemed to do the 

Action of setting 𝑦 = 0, which led them to consider two points rather than two lines. 

The same behaviour regarding free variables was also observed in question 3a. Both 

Julio and Gael did the Action of substituting 𝑥 = 0 in 𝑧 = 𝑥𝑠𝑖𝑛(𝑦) to obtain 𝑧 = 0. It 

seems that, from their perspective, 𝑦 disappeared and so it again seems they set 𝑦 = 0. 

Julio: It tells us that in the plane 𝑥 = 0, we substitute in the function and we get 0, 𝑧 is 

equal to 0, in three-dimensional space, ..., I guess it will be just a point [He 

drew the point (0,0,0)]. 

Students had worked on exactly the same problem in the in-class activities. Examining 

their Actions, we see that the GeoGebra scenario required them to enter different points 

satisfying both equations, and then the scenario would show their graph; then students 

connected the resulting y-axis points by performing Actions, apparently without 

reasoning algebraically why they could connect them. That is, the GeoGebra scenario 

did not induce students to reflect on the fact that 0 = 0𝑠𝑖𝑛(𝑦) is true regardless of 𝑦. 

Students used technology in this activity as replacement (Hughes, 2005) as they could 

have performed the same point-by-point graphing Actions on paper-and-pencil. A 

similar response was observed in most other students. By considering their written 

response to the GeoGebra-based activities, it becomes clear that some students went 

beyond the scenarios provided and produced surface graphs using GeoGebra in a way 

that did not foster their reflection on fundamental planes and the geometric 
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interpretation of the meaning of holding a variable fixed, thus partially explaining their 

lack of success. 

In problem 3b, when asked to graph 𝑧 = 𝑥𝑠𝑖𝑛(𝑦), it became apparent that all students 

had not constructed the prerequisite Processes of trigonometry to coordinate it with a 

Process of fundamental plane. Both Julio and Gael stated that they would use 

transversal sections as their strategy, both knew they were expecting a wave-like 

surface, but neither of them interpreted 𝑥 as an amplitude nor took the sign of 𝑥 into 

account: 

Interviewer: how do you plan to draw the graph? 

Gael: by transversal sections, ..., that would be the sine graph, which is basic trigonometry, 

which are like waves, ..., but I'm trying to remember how it behaves when it's 

multiplied by 𝑥? I know that if 𝑥 weren't there, it would be represented as a 

galvanized sheet, but when you multiply 𝑥, it behaves differently. 

Julio: What I would do is give values to 𝑥 and 𝑦, ..., like a wave … 

Most other students showed difficulty with trigonometry. This seems to be an 

institutional issue. It was not observed in the paper-and-pencil studies mentioned 

before. Julio and Gael succeeded in graphing the function using a GeoGebra scenario, 

to do Actions involved in completing a few transversal sections to obtain the surface 

(see Figure 6). The scenario seemed to also help Julio make sense of the intersection 

of 𝑥 = 0 with 𝑧 = 𝑥𝑠𝑖𝑛(𝑦): 

Interviewer: Ok … in the first part when 𝑥 = 0, do you remember the first part? … you 

told me that the answer was a point … Why do you think, you get a line, 

Julio? 

Julio: Because … we are only giving values to 𝑦.  

It seems that now Julio realizes that 𝑥 = 0, 𝑧 = 0, but that 𝑦 can take any value. 

 

Figure 6. Graph of the function 𝒇(𝒙, 𝒚) = 𝒙𝒔𝒊𝒏(𝒚) supported by the IME. 

The above discussion underscores that even though students might have constructed a 

graphing Process, they need to coordinate the Process of fundamental plane with one-

variable function graphing Processes, which may not have been constructed due to the 

pandemic or other institutional reasons. It also shows how technology’s capacity to 
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generate graphs can potentially support students understanding of free variables when 

used as transformation. 

In question 4, when choosing the graph of 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑦, Julio chose the 

correct graph by doing an Action on fundamental plane. He mentioned that if 𝑥 = 0, 

the function reduces to 𝑧 = 𝑦, and therefore should result in a line with positive slope. 

There is only one such option. Gael gave signs of construction of dynamical imagery: 

Gael: … on the 𝑥-axis [meaning the 𝑥 direction] it is going to be the graph of sine … then 

plus 𝑦, 𝑦 would be a line on the 𝑦-axis [meaning the 𝑦 direction] … when 

𝑦 = 0 I’ll be left with only that, its wave in 𝑧 … and it keeps on increasing. 

Julio and Gael seem to imagine intersecting fundamental planes with surfaces as a 

technique for graphing surfaces, they seem able to do Actions on fundamental planes 

in order to form transversal sections, and show some evidence of generating dynamical 

imagery when graphing cylinders and functions. While this shows the potential of 

activities with GeoGebra, for most students it did not encourage the necessary 

reflection to interiorize their Actions into Processes. 

DISCUSSION AND CONCLUSIONS  

We observed that the activities worked in class helped Julio and Gael to construct the 

geometrical meaning of substituting a number for a variable in a 3D context, to 

recognize that the graphs of cylinders can be obtained by intersection with fundamental 

planes corresponding to the missing variable, and to use transversal sections as their 

chosen graphing strategy. The use of GeoGebra seems to have contributed to this 

understanding of fundamental planes and cylinders. Although this shows GeoGebra 

activities have the potential to be used as transformation, most students used the 

technology as replacement. We found that there are situations involving free variables, 

particularly situations when during a computation one of the variables “disappears,” in 

which the GeoGebra activities did not foster the needed student reflection. Thus, some 

GeoGebra activities need to be redesigned to accomplish this goal. 

Considering the entire student population, the results obtained in this study were not as 

good as those obtained in other studies based on the equivalent paper-and-pencil 

activities (Martínez-Planell et al., 2019; Borji et al., 2022), which rendered very 

positive results. We conjecture that one of the reasons for this difference was that 

classes for this experience were taught virtually due to COVID-19 pandemic. In this 

context, more attention to classroom culture and management issues are needed, 

particularly as it regards justification in a DGE. Also, there were other institutional 

factors, like students’ knowledge of trigonometry, that affected outcomes. 

When redesigning the activities, the purpose was that the IME would have a didactic 

functionality to develop conceptual understanding (Drijvers, 2015); however, the 

results show that this was not achieved in this teaching experiment. The shift from 

paper-and-pencil activities to 3D dynamic geometry technology is not a direct 

translation; activities have to be redesigned and institutional conditions have to be 
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taken into account to allow both for the possibility to use the technology as 

transformation and for promoting students’ reflection.  
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This paper reports from a study that investigates the quality of advanced 
mathematics lectures, in particular regarding the presentation of definitions. We 
compare the presentation of definitions given in two real analysis courses by two 
different lecturers using a structured observation protocol. The results show, that 
both lecturers present formal concept definitions with great importance, but they 
perform differently regarding the motivation of concepts, giving of mental or visual 
forms of representation as well as giving of examples and counterexamples. 
Therefore, students might have developed different concept images. Furthermore, 
one of the lecturers might put different value on the presentation of different kinds of 
definitions.  
Keywords: advanced mathematics lectures, mathematics lecture quality, 
mathematics definitions, structured observation protocol. 
INTRODUCTION 
Advanced mathematics lectures are challenging for many students. Because of this, 
many students drop out from their mathematics study or change to another subject 
during their first year at the university (Geisler, 2020). Many researchers have 
questioned lectures as teaching format at universities (e.g., Fritze & Nordkvelle, 
2003). Nevertheless, Fritze and Nordkvelle (2003, p. 328) say: “[T]he lecture 
survives, probably because it serves many functions not so well observed in the 
present research”. However, according to Viirman (2014, p. 512), “programs and 
resources designed to help university mathematics teachers develop and improve 
their teaching are not informed by data on the teaching practices actually used in 
tertiary mathematics teaching”.  Indeed, we have found only a few studies concerning 
characteristics and the quality of mathematics lectures (e.g., Viirman, 2014; 2021; 
Rach et al., 2016). Since lectures remain a dominant teaching format in advanced 
mathematics, more research analysing the quality of mathematics lectures especially 
concerning lectures in the challenging study entry phase is necessary.  
In this paper, we present results of an observation study concerning the presentation 
of definitions in mathematics lectures supported by a structured observation protocol. 
In the following, we describe our conceptualization of quality and a theoretical 
framework for quality of mathematics teaching as well as previous research 
regarding the presentation of definitions in advanced mathematics lectures.  
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THEORETICAL PERSPECTIVE 
Quality criteria for mathematics lectures 
According to Kiendl-Wendner (2016), university quality can be characterized 
according to the following features: forms including macro level (whole university 
or faculty) and micro level (single courses), and dimensions including process quality 
(clearly defined processes with standardized roles and procedures), result quality 
(achievement of the goals set) and structural quality (adequacy of resource 
allocation).  
German and non-German undergraduate mathematics courses usually consist of 
lectures and tutorials (e.g., Pritchard, 2015). In our study we take a look at the micro-
level-quality of mathematics lectures and investigate their process quality (Kiendl-
Wendner, 2016). 
Viirman (2021, p. 467) describes lectures as “a teaching mode involving one teacher 
and a large group of students with communication mainly directed from the teacher 
to the students […]”. Additionally, Bergsten (2007, p. 48) completes lecture as a 
“time scheduled oral presentation on a pre-announced topic […]”. Because empirical 
research concerning the quality of mathematics lectures is scarce, we have found 
only two frameworks that describe process quality criteria of mathematics courses. 
The first framework is theory based and comes from Rach et al. (2016) and includes 
two main categories: formal mathematics criteria that describe the presentation of 
definitions and theorems in lectures as well as presentation of solutions in tutorials, 
and general criteria (adapted from secondary school research (e.g., Clausen et al., 
2003)) such as learner orientation, cognitive activation, instructional efficiency as 
well as clarity and structure. Presentation of solutions in tutorials has no relevance 
for us because we do not take a look on the quality of tutorials.  
The second framework is practice based and comes from Bergsten (2007). It includes 
three main categories: mathematical exposition, general criteria and teacher 
immediacy. By teacher immediacy Bergsten summarizes personality and non-verbal 
behaviour of the lecturer such as facial expressions or gestures. These criteria have 
to be fulfilled for a high-quality mathematics lecture (Bergsten, 2007). Both 
frameworks include categories regarding formal mathematics and general criteria. 
The main difference is the category regarding teacher immediacy in lectures in the 
framework from Bergsten. Moreover, Bergsten names the main categories of a 
quality lecture but he does not describe them in detail. We have built a synthesis 
based on both frameworks to describe the quality of mathematics lectures. Our 
framework regarding quality of mathematics lectures consists of three main 
categories: mathematical exposition, general criteria and teacher immediacy. The 
first main category contains actions that are specific and particular relevant in 
mathematics lectures like presentation of definitions or presentation of theorems and 
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proofs. The second main category summarizes general criteria that can also be used 
in non-mathematical lectures such as learner orientation, cognitive activation, 
instructional efficiency as well as clarity and structure. The third and last main 
category calls teacher immediacy and it contains lecturer´s personality and his or her 
non-verbal behaviour. 
Presentation of definitions in mathematics lectures 
Definitions take an important place in mathematics lectures (e.g., Halverscheid & 
Pustelnik, 2013) and are therefore also of major relevance for the quality of a 
mathematics lecture. In this paper we are going to present our findings concerning 
the presentation of definitions in mathematics lectures. Therefore, we use a theory of 
concept formation based on Tall and Vinner (1981). They define two important 
terms: concept definition and concept image. Concept definition describes “a form 
of words used to specify that concept” (Tall & Vinner, 1981, p. 152). Concept image 
describes “the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes” (ibid, p. 
152). According to Tall and Vinner (1981), students´ concept image can be in 
conflict with the concept definition. A major challenge for lecturers is to help 
students building correct concept images to get a full understanding of a concept 
definition. Moreover, Capaldi (2020) distinguishes between formal/rigorous 
definitions that correspond to concept definition and informal/non-rigorous 
definitions that support students in building a concept image. Therefore, colloquial 
interpretations and visual characterizations (Capaldi, 2020) have to be used in 
mathematics lectures to illustrate concepts. Fukawa-Connelly and Newton (2014) 
emphasize the importance of examples in mathematics lectures for development of 
a correct concept image and use the term from Mason and Watson (2008) called 
example space. Nevertheless, the example space is just one of the puzzle pieces – 
such as formal statement of definition, used language and motivation – to build a 
correct concept image (Fukawa-Connelly & Newton, 2014). Capaldi assumes that 
lecturers´ activities concerning presentation of definitions in mathematics lectures 
influence the development of students´ concept images: students could develop 
different concept images in courses given by different lecturers (Capaldi, 2020).  
Despite these arguments for the relevance of motivation for concepts, the use of 
examples and (visual) representations when presenting definitions, many scholars 
have stated that actually in many mathematics lectures only formal concept 
definitions are presented (e.g., Davis & Hersh, 1981). However, these perspectives 
were only rarely informed by empirical data. Empirical studies that rely on actual 
lecture observations draw a less clear picture: Fukawa-Connelly et al. (2017, p. 577) 
observed 11 advanced mathematics lecture courses and concluded that “Instructors 
present informal content, including examples, informal representations, […] during 
their advanced mathematics lectures, at least some of the time.” Viirman´s (2014) 
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qualitative study concerning quality of mathematics lectures is based on observations 
of seven different mathematics lecture courses by different lecturers each. He found 
out that there are construction routines lecturers use in their mathematics lectures like 
definition construction, example or counter-example construction and topic-specific 
constructions (Viirman, 2014). Moreover, he identified five different types of 
definition construction: stipulation (definition based on a reminder), exemplar 
(definition given according to the example), contrasting (definition given according 
to examples that differed in an important aspect), saming (definition based on crucial 
property of examples) and naming (definition based on naming of already 
constructed mathematical objects) (ibid.). A quantitative study regarding the quality 
of mathematics lectures from Rach et al. (2016) is based on observations and 
structured coding of a real analysis lecture course by one lecturer. The evaluation of 
data shows that the lecturer of this mathematics lecture course put value on a correct 
definition of concepts but he almost does not take time to motivate them (Rach et al., 
2016). Moreover, his usage of examples and counterexamples as well as usage of 
mental or visual forms of representation is limited (ibid.). 
THE PRESENT STUDY 
Research question 
The empirical research regarding the characteristics of advanced mathematics 
lectures is rare, particularly there is not enough empirical research “based on 
observations of actual lecturing” (Viirman, 2021, p. 467). Previous studies have 
collected data about mathematics lecturing either through observation of only one 
lecture or several lectures covering different topics without using of a structured 
instrument. Our goal is to use a structured observation protocol to enable 
comparisons of mathematics lectures. In this study we investigate how lecturers 
present definitions in their courses. In particular we want to answer the following 
research question:  
In which way is it possible to identify differences in the presentation of definitions in 
advanced mathematics lectures given by two different lecturers and which 
differences can be found? 
Methodology 
First of all, we took a look at the study regulations in linear algebra and real analysis 
– as the courses students usually take during their first year – from several 
universities in Germany. It turned out that the themes in real analysis are quite similar 
across different universities. For this reason, we have decided to observe lectures in 
real analysis, in particular those sessions covering the topics sequences and series. 
Next, we decided to observe the lectures with a standardized observation protocol to 
make our investigation systematic and enable comparisons between different real 
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analysis courses. As afore mentioned, Rach et al. (2016) have already researched on 
the quality of mathematics lecturing at universities and developed a standardized 
observation protocol. This observation protocol is based on Tall and Vinner´s (1981) 
framework concerning definitions. We have merely adapted it slightly for our 
research.  
The standardized observation protocol uses four categories to describe the 
presentation of definitions: (1) Motivation of concept (introduction of a concept), (2) 
Description of definition (presenting of a formal definition), (3) Giving examples and 
counterexamples, and (4) Mental or visual forms of representation. Each category 
can be evaluated in four grades: presented well, presented, presented poorly, and not 
presented. We assigned the grades the numbers 1, 2, 3, and 4 accordingly. There is 
an example (see Figure 1) how the category (4) Mental or visual forms of 
representation must be coded. We have coded all four categories for presentation of 
definitions. 

Figure 1. Observation protocol for the category Mental or visual forms of 
representation (Rach et al., 2016) 
 
For this paper, we have observed two lecture courses in real analysis (we call them 
Lecture A and Lecture B) by two different lecturers from a large German public 
research university. These lecture courses are aimed at pure mathematics students 
and upper secondary pre-service teachers. We coded only lectures covering the topics 
sequences and series. Both lecture courses were previously video-recorded. For this 

 

The category is coded: 

• When the concept is visualized by a graphic representation. 
• When mental images are used. 
• When misconceptions are mentioned that can be found for this concept. 

Coding note: It is important to assess whether the representation is suitable for 
communicating the intended (desired) train of thought.  

• 1 – presented well Various visual representations or mental images are used. 
The connection to the formal definition of the concept must be drawn. 

• 2 – presented Visual and mental representations are used sensibly. The 
connection to the formal definition is not drawn. 

• 3 – presented poorly Visual representations are used, but they do not illustrate 
the concept to be explained or have mathematical weaknesses. Or mental 
representations are mentioned, but explained in a misleading manner or with 
mathematical weaknesses. 

• 4 – not presented No visual representations and no mental representations are 
addressed. 
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reason, we have had a good opportunity to stop or to repeat the recordings and to 
make some notes. Lecture B started often with the repetition of the last definition 
from the previous lecture. We did not code repeated definitions because these 
repetitions mainly served as memory aid and were presented less elaborated than in 
the first occurrence. Moreover, to be sure that our measuring instrument is reliable, 
we asked another German researcher to code one lecture by each lecturer. In order 
to check the interrater reliability we calculated the Spearman correlation coefficient 
between both codings. The corelation of ρ=0.53, indicates a medium but sufficient 
correlation between our coding of both lectures and the coding of the second coder. 
RESULTS 
After coding definitions, we analysed which definitions were presented in both 
lectures. We noticed that there are some similar definitions in the Lecture A and 
Lecture B and built two groups: primary definitions (are presented in both lectures), 
and secondary definitions (are presented in only one lecture).  
Lecturer A presented only primary definitions in his lecture course. Lecturer B 
presented primary definitions as well as secondary definitions. Table 1 shows 
arithmetic means (M) and standard derivations (SD) for above-named categories of 
definitions. The values in columns Lecture A and Lecture B primary include only 
primary definitions presented by Lecturer A and Lecturer B in their lecture courses, 
Lecture B secondary includes secondary definitions presented by Lecturer B in his 
lecture courses.  

 Lecture A Lecture B 
primary 

Lecture B 
secondary 

M SD M SD M SD 
(1) Motivation of concept 2.142 1.293 1.125 0.330 2.380 1.326 

(2) Description of definition 1 0 1 0 1 0 
(3) Giving examples and 
counterexamples 2.142 0.989 2.250 1.089 2.476 1.138 

(4) Mental or visual forms of 
representation 2.857 1.124 1.875 1.268 2.619 1.463 

Table 1. Comparison of the observed lectures (means and standard deviations of the 
coded categories) 

First, we compare the characteristics of definitions in Lecture A and Lecture B 
primary. Arithmetic means suggest that the quality of Motivation of concept and 
using of Mental or visual forms of representations by Lecturer B was better than by 
Lecturer A. Both lecturers presented well the Description of definitions. This means, 
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all formal definitions presented in lecture courses were presented mathematically 
correct. Giving examples and counterexamples was by both lecturers rather presented 
than poorly presented. Moreover, standard derivation shows that categories (1) and 
(4) are spread by Lecturer A on average between presented well and not presented, 
category (3) is spread between presented well and presented badly. It is different for 
Lecturer B: category (1) is spread between presented well and presented, categories 
(3) and (4) are spread on average between presented well and presented badly. We 
compared the results for presentation of primary definitions by Lecturer A and 
Lecturer B using the Wilcoxon test, revealing that the differences concerning 
Motivation of concept are only weakly significant (p<0.1) and those regarding 
Mental or visual forms of representation are significant (p<0.05); differences in the 
other categories are not significant. Below we present an example of encoding a 
primary definition of absolute convergence given by both lecturers in order to 
illustrate the aforementioned differences concerning the presentation of definitions 
between both lectures. 
Before giving a formal definition of absolute convergence, Lecturer A tried to 
motivate it. He emphasized the importance of a new tool to decide whether a series 
is converging and he gave a review of previous definitions concerning convergence 
of sequences. However, Lecturer A did not mention what the criterion of absolute 
convergence of series is useful for and how it can be used in the future. Moreover, 
he did not show the connection between convergent sequences and convergent series. 
According to our observation protocol, we evaluated Motivation of concept as 2 – 
presented. The given formal definition of absolute convergence was mathematically 
correct and we evaluated Description of definition as 1 – presented well. Only one 
example (exponential series) was given, so Giving examples and counterexamples 
was evaluated as 3 – presented poorly. Lecturer A did not use any forms of informal 
representation so Mental or visual forms of representation was evaluated as 4 – not 
presented.  
Lecturer B used another way to present a definition of absolute convergence than 
Lecturer A. First of all, he presented with regard to the alternating harmonic series a 
theorem concerning limit depending on the arrangement of the elements of a series. 
Furthermore, he explained how the alternating harmonic series can get different 
limits when rearranging the elements using a sketch. He mentioned, that these series 
could not fulfil many properties of finite sums such as associative property. Thereby, 
he motivated the importance of absolute convergent series. Next, Lecturer B gave 
the mathematically correct formal definition of absolute convergence as well as an 
example (geometric series) and a counterexample (alternating harmonic series). 
Moreover, he described the connection between convergence and absolute 
convergence: every absolute convergent series is also convergent, but not every 
convergent series is also absolute convergent. Therefore, we evaluated Motivation of 
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concept, Description of definition, Giving examples and counterexamples and 
Mental or visual forms of representation as 1 – presented well.  
Second, we take a look at secondary definitions presented by Lecturer B. Arithmetic 
means for categories (1), (3) and (4) in Lecturer B secondary are between presented 
and presented badly and point to the mediocre quality of presenting definitions in 
this lecture. Compared to Lecture B primary we can see that the quality of secondary 
definitions based on categories (1) and (4) is lower. Standard derivation of these 
categories shows that they are spread on average between presented well and not 
presented. Category (2) is always presented well. We compared the results for 
presentation of primary definitions and secondary definitions by Lecturer B using 
the Mann-Whitney-U-Test. According to the results, only the difference regarding 
Motivation of concept is weakly significant (p<0.1) while the differences in other 
categories are not significant. 
Comparing the results from Lecture B primary and Lecture B secondary, we can see 
that Lecturer B pays more attention to the categories Motivation of concept and 
Mental or visual forms of representation and Giving examples and counterexamples 
concerning primary definitions than secondary definitions. The arithmetic means for 
the category Description of definition in both cases is the same. Therefore, secondary 
definitions were correctly presented as well as primary definitions.  
CONCLUSION AND DISCUSSION 
Lecturer A and Lecturer B attach great importance to Description of definitions but 
they deal with Motivation of concept and Mental or visual forms of representation 
differently. Considering primary definitions, Lecturer B achieves better arithmetic 
means in these categories than Lecturer B. The category Giving examples and 
counterexamples is by both lecturers midrange. Moreover, there are differences in 
the presentation of primary and secondary definitions by Lecturer B regarding 
Motivation of concept, Giving examples and counterexamples as well as Mental or 
visual forms of representation. These categories achieve worse arithmetic means 
concerning secondary definitions. It seems that Lecturer B puts more value on 
presentation of primary definitions then on presentation of secondary definitions. 
Students might have developed different concept images in the course of Lecturer B 
then the course of Lecturer A concerning primary definitions and maybe could 
visualize the concepts better. This assumption applies also to primary and secondary 
definitions presented by Lecturer B. Because of worser values for categories (1), (2) 
and (4), students might have developed different concept images concerning 
secondary definitions than primary definitions presented by Lecturer B. 
Summarizing, students taught by different lecturers probably develop different 
concept images even if they attend a lecture in the same university and have the same 
study regulations. A study that investigates the quality of presentation of definitions 

230



in lectures and the actual developed concept images by students could confirm these 
assumptions. 
There are some limitations in our study. The sample of our study consists of only 
two different lecture courses. To be able to see more effects concerning quality of 
mathematics lectures, a larger sample is necessary. In addition, the correlation 
between our coding and coding of the second coder is only medium. Because of this, 
we will revise the observation protocol prior to further investigations. This concerns 
first of all the category Giving of examples and counterexamples. According to the 
observation protocol, examples as well as counterexamples must be presented to each 
given definition in the lecture in order to be coded as presented well. But we have 
the opinion, that not every definition must be supported by counterexamples. We will 
adapt the observation protocol accordingly. Nevertheless, the use of a structured 
observation protocol enabled a structured observation of mathematics lectures and a 
first comparison of their quality regarding the presentation of definitions. We could 
identify differences in the presentation of primary definitions by both lecturers as 
well as presentation of primary and secondary definitions by Lecturer B. The next 
step of our study is to extend our observation protocol to general criteria and teacher 
immediacy. Future studies should help to generate a more holistic picture of quality 
of mathematics lectures at German universities. The results of future studies should 
help us identifying possible connections between the quality of mathematics lectures 
and performance of students in their mathematics programs. Moreover, it would be 
relevant to analyse whether the quality of mathematics lectures influences students´ 
decision to drop out from their mathematics programs.  
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RESEARCH PROBLEM AND THEORETICAL FOUNDATION 

The concept of derivative holds an important place in calculus courses in both high 

school and the beginning of the university. Much research has been conducted to 

investigating the cognitive process involved in the learning of derivative. The results 

highlighted students’ difficulties to deal with the relation between the rate of change, 

the slope of the tangent and the limit notion (for an overview see Bressoud et al., 

2016). In Tunisia, the concept of derivative is introduced for the first time as an 

instantaneous speed one year before the end of high school (about 17 years old). 

Bouguerra (2019) considered that this introduction does not help Tunisian students 

understand the derivative at a point, because they have not learned that instantaneous 

speed is an instantaneous rate of change. She stated that the slope of a tangent is the 

main image students have of derivative and that its link to the instantaneous rate of 

change is not clear. In the other side, Ghedamsi et al. (2021) have shown that school 

derivative tasks focus mainly on computational and graphical activities while 

university tasks require more proof skills. In this research, we intend to identify any 

persistent difficulties for university students and investigate potential changes in their 

images. Our aim is not only to study university students’ conceptions but also to 

examine how the concept itself is presented in university textbooks and curriculum 

and therefore try to find some connections between both. We deploy a networking 

(Bikner-Ahsbahs & Prediger, 2014) between the image frame (Tall &Vinner, 1981) 

and the praxeological model (Chevallard, 1999) to analyse institution choices and 

their link to students’ understanding of derivative concept.  

Chevallard (1992) stated that knowing an object means having a certain relation with 

it. So, praxeology model permits to describe what was taught and what could be 

learned and it may also provide general idea about students' mathematical activities 

and their relation to mathematical objects. However, the images frame highlights the 

existence of a dynamic cognitive entity, for a given mathematical concept, that differs 

from one student to another. In this sense, taught praxeologies could be considered as 

a potential element of students’ concept image. Applying images frame helps 

knowing how students conceptualize the derivative and allows giving information on 

how students’ images are constructed. A dialogue between praxeology model and 

image frame may provide tools to trace probable origins of students’ difficulties by 

focusing on the way the concept is presented in textbooks and curriculum (figure). 

We argue that the two frames address complementary views on the teaching and 
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learning processes. Accordingly, our 

research question is: To what extent the 

way of presenting derivative in university 

textbooks and curriculum impact 

students’ previous images of derivative?  

Figure: Networking between the image frame and the tools of the ATD 

METHODOLOGY  

In the first step, we studied the first-year university official textbooks and curriculum 

of preparatory institutes for engineering and we identified the most important 

praxeologies related to the derivative. At a later stage, we conducted a questionnaire 

and an interview with 87 first-year university students from the same institutes. 

FINAL REMARKS 

Networking allows more explanation about students’ understanding of derivative 

notion and its origin. Students’difficulties in using the rate of change to interpret 

definition of derivative at a point are the cornerstone issue. The results show that 

students’ use of rate of change is limited to direct applications. Students’ difficulties 

arise when moving from repetitive calculations to functional thinking, and they 

cannot get rid of the abstract aspect in which the formal definition is formulated. 

Eventually, in our case, the curriculum continuity enhances students’ difficulties at 

the entrance to the university as well. Networking allows studying the research 

question and to conjecture that in Tunisia, students’ difficulties about derivative are 

of several origins and that the way of presenting this notion in textbooks and 

curriculum is the most important one. 
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Participation in the university mathematics community usually starts with the students 
attending mathematical lectures. One of the lecturers’ main goal in teaching is to 
facilitate students’ participation in this community (Sfard, 2008). The actions of the 
lecturer in the teaching that may assist students’ participation are still underexplored in 
the university mathematics literature (Melhuish et al., 2022). Thus, in this study, we 
propose the commognitive framework to investigate the discursive actions that may 
assist students’ participation in the university mathematical discourse as it gives a fine-
grained analysis for a micro-level investigation. 
For the investigation of the discursive actions, awareness of the metarules in the 
teaching is necessary. A mathematical discourse has its own sets of metarules, which 
are narratives that define patterns in the activity of the participants. These metarules 
result in routines, which are patterns of discursive actions. Consequently, our research 
question is “which are the discursive actions and the underlying metarules of the 
lecturer for supporting students’ participation from the lecturer’s perspective?”. 
METHODOLOGY 
For this study, we investigated the teaching in online lectures of an introductory real 
analysis course. The lecturer in this case study is a mathematician with six years of 
teaching experience in this course. For the analysis, we coded the seven lectures using 
inductive and deductive thematic analysis with theoretical codes from Karavi et al. 
(2022). Through constant comparisons of the quotes under the same code, preliminary 
themes of discursive actions emerged. Then, while further investigating the discursive 
actions in relation to their appearance while proving, we identified implicit metarules. 
Operationalisation of the discursive actions and metarules occurred through constant 
comparisons. 
RESULTS 
We present briefly the results using excerpts from the episode of teaching of the 
characterization of compact sets: 𝐾𝐾 ⊆ ℝ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⇔ 𝐾𝐾 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐𝑏𝑏𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐. In our 
interpretation, the lecturer supported students’ participation in the proving processes 
through the performance of the following discursive actions: making decisions on how 
to start the proving process (e.g., “Let's assume that 𝐾𝐾 is a compact set and then show 
the 𝐾𝐾 is both closed and bounded. Well, let's do a proof by contradiction. Let's assume 
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that a set 𝐾𝐾 is not bounded”), sharing the key idea of the proof responding to the 
question “And now what?” that came after the statement of the theorem (e.g., “So, if 
you look very carefully what I'm doing in this proof, I'm almost using the same sort of 
proof that I use to show that the set of real numbers is not compact. Yeah, I am almost 
using the same trick here”), and bringing the means for the emergence of the proof 
(e.g., “Okay, so now my assumption is 𝐾𝐾 is closed and bounded. And I'm going to 
reason from right to left. So, how do I show that 𝐾𝐾 is compact? Well, the only thing I 
can do is to verify the definition”). These discursive actions are governed by the 
implicit metarule while proving, an idea of how to start is needed. The metarule is 
related to students’ de-ritualization and an independent, product-oriented engagement 
with proving processes. The lecturer’s discursive actions shifted the attention to the 
product and gave an idea to the students why specific actions took place. 
DISCUSSION 
Identifying the discursive actions and the metarules could give in future studies 
valuable insights into the ways of possible facilitation of the newcomers’ participation 
in the mathematical community. Commognition can support micro-level investigation 
in the observational data from the lectures, aiming to explore lecturers’ practices 
towards students’ learning. As Pinto (2019) highlighted the differences among the 
examined lecturers were on a meta-level and related to their different views and 
experiences with teaching. Following Pinto (2019), the metarule affected the discursive 
actions that appeared in the lectures, shaping the lectures. In our case, the identification 
of the metarule facilitated the observation of de-ritualization instances behind the 
proving processes that may assist students’ explorative participation. Awareness about 
the metarules and lecturers’ views on them could provide understanding into the 
university mathematics lecturing than considering it as a monologue. 
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INTRODUCTION
In this group, there were 10 oral communications and 4 posters that were organised in
two thematics: linear and abstract algebra, presented in the first parallel session;
logic, reasoning, and proof presented in the second parallel session. The list of papers
and posters is in an annexe of the document. The group comprised 19 participants
from various countries. Each paper was allocated a 15-minute presentation, followed
by 5-minute discussion with the audience. During the two first discussion sessions, a
slot was devoted to the presentation of posters linked to the theme of the
corresponding parallel session. For the discussion following each of both sessions, we
split into three non-thematic subgroups around two papers or a paper and one or two
posters. Previously to the conference, for each paper, two registered participants were
invited to prepare a few slides to act as critical friends during the conference. These
slides have been used during the discussion sessions in small groups. This was
followed by a collective discussion.

During the third discussion session, we decided to split into two thematic subgroups:
Linear and abstract algebra; Logic, reasoning, and proof, to discuss the papers and
posters linked to the thematic and let emerge first ideas. Seven attended the subgroup
on linear and abstract algebra, and 12 attended the subgroup on logic, reasoning, and
proof. During the fourth session, we go on working in thematic subgroups to reflect
collaboratively on the new ideas that have emerged during the conference. Each
subgroup has prepared a report on its theme that has been presented in the closing
session.

TRENDS AND PERSPECTIVES IN LINEAR AND ABSTRACT ALGEBRA
In this section, we provide a summary of presentations and discussions regarding
linear and abstract algebra concluding with a brief synthesis of emerging topics/issues
and questions, and further research directions.
The main topics in the papers and posters presented
There were four main topics in the papers and posters; Eigentheory (Piori and
Lyse-Olsen & Fleischmann, Wawro & Thompson), vector spaces (Can, Aguilar &
Trigueros), Gauss algorithm (My Hahn) and computational thinking (Turgut).
Regarding eigentheory, we underline the following three main themes:
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● Semiotic analysis of signs (including gestures) produced by students during a
collective activity aimed at making sense of eigenvectors and eigenvalues.

● Students’ conceptions of eigenvectors and eigenvalues
○ Representations and formal elements used in students’ descriptions

○ Focus on task design for individual learning activities

● Student reasoning about eigenequations (or not) in quantum mechanics
Piroi explores eigentheory teaching and learning processes in her continuing PhD
research and provided the preliminary findings. The focus of the presented paper was
an investigation of students’ collective meaning-making processes within the lens of
the theory of objectification, as a sociocultural theory. The paper described an activity
that was created especially to support these processes of objectification. University
engineering freshmen worked collaboratively to rethink eigentheory principles and
rules while working in small groups. The usage of various semiotic resources by
students, as well as how they relate to one another and how they have evolved, are
then discussed. Under the same topic, Lyse-Olsen & Fleischmann examine students’
understanding of eigenvectors at an early stage of their linear algebra instruction.
Students’ various explanations of eigenvectors are examined in relation to the
mathematical objects they choose to depict (algebraic, geometric, or abstract
representations), as well as the formalism they employed. Students nevertheless
demonstrated their ability to switch between many representations and descriptions
and produce unique concept images, even when the modes of description that were
presented to them appeared to impact their own choice of description.
Wawro & Thompson’s poster focused on student reasoning in quantum mechanics
regarding matrix equations as eigenequations. Wawro & Thompson particularly
explored how students would be able to distinguish between eigenequations and
(quantum mechanics) matrix equations, and how this connects to their justifications
for eigentheory in both mathematical and quantum contexts.
Regarding the Gauss algorithm, My Hahn presented research about constructing
online cloze style (fill-in-the-blank with drop-down menu) questions to help students
improve their understanding of and ability to use mathematical language. Examples
given from discussing solution processes for systems of linear equations were
provided. The paper discussed the preliminary findings of the analysis as well as
Steinbring’s epistemological triangle as a potential analytical tool for
(aforementioned) comprehension processes.
Regarding vector spaces, Can, Aguilar & Trigueros focused on a teaching strategy for
the learning of the concept of vector space using non-standard binary operations with
a diversity of sets to promote student reflection on the vector space axioms more
generally. The design is based on the APOS theory using its ACE cycle as a didactic
approach, and a group of engineering students solved the provided task. Using sets

239



and binary operations that aren’t typically covered in a first course in linear algebra
encouraged students to think critically about the axioms that define vector spaces.
Regarding computational thinking (CT), Turgut presented an emerging framework for
integrating CT into teaching and learning linear algebra. The framework refers to
three teaching principles of linear algebra, theory of instrumental genesis and CT. The
paper presents a vignette in terms of GeoGebra’s specific tools, functions and
commands to teach the system of linear equations within the lens of CT.
Discussions, emerging topics and questions
The variety of theoretical and analytical frameworks available to support and guide
the various research goals and the flexible way of using these frameworks were one
of the main points that were discussed in the group. Presenters referred to different
theoretical/conceptual lenses, such as APOS theory, the three teaching principles of
linear algebra, theory of objectification, multimodal paradigm and semiotic bundle,
knowledge in pieces, symbolic forms, modes of representation/thinking and (levels
of) formalism. The broad spectrum of lenses not only raised discussion about the
theoretical/conceptual frameworks in themselves, but also brought us to elaborate on
how they should be used, the possibility of selecting the topic as a point of departure,
and the role of emerging frameworks about eigentheory in research.
The second point that the group discussed was the role of task design in our research.
For example, where to start and which has a priority; (i) designing to overcome
students’ epistemological issues, (ii) designing innovative teaching-learning
environments, or (iii) both in a synchronised way. The group discussed the function
of guiding/orienting frameworks in task design too, like the role of Realistic
Mathematics Education theory. The group also discussed the emerging role of CT
(Wing, 2006) as a (possible) mediator context to create mathematical meanings of
linear algebra topics (and also in other STEM fields), like exploring the system of
linear equations and Gram-Schmidt diagonalisation etc.
A third point was about aspects and nature of formalism and representations in linear
algebra. The role of representations, shifting between them (i.e. semiotic registers, in
the sense of Duval) and how this could inform researchers to design tasks were
discussed. The instructor's role was at the heart of discussion on some occasions, with
a particular role to make a shared discussion at the end of each teaching episode.
Future directions for next INDRUM conferences
The following points have emerged after our thematic group discussions regarding
linear and abstract algebra. The first point was about the role and purpose of
theoretical/conceptual frameworks in our work. The group underlined that some
frameworks provide orientation (for example in task design) and a better
understanding of the observed phenomenon, but such frameworks come with some
constraints. The second point was about the integration with computer science (e.g.,
CT, computer graphics etc.), and (possibility of) digital assessment of linear and
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abstract algebra in particular. The third point was the contribution of linear and
abstract algebra to the professional development pre-service and in-service
mathematics teachers.
TRENDS AND PERSPECTIVES IN LOGIC, REASONING AND PROOF
In this section, we first present the main issues that emerge from the papers
presentations; then we present the main elements that emerged from the discussion,
namely the new trends and the perspective.
The main issues in the papers and posters presented
The main issues in the papers presented in this thematic were: Multi proofs analysis
as a means to foster conceptualisation (Viviane Durand-Guerrier); Comparison of
various proof assistants at the interface between mathematics and computer sciences
(Evmorfia Iro Bartzia, Antoine Meyer & Julien Narboux); the support of CAS (Kinga
Szücs); the use of cloze test and multichoice questionnaire (My Hahn); students
reasoning on visual words problems (Francesco Beccuti); the generic power of proofs
in number theory (Véronique Battie); refutation beyond counter-examples (Alon
Pinto and Jason Cooper); linguistic issues (Dimitri Lipper, Thomas Karavi &
Angeliki Mali). During the discussion sessions, two main issues have emerged:
mathematical and epistemological needs and overview of analysis criteria.
Mathematical and epistemological needs
There is a necessity to go beyond the illusion of transparency of mathematical
knowledge (Artigue, 1991) for strengthening the a priori analysis in a didactic
perspective. The question is “how to do this?”. Relying on the research experience of
some of the participants, we list the following practices: write down our own proofs,
individually and then sharing with our research team and beyond, including
researchers and practitioners who specialise in the mathematical domain at stake;
making a review of existing proofs in the literature as well in mathematics education
as in domain-specific mathematics; analysing historical proofs; considering
philosophical perspective; analysing experts’ practises; considering implicit and
explicit norms among various communities. The discussion showed that the
introduction of proof assistants and computer scientist methods raised new
epistemological questions or calls for revisiting more classical ones. This appears as a
challenge for research on proof and proving in mathematics education (Hanna, De
Villiers & Reid, 2019).
Overview of proof analysis criteria
In the literature and in the participants' research experience and practice, there are
various types of analysis criteria that are used in research on proof and proving, both
for designing, and for a priori and a posteriori analysis, depending on the goal and the
research questions. Nevertheless, we have tried to provide a non-exhaustive list as the
first contribution to a collective state-of-the-art that the group considered worthwhile.
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When the criteria were explicitly discussed in a paper presented in the TWG, we
mention the name of the author(s) in brackets.
The first group of criteria refer to language, level of formalisation and semiotic
register. A second group concerns norms and expectations, depending on the
audience. A third group addresses the epistemological and pragmatic issue of the type
of proof expected or provided, formal proof, operational proof, experimental proof
(Dimitri Lipper, Thomas Karavi & Angeliki Mali) and Proof schemata: procedural
versus conceptual, meaning versus ritual etc.
The fourth group of criteria concerns the proof structure analysis: organising and
operative dimensions (Veronique Battie), data, hypothesis and introduction of objects
(Viviane Durand-Guerrier), direct or indirect proof (Alon Pinto & Jason Cooper,
visualisation (Francisco Beccuti). The fifth group of criteria refers to the precise
analysis of a particular proof: steps in the proving process, logical validity, modes of
inference, clarity, modularities, encapsulation, etc.
Perspectives for next INDRUM conferences
The first one is the relevance of revisiting epistemological questions in light of the
increasing use of proof assistants in both research in mathematics and in mathematics
education. The second one aims to deepen the logical dimension of analysis for the
teaching and learning of proof and proving, which have already been shown to be
relevant, but remain underrepresented in many research on proof and proving. The
third one concerns the necessity of going on designing and implementing activities
aiming at improving proof and proving skills at university, taking into consideration
the specificity of the condition and constraints in university mathematics education.
Another issue consists in exploring more systematically the possible contribution of
proof and proving to address university mathematics students’ difficulties, depending
on the mathematical domain.
Finally, we consider that introducing specific work on proof and proving in
University teacher training would be valuable, to initiate a change in the way proof is
taught in general at university: moving from proof made in front of students, to
students’ proof elaboration and analysis.
REFERENCES
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To design generic proving multiple proof tasks, we use an epistemological tool in 

which the idea of generic power plays a crucial role. Thanks to a number theory 

case, we show how it works and then we open the discussion in a didactical way 

focusing on the Secondary-Tertiary transition. 
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INTRODUCTION 

In our number theory didactical researches and University teaching practice, we 

develop activities we call generic proving multiple proof tasks (generic proving 

MPT) in reference both to (Leron & Zaslavsky, 2013) and (Dreyfus & al., 2012). We 

specifically work on tasks that contain an explicit requirement for proving a 

statement by using given proofs and where generic proofs play a crucial role. In this 

presentation, we study the design of such activities focusing on the main following 

research issue : how to compare several proofs of a mathematical result and how to 

choice some of them to design generic proving MPT ? 

In the next section, we present our epistemological theoretical framework including 

the idea of generic power. Then, thanks to a number theory case study, we illustrate 

how it is helpful to analyze proofs in a generic comparative perspective. Before 

concluding, we discuss in a didactical way focusing on generic proving MPT at the 

Secondary-Tertiary transition (Gueudet & Thomas, 2020). 

THEORETICAL FRAMEWORK  

After summarizing Steiner’s model of mathematical explanation, we present our 

epistemological tool to analyze number theory proofs and then introduce the idea of 

generic power by revisiting this model. 

Steiner’s account of explanation in mathematics 

Steiner (1978) has presented a model of mathematical explanation that draws upon 

the distinction between explanatory and non-explanatory proofs. As Molinini (2012) 

sumps up :  

Steiner offers two criteria for considering a proof being explanatory : 

• Dependence on a characterizing property of an entity mentioned in the theorem (dependence 

criterion) 
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• Possibility to deform the proof by “substituting the characterizing property of a related 

entity” and getting “a related theorem” (generalizability criterion) 

The characterizing property is defined by Steiner (1978) as it follows : 

My proposal is that an explanatory proof makes reference to a characterizing property of an 

entity or structure mentioned in the theorem, such that from the proof it is evident that the result 

depends on the property. 

The generalizable criterion is called generalizable proof by Steiner (1978). This 

criterion has been introduced in Didactics of mathematics by D.Tall (1979) under the 

name generic proof. 

Organising and operative dimensions and generic power  

In our researches in didactic of number theory, we distinguish in proving (process) 

and proof (product of proving process) two complementary, and closely intertwined 

epistemological dimensions (Battie, 2009). The organizing dimension concerns the 

type of proof that is the “structural backbone” levels involved in proving or in a 

proof. For example, besides usual figures of mathematical reasoning, especially 

reductio ad absurdum, we identify induction (and other forms of exploitation of the 

well-ordering ≤ of the natural numbers), reduction to the study of finite number of 

cases, and factorial ring’s method. The operative dimension relates to those 

treatments operated on objects and developed for the implementation of choices 

involved in the organizing dimension. For instance, we identify forms of 

representation chosen for the objects, the use of theorems, algebraic transformations 

and all treatments related to the articulation between divisibility order (the ring Z) 

and standard order ≤ (the well-ordered set N) [1].  

In a generic proving perspective, we make the hypothesis that closer we are in a proof 

to the characterizing property (Steiner, 1978), the more it will be no problematic to 

generalize from this proof. We propose to define the generic power of a proof in 

terms of accessibility (distance) to the characterizing property (Steiner, 1978). And 

an analyze in terms of organizing and operative dimensions permits to evaluate this 

accessibility. More precisely, by a process of proving admitted results embedded in 

operative dimension of the proof (process of “de-encapsulation” [2]) we are able to 

evaluate the complexity in terms of organizing and operative dimensions and to 

conclude: the less complex the resulting proof of this de-encapsulation is, the more 

we could have a high generic power in the initial proof.  

We highlight that the generic power is introduced in a didactic perspective focused 

on proving and proof, and not in a philosophical perspective focused on mathematical 

explanation as proposed in Steiner’s model. Moreover, as discussed briefly in the 

next section, it seems to us that there is not evident link between generic power and 

explanatory one. 
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A NUMBER THEORY CASE STUDY 

In this section, we propose five    irrationality proofs named proof 1 to proof 4 and 

proof 3bis and two others from Steiner (1978) respectively called by him 

Pythagorean proof and proof invoking the Fundamental Theorem of Arithmetic (FTA 

proof). In a generic proving perspective, our analysis in terms of organizing and 

operative dimensions and generic power focus on how each proof can be used to 

prove the irrationality of    and to go towards the general result “Let n be a natural 

number,    is rational if and only if n is a square”.  

All proofs presented have the same main organizing dimension, a reductio ad 

absurdum reasoning, and the same first operative treatment, squaring to access to 

specific tools of number theory. From this point, proofs differ in terms of organizing 

and operative dimensions.  

Proof 1. By reductio ad absurdum suppose that    is rational, there are non-zero natural 

numbers   and   that    
 

 
. Without loss of generality we may assume that   and   have no 

factor in common. Now        so    is an even number. By a contrapositive reasoning we 

prove that   is an even number too: if not, we can write        (for some integer  ) and 

then    is also even because             . So we have      (for some integer   )  

and then            becoming          . With the same reasoning,   is also an even 

number, contradicting our assumption. In conclusion    is not rational.  

Pythagorean proof (Steiner, 1978). Consider the Pythagorean proof that the square root of 2 is 

not rational: if       
, with 

 

 
 reduced to lowest terms, then    and thus a itself have to be 

even; thus   must be a multiple of 4, and   
 - and thus b - multiples of 2. Since therefore 

      
 implies that both a and b must be even, contradicting our (allowable) stipulation that 

 

 
 

be reduced to lowest terms, it can be true, q.e.d. The key point here is the proposition that if    is 

even so is a. This can be verified by squaring an arbitrary odd number      showing that the 

result must be odd. 

Proof 2. By reductio ad absurdum suppose that    is rational, there are non-zero natural 

numbers   and   that    
 

 
. Now        so    is an even number. By a contrapositive 

reasoning we prove that   is an even number too: if not, we can write        (for some 

integer  ) and then    is also even because             . So we have       (for some 

integer   )  and then            becoming          . With the same reasoning,   is also 

an even number and we can write       (for some integer   ). Therefore, from       we have 

        such as    
  

  ,      and     . Then we have an infinite strictly decreasing 

sequence of natural numbers, contradiction. In conclusion    is not rational. 

In operative dimension, these proofs have the same step proving that a and b are even 

numbers. The result “Let be   an integer, if    is divisible by 2 then   is also 

divisible by 2” takes place and a contrapositive reasoning appears; this organizing 

dimension complexification would disappear if we admit the result. The operative 
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dimension differs in how the object-fraction 
 

 
 is specified : a and b have no factor in 

common  (irreducible fraction) only in proof 1. This difference is connected to the 

main organizing dimension difference: in proof 2 the reductio ad absurdum is 

specified (Fermat’s descent), in proof 1 and Pythagorean proof it is not. In terms of 

organizing and operative dimensions, proof 1 and Pythagorean proof are equivalent 

(and we note {proof 1, Pythagorean proof} hereinafter). To prove the irrationality of 

  , we have to adapt the common operative step and the result becomes “Let be   an 

integer, if    is divisible by 3 then   is also divisible by 3”. The organizing 

dimension becomes more complex because a proof by separating cases appears in the 

contrapositive reasoning (we have two cases and not only one for the negation of “to 

be divisible by 3”). Finally, {proof 1, Pythagorean proof} and proof 2 are problematic 

to generalize as Steiner confirms: 

Consider the Pythagorean proof [proof 1] that the square root of 2 is not rational […] The key 

point here is the proposition that if a² is even so is a. […] Indeed for each prime p, one can 

separately verify that if p divides a² it must divide a also, though the proofs become more and 

more complex […].  

It should be noted that with the result “for all   prime, if   divides the product    of 

two integers then   divides   or  ” (particular case of Gauss’ theorem), the 

organizing dimension of these three proofs is not more complex (no contrapositive, 

no separating cases) and it is suitable to generalize. 

Proof 3. By reductio ad absurdum suppose that    is rational, there are non-zero natural 

numbers   and   that    
 

 
. Now       . Without loss of generality we may assume that 

  and   have no factor in common. Then    and   
 have no factor in common too (result 

admitted). And because   
  

   we have     so     . Contradiction because   is an 

integer. In conclusion    is not rational.  

The main organizing dimension of both {proof 1, Pythagorean proof} and proof 3 is a 

reductio ad absurdum by specifying the object-fraction (irreducible fraction). 

However, the nature of the contradiction is not the same in these proofs and this 

difference is essential: proof 3 helps to find the necessary and sufficient condition “be 

a square” involved in the general result. Moreover, contrary to {proof 1, Pythagorean 

proof} and proof 2, with proof 3 no adaptation is needed to prove the irrationality of 

   and we can easily write a proof of the general result. We highlight that this ease 

to adapt proof 3 depends on the specificity of the operative dimension of proof 3. 

First, a crucial result is explicitly admitted : we have an encapsulation” in the 

operative dimension. Moreover, the unicity of the irreducible fraction is implicitly 

involved to deduce      from   
  

  ; this unicity is equivalent from a logical 

point of view to Gauss’ theorem. 
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Proof 3bis. By reductio ad absurdum suppose that    is rational, there are non-zero natural 

numbers   and   that    
 

 
. Now       . Without loss of generality we may assume that 

  and   have no factor in common. Then    and  
 

 have no factor in common too (result 

admitted). And, from       , we deduce on the one hand    divides     so 2 thanks to 

Gauss’ theorem and finally     , and on the other hand     . So     . Contradiction 

because   is an integer. In conclusion    is not rational. 

In terms of organizing and operative dimensions, proof 3 and proof 3bis have 

essential similarities: the main organizing dimension is a reductio ad absurdum by 

specifying the object-fraction, both proofs help to find the necessary and sufficient 

condition “be a square” involved in the general result, no adaptation is needed to 

prove the irrationality of    and we can easily write a proof of the general result 

from both, this ease depends on the specificity of their operative dimension (the same 

crucial result is admitted). The specificity of the operative dimension of proof 3bis is 

the joint utilisation of the (explicit) use of Gauss’ theorem and the articulation 

between divisibility order and standard order ≤.  

Proof 4. By reductio ad absurdum suppose that    is rational, there are non-zero natural 

numbers   and   that    
 

 
. Now       . Let   be the exponent of 2 in the prime 

decomposition of   and respectively   for  . Then we have        . Contradiction (a non-

zero odd number cannot be at the same time an even number). In conclusion     is not rational. 

FTA proof (Steiner, 1978). By using the Fundamental Theorem of Arithmetic - that each 

number has a unique prime power expansion - we can argue for the irrationality of the square 

root of two swiftly and decisively. For in the prime power expansion of    the prime 2 will 

necessarily appear with an even exponent (double exponent it has in the expansion of a), while 

in     its exponent must needs be odd. So    never equals     q.e.d. 

In proof 4 and FTA proof, contrary to proof 2, the reductio ad absurdum is not 

specified. Indeed, contrary to proof 1, proofs 3 and 3bis, the object-fraction is not 

specified too. No result is admitted (except the FTA theorem) and at the same time 

there is no complexification of the organizing dimension. The crucial element of the 

operative dimension is the form of representation chosen for integers (prime 

decomposition). In terms of organizing and operative dimensions, proof 4 and FTA 

proof are equivalent (and we note {proof 4, FTA proof} hereinafter). As well as proof 

3 and proof 3bis, {proof 4, FTA proof} is suitable to prove the irrationality of    and 

to give an idea of the general result and how to prove it as Steiner confirms : 

But by using the Fundamental Theorem of Arithmetic [proof 4] […] we can argue for the 

irrationality of the square root of two swiftly and decisively. […] Generally, the same proof 

shows that a² can never equals nb², unless n is a perfect square (so that all exponents in its prime 

power expansion will be even).  

Nerveless, we remind that in both proofs 3 and 3bis, there is an encapsulation in the 

operative dimension (result admitted). 
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In echo to the previous section, the characterizing property involved in this case study 

is pointed out by Steiner (1978) when he refers to the crucial choice made in the 

operative dimension of {proof 4, FTA proof}: 

Our proof that       
, which uses the prime power expansions of a and b (and 2) [proof 4], 

conforms to our description, since the prime power expansion of a number is a characterizing 

property. It’s easy to see what happens, moreover, when 2 becomes 4 or any other square; the 

prime power expansion of 4, unlike that of 2, contains 2 raised to an even power, allowing 

      
. In the same way we get a general theorem: the square root of n is either an integer or 

irrational. 

The characterizing property is explicitly and directly used in the operative dimension 

of {proof 4, FTA proof} and identified in the form of representation chosen for 

integers ie the unique prime power expansion. That is why this proof is so suitable to 

prove both the irrationality of    and the general result. In proofs 3 and 3bis, we can 

identify this characterizing property (through the logical connection with Gauss’ 

theorem) but it is not explicit, especially in proof 3. With proof 1 and proof 2, we lose  

access with it and the potential to generalize is very low. It all depends on how the 

result “Let a be an integer, if    is divisible by 2 then a is also divisible by 2” is 

proven in the proof and it’s not “because of linguistic considerations” as D.Tall 

(1979) concludes.  

Finally, the analysis of this case study in terms of organizing and operative 

dimensions offers the result of the de-encapsulation process : following this 

increasingly order - {proof 1, Pythagorean proof} and proof 2 ex aequo, proof 3 and 

proof 3bis ex aequo, {proof 4, FTA proof} - we go through proofs with a growing 

generic power ; the less complex the resulting proof of this de-encapsulation process 

is, the more the generic power of the initial proof is high. 

To conclude this section, we note that in the study of number theory proofs of    

irrationality, especially about {proof 4, FTA proof} with the highest generic power, 

there is no explanatory power of the irrationality of   . And, according to us, the 

reason is clearly exposed by Hardy and Wright (1945): 

[…] many problems of irrationality which may be regarded as part of arithmetic. Theorems 

concerning rationals may be restated as theorems about integers; […] Thus ( ) ‘   is irrational’ 

means ( ) ‘      
 is insoluble in integers’, and then appears as a properly arithmetical 

theorem. We may ask ‘is    irrational?’ Without trespassing beyond the proper bounds of 

arithmetic, and need not ask ‘what is the meaning of   ?’ We do not require any interpretation 

of the isolated symbol   , since the meaning of ( ) is defined as a whole and as being the same 

as that of ( ). 

We suggest that the explanatory power (Steiner, 1978) of proofs invoking the 

fundamental theorem of Arithmetic is not related to the result ‘   is irrational’  but to 

‘      
 is insoluble in integers’ one. 
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DIDACTICAL DISCUSSION 

Proofs are normally presented in a step-by-step linear fashion, which is well suited 

for checking the proof’s validity but we think that is not as good for communicating 

its mains ideas. In this way, specifically for number theory, an analysis in terms of 

organizing and operative dimensions permits to identify skills of proofs, especially in 

terms of generic power when appropriate. This identification is a crucial step to think 

about generic proving MPT at the Secondary-Tertiary transition, more specifically to 

elaborate tasks trying to help pupils and students to get more control on the two 

dimensions and their interactions. 

Providing proofs in a generic proving MPT may help pupils/students to go on in their 

mathematical research and motivate an active reading of proofs. However, beyond 

the elaboration of MPTs, the role of the teacher is challenging because there is some 

risk that pupils/students produce correct proofs without any deep understanding, 

especially any awareness of the generic power involved. This citation of Rowland 

(2002) about his researches with undergraduates is particularly relevant: 

I believe that the accounts given here of my work with undergraduates offer grounds for 

considerable optimism regarding the possibility of students “seeing” the generality we intend 

them to see in arguments based on particular cases. At the same time, it warns us against naïve 

complacency: we cannot be sure what they will see, and they may see considerably less than we 

might hope. (Rowland, 2002) 

Back to the previous number theory case, we illustrate the risk mentioned above with 

a proof produced by a group of undergraduates ; this group has been asked to write 

down a    irrationality proof being inspired by proof 1, proof 2, proof 3bis and proof 

4 they have been given. This group decided to chose proof 3bis ; the French version 

of proof 3bis is given below: 

Proof 3bis (French version given to undergraduates groups). Supposons par l’absurde que 

   soit rationnel, il existe   et   entiers naturels non nuls tels que    
 

 
 ; on suppose que   et 

  sont premiers entre eux.  

Avec l’égalité précédente on a        et ainsi : 

- D’une part on a en particulier    divise    , et d’après le théorème de Gauss,    et  
 
 étant 

premiers entre eux (car   et   le sont) on a    divise 2. Ainsi     .  

- D’autre part on a     .  

Ainsi     .  

On obtient une contradiction car 2 n’est pas un carré dans  . En conclusion,    est irrationnel. 

And the proof produced by the undergraduates group is the following : 

 

 

249



 

 

 

 

 

 

   irrationality proof of undergraduates group. 

It is a success. But it could be an illusion as mentioned previously in terms of an 

authentic understanding of proofs. Indeed, we can read that undergraduates proof is 

word for word the adapted proof 3bis. It is well-adapted by students for the    case 

study but, as detailed in the previous section, proof 3bis has a high generic power and 

adaptations to do are minor. The same phenomena has been observed with Grade 12 

pupils (Battie, 2015).  

Finally, to fully develop the didactic potential of generic proving MPT, the teacher 

may develop pedagogical and didactical methods to evaluate the authenticity of 

students understanding. For sure, written productions are insufficient and to stimulate 

discussions, maybe debates, in classroom could be a relevant way to complete written 

tasks proposed to pupils/students. 

CONCLUSION  

To design a generic proving MPT, we need to know how to compare proofs and to 

select a set of proofs with an authentic diversity in terms of generic power. Our 

epistemological tool presented in this paper appears as a solution for the number 

theory domain. “Infrequently used” (Hanna & al., 2012), generic proofs should have 

high didactic potential and, according to Rowland (2002), this potential is “virtually 

unrecognized and unexploited in the teaching of number theory” as we observe in our 
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University. This is all the more regrettable since pupils (Battie, 2015) and students 

(e.g. (Tall & al., 2012) with confirmation from our University teaching practice) 

seem to spontaneously prefer generic proofs.  

NOTES 

1. Among the numerous didactic researches on proof and proving (Hanna, 2020), we can put into perspective our 

epistemological point of view with the “structuring mathematical proofs” of Leron (1983). As we showed (Battie, 

2007), an analogy is a priori possible but, as far as we know, Leron’s view does not permit access that gives our 

analysis in terms of organizing and operative dimensions, namely the different nature of mathematical work 

according to whether a dimension or another and, so essential, interactions taking place between these two 

dimensions especially in proving. The same concern seems to appear when Selden (2012) see their formal-rhetorical 

and problem-centred parts of proofs as somewhat like our organizing and operative dimensions.  

2. The term “encapsulation” is used due to the analogy with computer network: encapsulation is a method of designing 

modular communication protocols in which logically separate functions in the network are abstracted from their 

underlying structures by inclusion or information hiding within higher level objects. In the process of de-

encapsulation, proving admitted results embedded in the operative dimension of a proof is like opening « black 

boxes » of this proof. 
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This paper presents an a-priori analysis of the use of five different interactive proof  
assistants for education based on the resolution of a typical undergraduate exercise  
on abstract  functions.  It  proposes to analyse these tools according to three main  
categories of aspects:  (1)  language and interaction mode,  (2)  automation and user  
assistance,  (3)  proof structure and visualisation.  We argue that this analysis may  
help formulate and clarify further research questions on the possible impact of such  
tools on the development of reasoning and proving skills.
Keywords:  Teaching and learning of logic, reasoning and proof,  Digital and other  
resources  in  university  mathematics  education,  Transition  to,  across  and  from 
university mathematics,  Novel approaches to teaching, Computer assisted theorem  
proving.
INTRODUCTION
Investigating the use of technology for the teaching and learning of proof and proving 
is an active topic in both communities of education research and computer-assisted 
theorem proving. The topic of proof has been garnering interest in the mathematics 
education research community for years. The 19th ICMI Study focused on six major 
themes  relative  to  the  teaching  and  learning  of  proof  and  proving.  It  led  to  the 
publication of a study volume (Hanna & de Villiers, 2012) with contributions from 
specialists of the field providing insight on these themes.  The interactive theorem 
proving community has also shown interest in the use of proof assistants for teaching 
since at least 2007 and the workshop on Proof Assistants and Types in Education 
(Geuvers & Courtieu, 2007), followed since 2011 by the ThEDU workshop series.
Recently  Hanna and  de  Villiers,  together  with  Reid,  coordinated  another  volume 
specifically  focusing  on  the  use  of  software  tools  for  computer-assisted  proof  in 
education  (Hanna  et  al.,  2019),  featuring  contributions  from  researchers  in  both 
communities. In the introductory chapter they state that the book’s goal is “to begin a 
dialogue  between  mathematics  educators  and  researchers  actively  developing 
automatic  theorem  provers  and  related  tools”.  The  chapter  concludes  with  the 
statement that “we know almost nothing of [proof assistants’] potential contribution 
to  other  roles  of  proof,  such  as  explanation,  communication,  discovery,  and 
systematization,  or  how  they  now  may  become  more  relevant  as  pedagogical 
motivation for the learning of proof in the classroom”, implying that much research is 
still required in order to gain further insight on the convergence of both fields.
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Proof  assistants  (henceforth  PAs)  are  quite  broadly  used  to  teach logic,  proof  of 
computer programs and, increasingly, classical mathematical topics by teachers who 
are not researchers in the field of interactive theorem proving. In this paper we focus 
on  the  potential  use  of  these  tools  for  teaching  proof  and  proving  itself  at  the 
transition  between  high  school  and  university.  In  this  work  we  consider  proof 
assistants  as  possible  teaching  tools  and  not  as  professional  tools.  The  tool’s 
underlying proof theory and the structure and size of its mathematical libraries are 
therefore not directly relevant. We will instead focus on the way each tool enables the 
development of skills related to proof and proving.
The questions which motivate this work can be phrased as follows:

• What are the possible effects of using PAs on students’ learning of proof?

• What characteristics of PAs are likely to strengthen or hinder these effects?
In order to start addressing these questions we chose to analyse the resolution of a 
single typical exercise about functions using a selection of five different PAs (Coq, 
Isabelle, Edukera, dEAduction and Lurch, introduced briefly below). We solved this 
exercise using each PA in turn, with one experimenter building the proof interactively 
and two observers.  Based on initial  observations we designed an analysis  grid to 
capture some of the tools’ characteristics likely to have an impact on teaching and 
learning.  We then  revisited  each  resolution  of  the  exercise  and  analysed  it  with 
respect to this grid. Our aim is to help distinguish aspects of each PA which may 
facilitate  or  hinder  student’s  learning of  the  various  skills  involved in  proof  and 
proving (Selden, 2012) as a preliminary step to future research.
We first briefly introduce the concept of PA. We then present our case study before 
describing our analysis grid. We finish by raising additional questions regarding the 
possible impacts of each PA on the teaching and learning of proof and proving.
PROOF ASSISTANTS IN EDUCATION
The term  proof  assistant,  or  interactive theorem prover,  refers  to  a  software  tool 
allowing a user to interactively construct a formal mathematical proof. Some systems 
are designed to work in a specific domain such as geometry, logic or the analysis of 
computer programs, while others are general-purpose. Additionally, proof assistants 
used in the classroom can be sorted roughly in two categories: some are built by the 
community of educators and others are designed by specialists of interactive theorem 
proving for research or other professional purposes.
The input languages of PAs are usually classified into two categories: imperative and 
declarative languages.  In  an  imperative  language  the  user  orders  changes  to  be 
performed on the  proof  state (the current  set  of  declared variables and constants, 
assumed hypotheses, and goals) using a predefined set of orders (also called tactics). 
Each  tactic  consists  in  one  or  several  deduction  rules  to  be  applied,  or  other 
manipulations of the proof state. Most tactics do not contain explicit mathematical 
statements.  In  a  declarative  language  one  provides  assertions  along  with  their 
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justification,  in  a  way  similar  to  a  natural-language  proof.  The  statements  are 
therefore written explicitly, using a syntax resembling mathematical language.
In simple cases the validity of each proof step is ensured by matching some of the 
available statements with the premise of a given deduction rule, substituting variables 
accordingly in the rule’s conclusion, and verifying that each involved expression is 
well-typed.  This  may  be  complemented  with  other  automation  techniques,  for 
instance to help searching for applicable rules, to perform automatic computations in 
restricted domains (arithmetic, algebra…), to assist in syntactic manipulations, etc.
In  the  terminology  of  Duval  &  Egret  (1993),  most  PAs  clearly  distinguish  the 
theoretical status (hypothesis, axiom, definition, theorem, conjecture) and operational 
status (premise, conclusion, external rule, goal) of each statement. This is done using 
visual hints, the syntax of the PA’s language, or by separating statements between 
disjoint areas of the user interface. This may be an important feature in an educational 
context, since this distinction is known to be a source of difficulty for students.
We  will  revisit  these  characteristics  below,  when  we  detail  the  aspects  which 
constitute our analysis grid, and illustrate them on our selection of proof assistants.
CASE STUDY: ANALYSING AN EXERCISE IN FIVE PROOF ASSISTANTS
The exercise we chose for this work is a typical elementary proof about sets, relations 
and functions commonly found in introductory courses about reasoning and proof, in 
both Mathematics and Computer Science curricula, and available or formalisable in 
all studied PA. The exercise text reads as follows, with minor variants:

1 Given f : A → B and C⊆ A , show that C⊆ f − 1(f (C )).

2 Given f : A → B and C⊆ A , show that if f  is injective then f −1 (f (C ))⊆ C .

We  chose  this  exercise  because  it  involves  few  and  fundamental  mathematical 
concepts and little calculation. The required proofs are of a manageable size, yet not 
trivial for students. They involve the concepts of set, function, subset relation, direct 
and inverse image and injectivity. The definitions of these concepts require universal 
and  existential  quantifiers  and  implication,  which  students  tackling  the  proof  are 
required to be able to manipulate.
We now briefly describe the five PAs we chose to analyse in this work. Coq and 
Isabelle are professional systems which are also used for teaching. Lurch, Edukera 
and dEAduction were designed specifically for teaching.
Coq and  Isabelle are free and open-source proof assistants. Coq was created in the 
1980s in French academia (Coq Team, 2022). Isabelle was developed at University of 
Cambridge and Technische Universität München (Nipkow et al., 2002). Both have 
been used successfully to prove mathematical theorems such as the Feith-Thompson 
theorem,  the  four-colour  theorem  or  the  Kepler  conjecture,  and  to  prove  the 
correctness of large-scale computer programs. They have also been experimented for 
several  years  as  teaching tools  in  graduate  or  undergraduate  curricula  on  various 
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topics. A difference between the two lies in the kind of user interaction and language 
they  offer.  In  this  work,  we  only  use  Coq  in  imperative  mode,  and  Isabelle  in 
declarative mode using its Isar language. 
Lurch is a free and open-source word processor built on OpenMath, that can check 
the steps of a mathematical  proof (Carter & Monks, 2013). Lurch is designed for 
student use and was experimented for teaching in 2008 and 2013. To our knowledge, 
it is no longer maintained, but was kept under consideration due to its originality with 
respect to other PA. Its user interface is inspired by that of a word processor, proof 
checking being presented similarly to spell-checking: one can write text freely, then 
mark some mathematical expressions as meaningful and check their validity.
Edukera is a closed-source web-based graphical proof assistant loosely based on Coq 
(Rognier & Duhamel, 2016). It is no longer maintained but was kept in our study for 
the same reasons as Lurch. It was designed to help teach proof and proving as well as 
classical high school mathematics content including algebra and basic analysis. Its 
originality is to combine a point-and-click interface with a presentation of the whole 
proof mimicking human-written text.
DEAduction [2] is a recent free and open-source graphical interface to the LEAN 
proof assistant created by Frédéric Le Roux. It was specifically designed for teaching, 
and is under active development. It provides a purely point-and-click user interface.
By lack of space we cannot provide here a full account of the proofs of the exercise in 
each  PA,  but  we  will  give  additional  details  during  the  presentation.  Interested 
readers may download proof files for this exercise in each studied PA online [1].
ASPECTS OF PROOF AND PROVING IN PROOF ASSISTANTS
In this section we describe the three main categories of aspects of PA we retained in 
our analysis, each including several criteria which are summarised in Table 1. Other 
factors  of practical  importance are  left  out  of this  study,  such as type of  license, 
availability, ease of installation, integration with learning management systems, etc.

Language and interaction 
mode

type of user input, imperative or declarative style, object 
naming, possibility of writing ill-formed statements

Automation and user 
assistance

mathematical libraries, rule selection and application, 
scope management, rule chaining and automated 
computation, type of feedback

Proof structure and proof 
state visualisation

global or local viewpoint on proof, status of statements, 
possibility to create new definitions and lemmas

Table 1: Categories of aspects of proof assistants and related analysis criteria
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Language and interaction mode
The first category we consider relates to the nature of interactions between user and 
proof assistant.  We focus in particular on the tools’ linguistic, semiotic and visual 
characteristics. This includes the syntax and semantics of the input language, if any, 
the  textual,  graphical  or  mixed  output  language  displayed  by  the  PA,  and  more 
generally any kind of visual hints which carry proof-related meaning.
Type of user input. Interactions between the user and a PA generally include both 
mouse-based  and  text-based  modalities,  to  varying  degrees.  In  dEAduction  and 
Edukera most interaction is mouse-based (through menus, buttons, drag-and-drop), 
textual input being only rarely required (for instance when introducing an existential 
witness). In Coq and Isabelle the user respectively types in tactics or proof text, both 
obeying a strict syntax. In Lurch the user experience is similar to that of “literate 
programming”  where  code  is  mixed  with  explanatory  text.  By  default  natural-
language text is ignored and carries no semantics. “Meaningful expressions”, whose 
syntax resembles that of standard mathematics, are then combined with one another 
to form deduction steps, which are then formally checked by the software.
Imperative or declarative style. Coq is an example of an imperative language. The 
user  types in  tactics which perform transformations  of  the current  proof state.  In 
Question  1  of  the  analysed  exercise,  to  prove  that  f (x )∈ f (C ) the  user  runs  the 
command  unfold im,  which instructs the prover to unfold the definition of an 
element being in  f (C ),  yielding as new goal  ∃x0 (x0∈ C∧ f (x )=f (x0)). In Isabelle the 
language is declarative: at every step the user has to declare what will be proved, i.e. 
she has to state how the goal will be transformed after she applies the next proof step. 
Assuming the hypothesis  x∈ C, referred to by label  Hx, is available in the current 
scope,  the  user  may  type:  have "f x f ` C" using Hx by (rule 
imageI). This line attempts to prove f (x )∈ f (C ) using the hypothesis x∈ C and the 
definition of the image of a set (imageI). Deduction steps in Lurch have a similar 
structure. In Edukera the user simply clicks the “def” button while the goal is selected 
and the definition of the image of a set is unfolded automatically. In dEAduction the 
user has to select the appropriate definition from a predefined list.
Object naming and referencing. In Coq and Isabelle the user can choose the names of 
hypotheses and objects when they are introduced. In Edukera, each line of the proof 
is automatically numbered, and is referenced whenever it is used as a premise in a 
deduction step. In dEAduction variables and hypotheses are automatically assigned 
fresh names (i.e. not bound in the current context). In Lurch one can choose custom 
labels for statements. Even though each tool offers different presentation choices and 
interaction  styles,  being  able  to  refer  to  objects  by  name  is  essential  to  the 
structuration of a proof.
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Automation and user assistance
Automation refers to all features facilitating the selection of a usable rule in a given 
context,  the  syntactic  manipulation  of  statements  (in  particular  regarding  type 
checking, substitution and pattern matching), the chained application of rules, etc. 
Other features include the organised presentation of available rules and theorems, 
automatic scope management, and contextual hints or feedback. According to some 
PA  designers’  and  teachers’  testimonies,  finding  a  good  balance  in  the  level  of 
automation  is  a  challenge,  especially  in  an  educational  context  where  efficiently 
completing a proof may not be the main goal.
Mathematical libraries. Contrary to traditional proofs, most PAs provide libraries of 
definitions and theorems, and make their formal definitions easy to access. PAs may 
also provide additional assistance such as contextual search, automatic completion, 
online help, etc. Professional PAs like Coq and Isabelle provide thousands of proven 
mathematical  facts.  Edukera  and  dEAduction  simply  list  predefined  lemmas  and 
definitions, sorted by topic, not all of which are available in every exercise.
Rule selection and application. One of the main actions when building a proof in a 
PA consists in performing a reasoning step by applying a theorem or a logical rule, or 
by substituting a  symbol  by its  definition.  Each PA provides  a  different  level  of 
assistance  and  automation  for  these  tasks,  mainly  regarding  the  way  a  rule  or 
statement is instantiated when it is used (i.e. its variables substituted by terms), or the 
way a given rule, theorem or definition is selected with respect to the current context. 
In  Isabelle  and Lurch,  the  user  writes  instantiated  mathematical  expressions,  and 
explicitly invokes a rule by its name. The tool then checks that this instantiation is 
correct, and if so applies the rule. In Lurch, multiple rules may share the same name, 
in  which  case  all  matching  rules  are  tried  in  order  until  one  succeeds.  In  Coq, 
dEAduction and Edukera, commands to unfold a definition or apply a theorem are 
provided, either by invoking them by name or by selecting them from a list. In all 
three systems,  pattern matching and substitution are performed automatically.  For 
logical deduction rules, a varying degree of automation is offered. In some of the 
tools (Coq and Edukera in maths mode), generic commands are available to eliminate 
or introduce logical connectors and quantifiers. Only when ambiguity occurs is the 
user required to add input. In other tools,  the user generally has to determine the 
outermost logical connective themself.
Scope management. According to teacher testimony and previous research on proof, 
keeping track of the scope of each variable or hypothesis is a source of difficulty for 
students, which sometimes leads to confusion between free and bound variables, or to 
circular arguments. In Coq and dEAduction, scope management is fully automatic 
and available variables and hypotheses are neatly gathered in corresponding areas of 
the interface. In Edukera, unproven statements are clearly distinguished from proved 
ones,  scopes  are  visually  materialised  and can be  selected  when introducing new 
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variables or hypotheses. Isabelle and Lurch also have syntactic or visual means to 
indicate scopes, but more work is left to the user to maintain them.
Rule chaining and automated computation. Some PAs offer possibilities for implicit 
or explicit “chaining” of rule applications. For instance, when applying a universally 
quantified  theorem,  Edukera  offers  to  perform  the  introduction  of  the  universal 
quantifier and introduction of implication in a single step. Coq also supports implicit 
chaining of rules: for example, a single invocation of the apply command to deduce 
x=x ’ from the hypothesis f (x )=f (x ' ) using the injectivity of f  successively unfolds the 
definition of injectivity, eliminates two universal quantifiers and one implication, and 
performs the associated pattern matching and substitution steps. Other tactics in Coq 
or  Isabelle  may  perform  further  automatic  transformations.  Finally,  in  specific 
mathematical areas such as basic arithmetic or linear algebra, PAs may give access to 
fully automatic solvers, for instance when checking simple equations.
Type of feedback. Feedback varies from basic to very rich. In Coq and Isabelle little 
feedback is given, apart from error messages when a rule does not apply or when an 
expression is not well-typed. On the contrary, feedback in Lurch is very rich: there is 
a colour code to indicate the status of each statement (undischarged hypothesis, valid 
or  invalid  conclusion)  and  visual  hints  to  highlight  the  scopes  of  hypotheses. 
Moreover, very complete feedback on rule application is provided, including a list of 
selected premises and an explicit substitution of variables.
Proof structure and proof state visualisation
This final category concerns the aspects of a PA related to how proofs are perceived 
and manipulated. There are two main design choices: in some PA, the whole proof 
text is visible at once, and users complete it by inserting new assertions. Work may 
be done progressively on several parts of the proof. In others, only the current goal 
and the current proof state is prominently displayed. Other aspects related to proof 
structure concern the users’ possibility to decompose a long proof by writing down 
and separately proving intermediate definitions theorems which can then be reused.
Global vs local viewpoint on proof. In Coq or dEAduction, the user may visualise the 
sequence of invoked tactics and navigate through them to view the evolution of the 
proof state at each point. The proof as a whole is left implicit, it is never displayed 
entirely [3]. Moreover, the origin of each statement in the context (hypothesis of the 
theorem to be proven, previously proved fact, hypothesis in a proof by cases or by 
contradiction) is not displayed. In both tools, it is also natural to treat the goals in the 
order in which they are generated by the system. One may say the viewpoint on proof 
is local, with much information hidden. On the contrary, in Edukera or Lurch (or in a 
pen-and-paper proof), the proof state is implicit: it is composed of the list of open 
statements combined with the list of hypotheses which are assumed to hold in the 
scope of each open statement. Due to their declarative style and since proof texts in 
these two PAs rather closely imitates usual mathematical language, they offer a more 
global viewpoint on proofs without resorting to back-and-forth navigation through 

259



proof  lines.  Isar  (Isabelle’s  language)  combines  both  aspects  by  allowing  both  a 
complete,  more  or  less  human-readable  proof  text,  and  the  ability  to  display  the 
current proof state at each line of the proof.
Possibility to create new definitions and lemmas. DEAduction and Edukera do not 
allow the user  to create  new definitions or  theorems,  the user  is  on a “deductive 
island” imposed by the system. In Edukera, teachers can compose their own exercise 
sheets but they cannot create new exercises. Developing new theories is not possible 
for end users. Using Coq, Isabelle, or Lurch, the user is free to restructure her proof 
by introducing new lemmas or concepts.
Status of statements. As already stated, one may distinguish the theoretical status of a 
statement  (axiom,  lemma,  hypothesis,  conjecture,  etc.)  and  its  operational  status 
(premise, conclusion, external statement) which may vary in the course of a proof: a 
statement may be the conclusion of a deduction step and the premise of another one. 
The status of statements is rather clear in all PAs (except Edukera where admitted 
lemmas/axioms,  and  proved  lemmas  are  not  distinguished).  In  DEAduction 
hypotheses  of  the  exercises  and  other  elements  of  the  context  are  displayed  in 
separate frames. Moreover, hypotheses used at least once as premises are greyed out. 
In Isabelle, local hypotheses introduced to prove universally quantified implications 
are syntactically distinguished. In Lurch, the validity of each step is displayed using a 
colour code. The operational status of statements is displayed using “bubbles”.
POSSIBLE IMPACTS ON THE TEACHING AND LEARNING OF PROOF
As their name suggests, proof assistants relieve the user of some of the tasks usually 
associated  with proving.  While  this  may  be desirable  in  a  professional  setting,  it 
might become a hindrance when the goal is precisely to let students practice some of 
these tasks. Based on our analysis, we formulate a few hypotheses on the possible 
effects of the use of PAs in teaching regarding various possible teaching goals.
Possible effects on memorisation and formulation. When asking students to solve an 
exercise  on functions,  a  possible  prerequisite  or  desired  learning outcome  is  that 
students  intuitively  understand  relevant  definitions  (in  our  case  those  of  set  and 
function, set inclusion, direct and inverse image, and the notion of injectivity) and be 
able to state (and use) their formal  definition. When using a PA where details of 
definitions and properties are always at hand, one may postulate that memorisation of 
formal statements is not required to “solve” the exercise. Rather, students may be 
required to read, understand and appropriately make use of them. However, it might 
be the case that being repeatedly presented with definitions and properties and putting 
them to use may actually help memorise them.
Possible  effects  on  manipulation  of  formal  statements. It  has  been remarked  that 
performing substitution is one of the many difficulties of the proving activity. As we 
observed, the five PAs we studied differ in the way they automate the manipulation 
of  formal  statements.  In  three  cases  (dEAduction,  Edukera  and  Coq),  it  may  be 
possible  to  achieve  a  complete  proof  without  actually  having  to  write  a  single 
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mathematical  statement.  Coq  and  Edukera  automatically  identify  the  outermost 
operator in a mathematical  term.  While this does not completely exempt the user 
from thinking about statements and anticipating which rules may be used next, it is 
not up to the user to actually figure out which substitution makes a statement match a 
given pattern, or how to apply it to another statement in order to use a rule. This is 
not  the  case  in  Isabelle  and  Lurch,  where  the  user  explicitly  writes  down 
mathematical terms, and the system simply checks if they are correct. In all cases 
however, a posteriori control and validation is possible, for example by replaying a 
step in imperative PAs. This may provide another way to practise skills related to 
formula  manipulation,  by  reading  and  control  rather  than  by  writing.  A  related 
possible  effect  is  that  PAs  may  forbid  certain  incorrect  manipulations,  produce 
correct but unexpected outcomes or provide additional feedback (Lurch in particular 
provides rich and explicit feedback on substitutions). These retroactions are of course 
unavailable in a pen-and-paper proof. 
Possible  effects  on the  perception  of  proof  structure. In  our  experience,  users  of 
imperative-style proof assistants such as dEAduction, Edukera and Coq may feel as 
though they are “pushing symbols around until it works”, possibly not understanding 
why the proof went through. This may be strengthened by the fact that these tools 
automatically  manage  scopes  and  contexts,  including  the  identification  of  each 
statement’s operational status. Even though replaying previous steps is possible, these 
tools may act as “blinders”, allowing one to entirely focus on the current proof state, 
possibly “forgetting” about other parts of the proof. This “tunnel” effect may even be 
strengthened by the fact that these tools automate several aspects of proving, which 
makes a trial-and-error exploration strategy more viable than in declarative-style PAs 
such as Lurch and Isabelle. Edukera stands out as a special case in that the whole text 
of the proof remains visible throughout, even though user input is mostly imperative 
and syntactic manipulations largely automated.
As we can see, different design choices in each PA entail different actions on the part 
of the user. Certain concepts (for instance that of substitution) intervene in all cases 
but quite differently, and may require different levels of proficiency from the user. 
One may argue that freeing students from certain tasks (writing syntactically correct 
statements, keeping track of variables and hypotheses’ status and scope, memorising 
definitions and theorems, recalling what remains to be proven) may enable them to 
concentrate  on  the  deeper  ideas  involved  in  a  proof,  and  may  contribute  in 
overcoming these difficulties outside of the PA by mere “habituation”. Conversely, 
one may object that acquiring these skills is indeed one of the intended goals of these 
activities, and that it is therefore essential to have students practise them and not rely 
on a tool’s facilities. For a discussion of the possible effects of using a PA on the 
acquisition of proving skills, see for example (Thoma & Iannone, 2021).
Figuring out the actual effect of each PA on learning would of course require further 
research. It would be interesting to try and analyse student’s proficiency with various 
proof-related competencies when using different types of PAs. Do PAs have an effect 
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on known syntactic and semantic difficulties that students typically encounter when 
working on proof?  Do they favour  the development  of  higher-level  competencies 
such as writing a full and correct proof on paper, or summarising the main arguments 
of a proof verbally? How much do these effects depend on students’ backgrounds?
NOTES
1. See https://github.com/jnarboux/PA_a_priori_analysis for screenshots and source files in all PAs.

2. Deaduction website, including source code: https://github.com/dEAduction/dEAduction

3. Readers unfamiliar with PAs may consult the following site for examples of proof scripts along 
with corresponding proof states: https://plv.csail.mit.edu/blog/alectryon.html#alectryon.
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A group of master’s students in mathematics was asked to reflect on a visual word 
problem. No one of the students identified the correct solution and defended instead an 
incorrect one. The results are explained by the difficulty of the problem itself (reflecting 
into the students’ overall difficulty in imagining its solution) as well as by the students’ 
tendency to overgeneralize. Interestingly, some of the students reach a contradictory 
statement (which they do not dismiss or acknowledge as such) as a consequence of the 
effort to accommodate their own mathematical reasoning with what they perceive to 
be a normative characterization of the problem coming from the lecturer. I conclude 
by discussing psycho-pedagogical considerations on imagination and intuition with 
related issues of university curriculum reform.  
Keywords: Teaching and learning of logic, reasoning and proof, Curricular and 
institutional issues concerning the teaching of mathematics at university level, 
Visualization, Imagination, Intuition. 
INTRODUCTION 
While in general research in tertiary education is extending beyond the level of 
undergraduate studies (Artigue, 2021, p. 14; cf. also Winsløw et al., 2018), there seems 
to be very little or no research at all on students of graduate programs or courses in 
pure and applied mathematics (Winsløw & Rasmussen, 2020, p. 883-884) and 
specifically on master’s students in mathematics. This is possibly a consequence of the 
two-years master’s programs in mathematics being a relatively new phenomenon in 
Europe. Thus, most research on postsecondary mathematics education appears to 
concentrate either on undergraduate programs/courses in mathematics and related 
disciplines or else on graduate programs specifically designed for teachers. The present 
study contributes to this under-researched field by investigating how master’s students 
in mathematics reflect on an unusual visual problem. 
THEORETICAL FRAMEWORK AND RESEARCH QUESTION 
Research in visualization within mathematics education originated in the work of Alan 
Bishop and was later carried out by various authors: see Presmeg (2020) for a 
compendium. In this paper, I will follow the mainstream lineage of research developed 
by Abraham Arcavi (2003) and Norma Presmeg (2006) albeit explicitly stressing on 
some hopefully clarifying preliminary definitions inspired from the work of 
psychologist Efraim Fischbein (1987) as well as from the writings of mathematicians 
such as Felix Klein, David Hilbert and Henry Poincaré. These definitions will 
constitute the framework for carrying out the analysis of the case-study presented 
below. This framework can be understood as a systematization of the traditional 
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understanding of cognitive steps happening during a working mathematician’s process 
of proving. 
Vision may be defined unambiguously as the faculty by which we directly see things 
which are there for us to see. On the other hand, imagination is the faculty by which 
we see what is not there to see (in mathematics this usually happens in connection with 
some properties one wants to prove or show). It may be divided into passive 
imagination (the act of representing to oneself something prompted to us from an 
outside source) and active imagination (the act of representing to oneself something 
not prompted from the outside). Furthermore, intuition is the faculty by which we 
generalize the properties that we see or imagine.[1] 
Notice that the definition of intuition given above (essentially derived from Fischbein, 
1987) is somewhat more specific than the usual meaning given to the term “intuition” 
(mostly found within philosophy of mathematics or mathematicians’ introspective 
accounts) which is generally an umbrella term used by authors to characterize any 
informal way of grasping mathematical truths outside of formal reasoning. Indeed, for 
the great majority of authors “intuitive reasoning” is nothing but a synonym of 
“informal reasoning”. Notice also that for simplicity and adherence to tradition, I take 
in this paper a clear a priori distinction between informal and formal reasoning, albeit 
agreeing with the philosophical stance taken by Giardino (2010) that the two forms of 
reasoning are really inextricably intertwined. Notice also that the literature has 
traditionally distinguished between internal and external acts of visualization. Presmeg 
(2006) assumes this distinction as unproblematic by adopting the Piagetian view that 
any act of external visualization depends on internal mental images. I do not want to 
delve into this issue here, but I would like to remark that the distinction must be made 
at the level of imagination, i.e., the distinction does not concern vision (always 
external) and intuition (always internal). 
To get a concrete grasp of these definitions and to simultaneously give an example of 
how these can be applied to analyze mathematical processes, let us look at the usual 
proof of the following proposition: the opposite sides of a parallelogram are congruent 
to each other. Provided that we indeed know what a parallelogram is, we can draw it 
(as an act of passive imagination) by tracing two pairs of parallel lines as in Figure 1.a. 
At this point we can see the parallelogram 𝐴𝐵𝐶𝐷 as a direct act of vision. Furthermore, 
in order to prove the proposition, we may (actively) imagine the segment 𝐴𝐶 (Figure 
1.b) and consider the angles that this new segment forms with the lines. We are then 
able to conclude that angles 𝐷𝐴𝐶 and 𝐴𝐶𝐵 are congruent to each other (Figure 1.c) as 
well as angles 𝐶𝐴𝐵 and 𝐴𝐶𝐷 (Figure 1.d). Thus, triangles 𝑫𝑨𝑪 and 𝑨𝑪𝑩 are congruent 
(by known properties of congruence). Therefore, the opposite sides of the initial 
parallelogram are congruent to each other. Finally, it is by intuition that we realize that 
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the property thus proved is not linked to the particular parallelogram considered, but 
holds in general for all parallelograms. 

      a)       b)    

      c)       d) 

Figure 1: visual steps involved in the proof of the proposition 

Now, in the passage above the crucial imaginative step (the proverbial “idea” one must 
have) is to consider the segment 𝐴𝐶 and reduce the proof of the proposition to the proof 
of the congruence of triangles 𝐷𝐴𝐶 and 𝐴𝐶𝐵. In this example the segment or shape 
that one needs to imagine in order to complete the proof is almost evident to the trained 
eyes of a mathematician. However, this may not be the case for inexperienced pupils 
and, similarly, even experienced mathematicians might have trouble when solving a 
problem involving a difficult imaginative step which is not cued by the figure or 
diagram naturally representing the problem. 
In this paper I will concentrate on a problem of this kind: the four cities problem, which 
I will describe below. My research question will thus be the following. 
How do master’s students in mathematics reason about the four cities problem? 
Other than complementing the literature on university mathematics education, 
answering to this question will also contribute in general to the literature on students 
engaged in problem solving, which seems to have concentrated primarily on students 
of compulsory schools (cf. Verschaffel et al., 2020) 
THE FOUR CITIES PROBLEM AND RESEARCH CONTEXT 
The problem below was given to 28 students enrolled in a master’s program in 
mathematics at the University of Turin, Italy. This is a competitive program focusing 
on pure and applied mathematics. The main requirement for entering the program is to 
have completed a three-year bachelor’s in mathematics with good marks. Such 
bachelors, in the Italian university system (which does not offer a major-minor 
arrangement of credits but focuses instead almost entirely on mathematics) usually 
revolve around learning mathematical content knowledge in the form of theorems and 
proofs which were customarily tested by means of problem sets usually revolving on 
the application of these. The problem was given as part of a voluntary assignment 
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within the students’ first course in mathematics education. This is an elective course 
that students usually take in the first year of the master’s program. During the course, 
other visual mathematical problems were presented, but this problem was the one 
which caused the most difficulties to the students.  
Problem: Four cities are placed at the four corners of a square and an engineer wants 
to design a road which connects them. What path she has to choose in order to use the 
least amount of materials?  
The problem is equivalent to the problem of finding the minimal path which connects 
the vertices of a square. The optimal solution to the problem is presented in red in 
Figure 2.d (modulo a 90-degree rotation), while Figure 2.a, 2.b and 2.c show paths 
which indeed connect the four cities but are not minimal.[2] 
The following hint was given by the lecturer right after the statement of the problem: 
“the solution is not the path consisting of the square itself” in order to help the students 
exclude right away the path presented in Figure 2.a. However, this hint may have 
instead prompted some confusion since a portion of the students interpreted it 
“normatively”, so to speak, as we will see below. After this, no other communication 
took place between the students and the lecturer. 

      a) 

 

      b) 

 

 

 

      c) 

 

 

      d) 

Figure 2: possible paths linking four vertices of a square 

The participants were asked to form groups of three or four. In each group one student 
(the observer) had to write a report observing and elaborating on the way she and her 
colleagues reasoned about the problem. In the spirit of Arzarello et al. (2002), the 
students were invited to visualize the problem by means of a dynamic-geometry 
software (Geogebra) and given about one hour to solve the problem collaboratively.  
METHOD 
The data for this study consist of the written reports and the Geogebra files produced 
by the groups. A preliminary categorization of the groups was performed in terms of 
the final answer they gave to the problem. 
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Then the data were analysed by means of the framework described above. As seen in 
the case of the parallelogram theorem, a procedure of proof relying on visual 
representation can be segmented into steps linked to the given definitions of vision 
imagination and intuition. In that case, the analysis referred to an unproblematic and 
correct proof. However, nothing really prevents to apply it to any other correct or 
incorrect mathematical proof or proof attempt. 
Thus, for each group of students, I analysed the respective texts in connection with the 
Geogebra files they produced in search for instances text and figures signalling acts of 
vision, imagination and intuition as connected to the logical structure of the 
argumentation they provided. In particular, the Geogebra files contained traces of both 
the students’ acts of passive imagination (e.g., draw the initial square) as well as to 
their attempts to concretize products of their active imagination. These in turn were 
signalled by corresponding textual expressions describing attempts to add to their 
drawing new lines or figures. Finally instances of acts of intuition were similarly 
mostly signalled by textual data describing attempts at deduction and generalization.  
In presenting the textual data, I translated the relevant passages from Italian as literally 
as possible. 
RESULTS 
Only one of the eight groups hinted at the correct solution. However, the students in 
this group admitted that one of them had already seen the problem before and hence 
they were excluded from the study. Among the remaining groups, four suggested that 
the solution was the one depicted in Figure 2.c: “the diagonals”, while three groups 
suggested that the solution of the problem was the one depicted in Figure 2.a, “the 
square”, and thus had to conceptually “accommodate” the aforementioned hint, as I 
will discuss below. 
Analysis of two reports concluding that the solution is “the diagonals”   
Let us now examine the reports of two representative groups (here called A and B) of 
the former portion of students. The remaining groups (C and D) had similar reports to 
Group B. Indeed, Group A drew a square together with its diagonals, and just wrote 
the following laconic sentence. 

The minimal path to unite the 4 cities is through the bisectors of the quadrilateral, given 
the fact that a straight segment is always the shortest way to unite 2 points.  

Here the students enact a false deduction, or an over-generalization as described in 
(Fischbein, 1987): since the shortest way to unite two points is a straight line, then the 
shortest way to unite four points is simply two straight lines. This report does not 
furnish us with any clue as to how they arrived to consider the path consisting of the 
diagonals, or “the bisectors”, as they say here.  
On the other hand, a quotation from Group B’s report may let us understand how these 
other students arrived at the same conclusion: the observer writes that his colleagues  
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[…] decided to represent the diagonals of the quadrilateral, since they thought that the best 
idea was that of starting from the properties offered by the quadrilateral […] they [then] 
asked themselves if there did not exist a path better than the one just deduced […] they 
then decided to construct a second quadrilateral and conjoin the vertices, not by the 
diagonals, but by segments located in a different way […] In conclusion both the girls 
agreed, in light of their reasoning and the tests performed, that the minimal path was the 
one represented by the diagonals of the quadrilateral.  

Thus, the students in Group B chose the diagonals because they were “offered by the 
quadrilateral” itself. In other words, the imaginative step connected with the decision 
to conjoin opposite points in the parallelogram example above was, as they seem to 
mean, suggested or cued by the figure itself.  
   a) 

 

    b) 

 

Figure 3: Geogebra protocols from Group B 

Notice that these students also in the end overgeneralized as they considered two 
different configurations (their own drawings in the software are displayed in Figure 3.a 
and 3.b) and noticed that the path consisting of the diagonals was shorter than those, 
and then concluded that the former is shorter than any possible path. Interestingly, 
notice how the path displayed in Figure 3.a is not too distant from a correct solution. 
Analysis of two reports concluding that the solution is (approximately) the square 
What about the remaining three groups? As said before, the students in these groups 
stated that the solution the problem was the square itself but were puzzled by the hint 
which straightforwardly told them that this was not the case. Of course, the hint was 
specifically given in order to prompt students to think about other non-obvious 
solutions and help them in identifying the correct one. However, some of the students 
instead gave an argument for affirming that the solution was the square itself and then, 
since this had been excluded by the lecturer, proceeded to propose an “approximate 
solution” to the problem. Let us see how by analysing the reports of two representative 
groups (here called E and F) of this latter portion of students. The remaining Group G 
had a similar report as to Group F. Indeed, the observer of Group E wrote that her 
colleagues considered the diagonals first but then  

After some reflection, they discussed on the fact that by considering the diagonals of the 
square, in order to visit all the cities, they necessarily needed to use one of the sides. Given 
the impossibility of doing this, they abandoned this idea.  
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This passage suggests that students in Group E were possibly also imposing to the 
problem the limitation that in order to visit all the cities a hypothetical traveller must 
not touch the same city two times (an interpretation which is at odds with the realistic 
setting within which the problem was presented). In any case, they were convinced that 
the solution to their interpretation of the problem had to be the square. Since this 
solution was ruled out by the hint, they then reasoned as follows.  

[…] they thought of creating polylines [delle spezzate], not necessarily coinciding with the 
diagonals, which best approximated the perimeter so that their point of intersection lied on 
the square’s axis. Initially they considered these just on two sides of the square while on 
the others they considered the diagonals. In order to understand if the minimal path was 
that formed by the polylines on two sides and the diagonals on the other two or rather was 
the path consisting of polylines on all four sides they decided […] to calculate which one 
was shorter […] Therefore […] their final conjecture was that of choosing, as minimal 
path, the one consisting of polylines which best approximate the square’s perimeter.  

What happened here? It appears that first the students did not imagine that other paths 
are possible, and as a consequence this led to a comparison whose result they thus 
generalized. Indeed, they constructed using Geogebra the two configurations displayed 
in Figure 4.a and 4.b below, then they calculated their respective perimeters (notice 
that for Figure 4.a this includes the dotted diagonals) and finally conjectured that the 
solution should be the latter.  

a)  

 

b)  

Figure 4: Geogebra protocols from Group E 

Furthermore, what is perhaps most striking here is the struggle the students experienced 
in formulating the consequences of their conjecture. Since the latter points to the fact 
that the solution should be the square itself, but since also the lecturer had ruled out 
this possibility, these students are then forced to conclude an impossibility: the minimal 
path is the one which best approximates the square itself, despite the fact that no such 
unique path exists!   
Similarly, Group F started by considering the diagonals of the square but then   

[…] came the idea of creating a square in the centre [of the original square] whose side can 
vary between 0 and l [the side of the square] linking any of its vertex to one and only one 
city […]  
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At this point, they used Geogebra to represent this situation (as displayed in Figure 5 
where point 𝑅 can vary over side 𝑄𝑁) and concluded that  

[…] point 𝑅 must be as close as possible to point 𝑁 for having the minimal path: this means 
that the two squares must have roughly the same side […] The minimal path is given by 
the approximation of the square having as vertices the four cities. 

Here again for these students “the” solution is “the minimal path” consisting of the best 
approximation to the square itself, despite this being a mathematical impossibility. 

 

Figure 5: Geogebra protocol from Group F 

CONCLUSION 

In conclusion, these data may be explained by the difficulty of the problem itself (which 
in turns reflect into the students’ difficulty to imagine the solution) as well as by the 
students’ tendency to overgeneralize connected to false deduction. Furthermore, many 
of the students’ imagination seems to have been crucially impeded by the fact that the 
square itself cued a false solution: in the words of (some of) the students, the square 
“offered” the diagonals as the solution for presumably all Groups A, B, C and D. A 
similar phenomenon is probably safe to assume having played a role also for Groups 
E, F and G in convincing them that the square itself (or its “approximation") was the 
solution. This fact is not surprising perhaps and possibly just tells us something about 
the difficulty of the problem chosen.  
On the other hand, the proneness of master’s students in mathematics to overgeneralize 
is more interesting given the fact that this phenomenon is present in a form or another 
in the reports of both the first and the second portions of students. This behaviour could 
be taken to be desirable and proper when conjecturing. However, the substantial 
easiness with which these students passed from the particular to the general could be 
regarded as problematic as pertaining to master’s students of mathematics (i.e., 
students who supposedly are at the pinnacle of mathematical instruction). As a 
linguistic observation, notice the awkward usage of the term “deduction” in the quoted 
passage of Group B, where “deduced” is used as a synonym of “conjectured” or simply 
“thought of”. 
Moreover, with respect to Groups E, F and G, we have seen how the students prefer to 
conclude an impossibility rather than dismissing their own mathematical reasoning or 
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rather than dismissing what they perceive to be a normative characterization of the 
problem coming from the lecturer. This is in itself an interesting phenomenon which 
could be interpreted as signalling a formal and “ritualistic” way of dealing with 
mathematical problems. Furthermore, if further replicated with different (but 
analogous) problems and by means of a larger group of students, similar results may 
point to the fact that for some university students in mathematics what they perceive to 
be a correct mathematical argument together with what they perceive to be a normative 
statement coming from the lecturer has stronger epistemic (or perhaps only cognitive) 
primacy over acknowledging the contradictory nature of their conclusions.  
Finally, I do not mean to understand these preliminary conclusions in purely 
psychological terms as dependent solely on the students’ internal faculties, them being 
completely separated from the context in which these students were immersed.[3] On 
the contrary, the students’ difficulties I have outlined in this paper render possibly 
evident that the kind of mathematical training to which these students were exposed 
fails (at least in this case) as a training for problem solving involving a strong 
conjecturing component. More empirical data agreeing with these results may point to 
the fact that the type of mathematical rationality into which these students have been 
steeped in is very different from the kind of rationality which would ideally be that of 
a working mathematician. Indeed, a deeper and larger study into these phenomena 
would be required to reach more than tentative conclusions on this matter. Such study 
could perhaps suggest the need to develop the university mathematics curriculum in 
favour of a greater exposure of students to problems involving a stronger conjecturing 
component. It remains however an open question whether such exposure may in 
general succeed in the training of imagination and intuition and, in general, whether 
these faculties are susceptible to be trained at all. The latter in turn is a psycho-
pedagogical matter over which further investigation would be needed. 
NOTES 

1. In accordance with the scholarship on visualization within mathematics education (cf. Arcavi, 2003), one can 
thus generally understand visualization in mathematics as all that concerns the faculties/properties/abilities 
above, i.e., the mode by which we bring mathematical objects at the attention of our senses, we manipulate them 
and we reflect on them, internally (i.e., in the mind) or externally via some material support, traditionally by 
hand-drawing on paper or, nowadays, by means of software-generated images.  

2. An a priori analysis of the problem would be too long to give here. It is plausible to think that a path very similar 
to the one which is the solution of the problem must be reached by a unique act of imagination, which arguably 
seems to not be decomposable into simpler mental actions.  

3. For instance, the behavior of Groups E, F and G just summarized may be perhaps explained by a difficulty in 
reasoning outside of the didactic contract the students assume to be in place (on this concept see Brousseau, 
Sarrazy and Novotná, 2020), connected to a difficulty in questioning the authority of the teacher. 
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We present the results of the implementation of a teaching strategy for the learning of 

the concept of vector space. The strategy was implemented with a group of engineering 

students and its design is based on the ACE methodology from APOS theory. The 

results show that working with sets and binary operations different from those 

traditionally handled in a first course of linear algebra, promotes students’ reflection 

on the validity of the axioms that define vector spaces and on the properties of the zero 

vector and the additive inverses. 

Keywords: vector space, linear algebra learning, APOS theory 

INTRODUCTION 

Many of the particular obstacles that arise in the linear algebra teaching and learning 

processes are related to the nature of the elements that constitute this mathematical 

theory. Linear algebra is formed by a network of interconnected definitions, axioms, 

and abstract theorems. This results in frequent difficulties among students to succeed 

in higher level courses related to linear algebra. Thus, students end up confused and 

disoriented when trying to understand concepts related to this discipline, such as vector 

spaces, subspaces, linear transformations, among others (Dorier & Sierpinska, 2001). 

This paper reports on the development and implementation of a teaching strategy to 

promote the understanding of the vector space concept among engineering students. Its 

design is informed by APOS theory. Due to the COVID-19 pandemic this teaching 

strategy was implemented online. The participating students had not received training 

in mathematical logic, nor did they have experience working with argumentative or 

demonstrative processes in their previous mathematics courses. 

RESEARCH QUESTION AND OBJECTIVES 

This research study is part of a wider project which aims to analyze the mental 

constructions evidenced by a group of students when working with the concept of 

vector space. Students had followed a linear algebra course where activities designed 

with APOS theory (Actions, Processes, Objects, Schemas) were used, and the APOS 

teaching methodology, involving Activities, Class discussions and Exercises (ACE 

teaching cycle), was followed. The study aims to address in general the following 

research question: 

What mental constructions related to vector space do students manifest after finishing 

a course designed with APOS theory? 

The teaching strategy used throughout the course included work on activities aimed at 

learning concepts that have been identified previously (Parraguez & Oktaç, 2010) as a 
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requirement for the construction of the concept of vector space. This led us to consider 

another related research question: 

What is the impact of introducing the study of the concepts of equality, set and binary 

operation, as background, in a teaching strategy aimed at supporting the construction 

of the concept of vector space? 

The research Project conducted resulted in information regarding both questions. 

However, we decided to focus in this paper on results obtained from the data analysis 

corresponding to the second one. Space restrictions did not allow to include a detailed 

report on results obtained throughout the whole research experience. 

LITERATURE REVIEW 

In order to identify the mathematical concepts required for the learning of the concept 

of vector space, we conducted a literature review focusing on the main learning 

obstacles related to this concept (Can et al., 2021).  

A first epistemological obstacle that students face comes from the level of formalism 

inherent to linear algebra (Dorier, 1998). In particular, when facing the concept of 

vector space, students may face many of the obstacles associated with the formalism 

and level of abstraction needed in its study. For instance, when working with the 

demonstrative and argumentative processes that are required to verify whether or not a 

given set is a vector space (Mutambara & Bansilal, 2018); or when working with the 

concept of zero vector and the additive inverse vectors of a space where elements are 

not necessarily n-tuples. These obstacles are also encountered when working with 

vector spaces where addition and scalar multiplication are defined differently from 

those traditionally defined in ℝ𝑛 (Kú et al., 2008; Parraguez & Oktaç, 2010). 

Many students have difficulty recognizing the characteristics defining both the zero 

vector and the additive inverses. Some authors have suggested the use of unusual vector 

spaces as a way to address this situation, for example, vector spaces where the pre-

established algorithms that traditionally work on typical vector spaces are not 

sufficient. In order to succeed, flexibility is necessary to identify those characteristics 

shared by the sets and the binary operations that constitute such vector spaces 

(Parraguez & Oktaç, 2012; Parraguez, 2013). 

It is important to underline that, in spite of reports in the literature on the need to take 

into account the construction of the notion of set and binary operation before 

introducing vector space, it was difficult to find in the literature studies that take them 

into consideration as part of their research objective. We posit this may be due to 

researchers and teachers considering these concepts as something known by students, 

although this may not be the case for students taking a first course on Linear Algebra 

at the university, particularly if they are enrolled in fields other than mathematics. 

The findings of this literature review put forward the need to consider the introduction 

of the concepts of set, binary operation, axiom, and function as requirements before 
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dealing explicitly with the construction of the concept of vector space. Thus, in this 

paper we present a teaching strategy that considers all these elements. 

The obstacles described above together with teaching suggestions given by some 

authors served us as the basis for designing a genetic decomposition addressing 

specifically the construction of the zero vector and additive inverses. They have also 

helped us to design a teaching strategy that introduces students to working with vector 

spaces whose elements are not necessarily n-tuples. 

THEORETICAL FRAMEWORK 

This research is based on APOS theory (Arnon et al., 2014). This theory intends to 

understand the constructions students need to learn a concept. Its main conceptual 

structures follow: 

Actions are defined as the transformations applied to previously constructed Objects 

and that are somehow external to the subject that applies them. They are identified by 

the fact that the subject needs an external stimulus to apply them. 

Processes are understood as the Actions interiorized by the subject, in such a way that 

the individual is capable of reflecting on such Actions without the need for external 

stimuli, and can describe them or even reverse the steps without the need to perform 

the steps operationally. Processes can be coordinated into other Processes and can also 

be reversed. 

When an individual reflects on the operations applied to a particular Process, becomes 

aware of the Process as a whole and is able to perform new Actions on it, that is, can 

act on the Process itself, the individual has encapsulated the Process into an Object. 

Furthermore, if the subject is able to go back from the Object to the Process from where 

it comes, it could be said that the individual has de-encapsulated the Object into a 

Process. 

A Schema is constructed as a coherent collection of mental structures (Actions, 

Processes, Objects and other Schemas) and the relationships between them. A Schema 

is described in terms of the mental structures that compose it and how they are related 

to each other. Schemas are constantly developing through a triad of stages: Intra- , Inter 

-, and Trans- . When a Schema has been constructed at the Trans- stage and can be 

considered as coherent, it can be thematized into an Object and new Actions can be 

applied to it.  

METHODOLOGY 

APOS theory research methodology begins with an analysis that leads to the 

development of a model for the epistemology of the concept to be studied. This 

model—which is called the genetic decomposition of the concept—is based on the 

description of the Actions, Processes, Objects and Schemas and the corresponding 

mechanisms needed in the construction of the concept or concepts of interest (Arnon 

et al., 2014). This model is not intended to be unique and needs to be validated through 

research. We describe the genetic decomposition below. 
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The genetic decomposition was used to develop a set of twenty tasks for the 

introduction of vector space. These tasks were organized in six activity sets to be used 

in the classroom. The design of the tasks included the construction of the concepts of 

equality, set, and binary operation—in addition to those related to the construction of 

the concept of vector space. As mentioned before, these elements were identified as a 

necessary background for learning vector spaces (e.g., Parraguez & Oktaç, 2010).  

The teaching strategy followed the ACE cycle. The experience was conducted with a 

group of 20 engineering students enrolled in a first linear algebra course at a public 

university. It is important to underline that these students had not been introduced 

before neither to these concepts not to work with operations different to those defined 

traditionally for sets other than ℝ𝑛. These were the reasons to design tasks including 

different sets and operations. Also we considered that working with them would foster 

students’ reflection on the need of the axioms defining vector spaces. 

Students were organized in teams of four to work in the solution of the designed activity 

sets through six sessions. Due to the quarantine imposed by COVID-19, all the sessions 

took place on line. 

The teaching strategy implemented in all sessions was the ACE Cycle: it consisted in 

students working collaboratively in small groups on the activities (A). Collaborative 

work was followed by whole class discussion with the teacher (C). These two steps 

were repeated several times during each session and homework exercises (E) were 

handed to students at the end of each class. 

The first three sessions were devoted to work on the construction of the pre-requisite 

concepts, namely equality, sets and binary operations through tasks involving proving 

some vector space axioms related to them. The last three sessions consisted in defining 

of vector space followed by tasks involving different sets and binary operations where 

students had to prove if they were vector spaces. Students worked on these last tasks 

using paper and pencil and then programming computer codes to construct the vector 

space axioms.  

All the work produced by the students during the sessions was kept and the video 

recording and work during interviews of one student in each group at the end of the 

semester was analyzed by the three researchers and results were negotiated. Analysis 

focused on describing and identifying important emerging ideas during small groups 

work, the evolution of students’ contributions during whole group discussion and 

evidence of the construction and development of APOS structures related to the pre-

requisite concepts and the vector space throughout the sessions and the interview for 

each student. 

In this document we show results from three students that exemplify the role played by 

the use of tasks designed with the genetic decomposition and the construction of pre-

requisite concepts on students’ construction of the vector space concept. 
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Genetic decomposition of the vector space concept. 

Genetic decompositions of the prerequisite concepts were designed taking into account 

results from the literature. The first three sets of activities implemented were devoted 

to students’ construction of those prerequisites.  

We proposed a new genetic decomposition for the vector space concept. It combines 

elements from the decompositions proposed by Parraguez and Oktaç (2010) and Arnon 

et al. (2014). This new genetic decomposition considers as prerequisites mental 

constructions of the concepts of equality, set, and binary operation. Next, this new 

genetic decomposition is introduced. It includes a mechanism to integrate the axiom 

schema in the construction of the vector space concept. The role of logical quantifiers 

of existence and universality to characterize the axioms that define a vector space is 

also considered. 

The construction of the concept of vector space is based on the construction of the 

Schemas of the concepts of set, binary operation and equality: the student begins with 

the Action of calculating the result of applying a given binary operation to specific 

elements of the same set, and to the Cartesian products of sets. With these Actions, 

binary operations are conceived as functions with certain input arguments that in turn 

produce an output. 

By working on the application of different binary operations on all the elements of 

different sets to analyze and describe their Actions, without having to carry out the 

operations explicitly, the interiorization of the set Process is promoted. This Process is 

defined in terms of a membership condition and the binary operation Process defined 

on a set that can be coordinated into a new one to originate a Process of the notion of 

sets with binary operations. 

Continuing with the construction of the concept of vector space, the concept of axiom 

is constructed as follows: given a property of a binary operation involving the equality 

sign, the individual applies the Action of evaluating both members of equality on 

specific elements. This is done based on the definition of the binary operation to 

determine the validity of the equality stated by the property. 

In order to continue with the construction of the vector space concept, the concept of 

axiom needs to be constructed as follows: Given a binary operation property involving 

the equal sign, the student does the Action of evaluating it in specific elements 

appearing in the two sides of the equality in terms of the definition of the binary 

operation concerned and then determines the validity of the given equality in terms of 

the specified property, When the individual reflects on the validity of a property of 

binary operations defined on a set, applied to all the elements of the set—involving the 

universal quantifier—, she interiorizes such Actions into a verification Process of an 

axiom with a universal quantifier. This Process, in turn, is coordinated with the Process 

set with binary operation to give rise to the verification Process of an axiom with 

universal quantifier for binary operations on sets. 

277



  

This implies that the individual can analyze and discuss the existence of a specific 

element that satisfies an axiom, without the need to list all the elements of the set, and 

that she is able to determine the missing element in the expression that involves the 

axiom. This Process is coordinated with the sets with binary operations Process into 

the verification Process of an axiom with existential quantifier for binary operations on 

sets. 

The two previous axiom- verification Processes are coordinated with the Processes 

corresponding to the axioms that define the vector space. This results in a set with 

binary operations Process (addition and scalar multiplication) that satisfy the axioms. 

The resulting structure is a dynamic structure that depends on the set and the binary 

operations that are considered. This structure becomes static when the individual 

conceives the vector space as an object to which she can apply Actions such as finding 

a base, finding a spanning set, determining the linear dependence or independence of 

a set of elements interpreted as vectors, and applying linear transformations between 

vector spaces. 

RESULTS AND DISCUSSION 

As mentioned before, after presenting the definition of vector space students worked 

on testing the axioms and deciding if the given set was or not a vector space. We present 

now an analysis of transcripts form the interventions of three students when they 

addressed one of the tasks worked in session four posed to the students with the 

intention of observing the constructions that they evidenced when working with the 

concept of vector space. 

Task. 

Verify if the set 𝑉 = {(
𝑥 𝑦
0 𝑧

) : 𝑥, 𝑦, 𝑧 ∈ ℝ+} is a vector space with the operations 

defined below. 

Vector addition: (
𝑎 𝑏
0 𝑐

)⨁(
𝑑 𝑒
0 𝑓

) = (
𝑎𝑑 𝑏𝑒
0 𝑐𝑓

). 

Scalar multiplication: 𝑡⨂(
𝑎 𝑏
0 𝑐

) = (𝑎
𝑡 𝑏𝑡

0 𝑐𝑡
). 

When questioned about the algebraic closure of the defined addition, student 1 

answered as follows: 

Student 1: Yes, it does comply because... well... it does comply because in both matrices 

the elements that are taken, well, as it says there, as a rule, they belong to the 

positive real numbers and when doing the sum, well ... it will b the same. The 

sum of these matrices remains the same, so to speak, with the elements 

belonging to V. 

Interviewer: Explain to me, what do you mean when you say that it stays the same? 
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Student 1: Yes... it could be, for example, ... a matrix of 1, 2, 0, 3... we do the sum of a 

matrix of 2, 4, 0, 6, and we would obtain a matrix of 2, 8, 0, 18. 

A second student makes the following comments: 

Student 2: It is like this... ad, be, 0 and c multiplied by f, but it was also replaced by 

numbers, like this with numbers, to verify that they belong to the positive real 

numbers as it is in the vector and they do belong… um, I wrote that... the 

matrix one is 1, 2, 0 and 3 and the other one is 4, 5, 0 and 6 and well... I 

replaced the numbers with the letters, and at the end I obtained 4, 8, 0 and 

18. 

Interviewer: Okay, and how does the calculation explain that the property is true? 

Student 2: Because they belong to the set V, of positive real numbers. 

To verify the closure property of vector addition, both students select specific vectors 

from the given sets and calculate the sum with those elements. This illustrates one of 

the first Actions most of the students perform when they have to verify that a set is a 

vector space. They select specific values to verify that the axioms are satisfied and, in 

some instances, they could conclude—based on particular cases—that such axioms are 

satisfied by all the elements in the set, without analyzing the validity of their conclusion 

on all the elements of the set. After analyzing the rest of student’ interventions, we 

concluded that twelve students showed similar interventions corresponding to the 

construction of Actions. 

When questioning a third student regarding the validity of the closure of the addition 

using the same task, he replies: 

Student 3: Well they were like... It was a set like this... in the first row a, b, c, in the 

second row 0, c, and the other element would be, the first row d, e and the 

second row 0, f, so those two elements. That is, we apply the sum defined for 

the set... And, well, we got the matrix, so to speak, in the first line ad, be, 0 

and c multiplied by f. 

Interviewer: How did you get that? 

Student 3: Because we applied the operation that was indicated for the set... from what 

we understood, it was like that. Because it says that u, the... the sum of vectors 

with v belongs to V. It means that if you take an element and add it with an 

element of V and... it means that these two elements are in V ... I don't know 

if you understand me... That is, the result is the one that has to be in V, right? 

because as I had already said before... The axiom tells us that u and v are 

elements that are in V... then obviously they comply with the... with the shape 

and structure of the set V. It means that, if when applying the operation to 

those two elements, yes... that axiom... for that axiom to hold true, the result 

of that sum must also belong to V... That's more or less what it means, right? 
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Student 3 argues about the validity of the closure axiom for the addition of vectors, 

using the definition of the set and the operation. He shows a generalization of the 

verification of the closure on different elements. This is evidence of a Process 

construction related to the verification of the axioms. 

When questioned about the existence of additive inverse vectors, student 3 comments 

(see Figure 1): 

Student 3: But if you notice…  you are dividing a by a, well obviously if you have... 

let's say that a is equal to 3, 3 divided by 3 will give you 1. So if they realize, 

a over a, is practically 1 and, the others are 1 all those who are there... 

 

Figure1: Vector proposed by student 3 to verify the existence of additive inverses. 

Interviewer: Well, there we have the image, so in the image we see a matrix u that is a, b, 

0 and c, and it is being added to another matrix that is 1 over a, 1 over b, 0 

and 1 over c... Can you explain that? 

Student 3: Well, I took as a reference the one we already had in the fourth [axiom], 

since it is indicating that, if -u exists, it should lead us to the value of the 

additive neutral element. And well, since we had already stated that the 

additive neutral element... well, I put it as I had represented it before, then I 

used the 1 over a, since when doing the multiplication, I mean, when doing 

the addition operation, the multiplication would be done linearly and it 

would be like a over a, and it would give us as a result the additive neutral 

element that we had already obtained before. 

Student 3 proposes the general structure of the additive inverse vector based on a 

generic vector u of the given set, and applies the binary operation defined on this set. 

In his intervention, student 3 describes the way in which the structure he proposes for 

the inverse vector can serve to prove the existence of the additive inverse elements for 

a specific value. This evidences a Process conception of verification of axioms with 

existential quantifier for binary operations defined on sets. After analyzing the rest of 

students’ interventions, we found eight students showing evidence of a Process 

conception of vector space. 

Finally, we found that only one student showed evidence of the construction of vector 

space as an Object.  

In general, the mental structures that were introduced in the genetic decomposition of 

the vector space concept to address the verification of axioms with universal and 

existential quantifiers, were evidenced during the students’ discussions that emerged 

when looking for specific elements that satisfied those axioms. This discussion 
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involved reflection on binary operations and definitions of sets, which confirms the 

importance of these concepts for the construction of vector spaces as proposed by 

Parraguez and Oktaç (2010). 

The coordination of the Process related to applying a binary operation to all the 

elements of a set, and the Processes that involve evaluating axioms with quantifier of 

existence and uniqueness, was evidenced in the students’ discussion about the 

characteristics of the neutral element and the additive inverses. This coordination 

involved reflections on the particular characteristics of the elements that constitute a 

set and the way in which binary operations act on all these elements. This led the 

students to reflect on the uniqueness and universality of the neutral element and the 

additive inverses. 

This situation paved the way for the verification of the particular characteristics of 

these vectors in a natural way within the construction of the concept of vector space, 

and is related to the Process of verification of an axiom with existential quantifier and 

the Process of verification of an axiom with universal quantifier for binary operations. 

CONCLUSIONS 

Working with vector spaces requires managing different sets of vectors, applying 

different types of binary operations and verifying that the axioms that define vector 

spaces are satisfied by the given elements of a vector space (Kú et al., 2008; Parraguez 

& Oktaç, 2012; Parraguez, 2013). The research reported in this paper has addressed 

these elements through a genetic decomposition proposed for the construction of the 

concept of vector space that includes the background that is considered necessary for 

learning this concept. 

It was observed that working with different sets and analyzing their elements based on 

their definition, favors the ability to describe and propose the vectors that belong to a 

particular vector space. This allow students to recognize which elements are part of a 

set based on its definition, and propose specific elements that can be evaluated in binary 

operations. 

The use of different binary operations turned out to be a strategy that favors the 

interiorization of the Actions carried out by the individual when evaluating the 

operation on particular elements. In particular, the work developed with different types 

of binary operations favors the ability to describe the way in which the operations act 

on all the elements of a given set. An observed phenomenon in this sense involves the 

use of literals to describe the way in which a given operation acts: when the student 

uses them to operate on a generic element of a set and describe the way in which an 

operation acts on all the elements of the set, she evidences the construction of a Process 

conception. 

The didactic strategy based on collaborative work between students and with the 

teacher together with activities designed with the genetic decomposition proved to be 
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effective in fostering students’ reflection and understanding of the role of axions and 

their need in the definition of vector space. 
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Analysing proofs of the Bolzano-Weierstrass theorem 
A mean to improve proof skills and understanding of completeness 

Viviane Durand-Guerrier  
University of Montpellier, IMAG, CNRS-UM, France,  

viviane.durand-guerrier@umontpellier.fr 
In this communication, we will analyse several proofs of the Bolzano-Weiersrass 
theorem. We will first present the method by Bolzano in the memoire of the 
Intermediate Value Theorem that is known to have inspired the proof by Weierstrass, 
then we will analyse proofs available for both the set version proved by Weierstrass, 
and the sequence version. We will emphasize the diversity of modes of reasoning on 
the one hand, on objects and completeness characterisation on the second hand. We 
will finally suggest scenarios for undergraduates or for prospective teachers.  
Keywords: Teaching and learning of logic, reasoning and proof, Epistemological 
studies of mathematical topics, Bolzano-Weierstrass Theorem, Proofs ‘analysis, 
Teaching and learning of analysis and calculus.    
INTRODUCTION 
As accounted by Bergé (2010), undergraduate students having followed four courses 
on the set of real numbers might face still difficulties with task requiring a sound 
understanding of completeness. This motivates the search for activities able to 
contribute to this understanding. This communication falls within a wider research 
project aiming at identifying didactic means to improve the teaching and learning of 
the set of real numbers as a complete ordered set, considering the crucial role of 
epistemology in didactics of mathematics, and focusing on proof and proving. Our 
main didactic hypothesis is that logical analysis of proof fulfils three main functions: 
to control validity; to understand the strategy of the author of the proof; to contribute 
both to the development of proof and proving skills and to the appropriation of the 
mathematical content at stake. We have already discussed in other papers 1/ the 
potentiality of fixed-point theorems of increasing functions of a real subset in itself 
(Durand-Guerrier, 2016); 2/ the relevance of working on proofs of completeness in 
various settings of real numbers sets (Durand-Guerrier & Tanguay, 2018); 3/ The 
fecundity of approaching the real exponential function in the more general frame of 
real function satisfying the algebraic relation 𝑓(𝑥 + 𝑦) 	= 	𝑓(𝑥)𝑓(𝑦) (Durand-
Guerrier et al., 2019); 4/ the dialectical relationship between truth and proof in the case 
of the emergence of the Intermediate Value Theorem (IVT), while comparing Bolzano 
and Cauchy approaches (Durand-Guerrier, 2022). In this communication, we are 
extending our analysis to the Bolzano-Weierstrass Theorem (BWT) which plays an 
important role in Analysis. In his memoire on the IVT published in 1817, Bolzano used 
a method by dissection to prove (in modern term) the existence of a least upper bound 
for a bounded above set. Later, Weierstrass relied on the method described by Bolzano 
to prove the theorem that is named after the two mathematicians (Oudot, 2017). 
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Nowadays, we found in the international literature various proofs of this theorem. We 
will argue that analysing these proofs might contribute to deepen both proofs skills and 
conceptual understanding of the concept of ℝ-completeness, considering both the 
version for sets and the version for sequences: 

1. BWT for sets: Every infinite and bounded set of real numbers has at least an 
accumulation point. 

2. BWT for sequences: Every bounded sequence has a convergent subsequence.  
We first present and analyse the Bolzano dissection method and four BWT proofs. 
Then, we propose some guidelines for designing a didactical engineering. 
PROOFS OF THE BOLZANO-WEIERSTRASS THEOREM  
Although the name of Bernard Bolzano is associated to the name of Karl Weierstrass, 
some authors claim that Bolzano neither prove, nor even enounce the theorem (e.g., 
Oudot, 2017). However, it is agreed that Bolzano used a dissection method in a lemma 
for the proof of the Intermediate Value Theorem (IVT), which inspired Weierstrass to 
prove that any infinite bounded subset of the set of real numbers has an accumulation 
point. (e.g., Oudot, 2017). We present and briefly analyse 1/ the dissection method by 
Bolzano; 2/ the main ideas of the proof by Weierstrass of the BWT for sets; 3/an 
alternative proof of the BWT for sets in a paper by Mamona-Downs; 3/ two classical 
proofs of the BWT for sequences in a textbook.  
In Durand-Guerrier and Arsac (2009, p. 152), we provided evidence that analysing 
logically a mathematical proof requires both logical and mathematical competencies. 
We have identified relevant questions that we will use as a lens for analysing the proofs 
presented in this section: what are the data and hypothesis? which objects are 
introduced along the proof, and with which aim? Which are the modes of reasoning, 
the explicit and implicit assumptions? In the case of BWT, we will also focus on the 
axioms of completeness, and on the recourse to potential infinity versus actual infinity.1 
The dissection method by Bolzano (1817) 
In the paragraph 12 of the proof of the IVT, Bolzano enounce and prove the theorem2:     

Theorem. If a property M does not belong to all values of a variable 𝑥, but does belong to 
all values which are less than a certain 𝑢, then there is always a quantity 𝑈 which is the 
greatest of those of which it can be asserted that all smaller 𝑥 has property M. (Russ, 1980, 
p. 174) 

He initiated the proof by introducing a positive quantity 𝑫 such that there is at least an 
element among those less than 𝒖 + 𝑫 that does not hold the property 𝑴 (such a quantity 
exists by hypothesis). Doing this, he implicitly introduces a real interval [𝒖, 𝒖 + 𝑫[	in 
which he will search the quantity 𝑼. Then he considers sequentially the quantities 𝒖 +
𝑫
𝟐𝒎

, with 𝒎 a null or positive integer. In other words, he introduces a geometrical 
 

1 This paper will not consider the logical issues involved in the use of quantifiers and connectives. 
2 For the theorem, its proof and the comments by Bolzano on this theorem, we use the English Translation by Russ (1980). 
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sequence with ratio 𝟏
𝟐
.	It is sure, by the choice of 𝑫, that for 𝒎 = 𝟎 there is at least an 

element not satisfying the property 𝑴 among the element less than 𝒖 + 𝑫
𝟐𝟎

. In case 
where whatever the value of 𝒎, there exists always an element not satisfying the 
property M along the element less than u+ 𝑫

𝟐𝒎
, then he concludes that 𝒖 is the greatest 

of those quantities of which it can be asserted that all smaller 𝒙 has property M. The 
proof of this assertion (not provided in this part of the memoire) relies on the fact that 
given a real number 𝒗 > 𝒖, there exists an element between 𝒖 and 𝒗 that does not has 
the property; indeed there exists a positive integer 𝒌 such that 𝒖 < 𝒖 + 𝑫

𝟐𝒌
<

𝒗.		Opposite, if for a certain rank m, for the first time all elements less than 𝒖 + 𝑫
𝟐𝒎
	holds 

the property 𝑴, then he reinitiated the process with 𝒖 + 𝑫
𝟐𝒎

 playing the role of 𝒖, and 

𝒖 + 𝑫
𝟐𝒎$𝟏

 playing the role of 𝒖 + 𝑫. This is motivated by the fact that at this step, the 

quantity 𝑼 should be searched in the interval [𝒖 + 𝑫
𝟐𝒎
, 𝒖 + 𝑫

𝟐𝒎$𝟏
[. Bolzano notes that 

the difference between the two quantities is 𝑫
𝟐𝒎

.The process is then reiterated, 

considering the sequence38𝒖 + 𝑫
𝟐𝒎
+ 𝑫

𝟐𝒎&𝒏
9.  Then either 𝑼 = 𝒖 + 𝑫

𝟐𝒎
 and the theorem 

is proved; or there is a value 𝒓 such that 𝑼 belongs to [𝒖 + 𝑫
𝟐𝒎
+ 𝑫

𝟐𝒎&𝒓
, 𝒖 + 𝑫

𝟐𝒎
𝑫

$𝟐𝒎&𝒓$𝟏
[, 

and the process is iterated. There are then two possible issues: either there is a step 
where the value of 𝑼 is reached, and the iterations stop; or the iterations do not stop 
and hence, it provides an increasing sequence in geometric progression of ratio 𝟏

𝟐
, with 

first term 𝒖 + 𝑫
𝟐𝒎
,	each term being less than 𝒖 + 𝑫

𝟐𝒎$𝟏
,	with the difference between two 

consecutive terms decreasing to 0. This way corresponds to the modern method by 
dichotomy. Bolzano used then a previous lemma (§9) to conclude of the existence of a 
quantity 𝑼	which is the greatest of those of which it can be asserted that all smaller 𝒙 
has property 𝑴.   

Lemma. If, therefore, some given series has the property that each term is finite, but the 
change which it undergoes on every further continuation is smaller than any given quantity, 
provided only that the number of terms taken in the first place is large enough, then there 
is always one and only one constant quantity which comes as close to the value of this 
series as desired, if it is continued far enough. (Russ, 1980, p. 173).  

In this proof, the data are a property M, a variable 𝒙 and a constant 𝒖; and the 
hypothesis: M does not belong to all values of 𝒙, but does belong to all values which 
are less than u. Then there are several objects thar are introduced: a constant 𝑫, a 
geometric sequence, and along the proof, some specific terms of the sequences 
identified by indexes of the power of 2; finally, a geometrical progression is introduced. 
To conclude to the existence, Bolzano refers to what we name nowadays the Cauchy 

 
3 In this proof, Bolzano does not use the term sequence, and the notion of interval; it remains implicit.  
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criteria of convergence for sequence, one of the possible axioms of completeness. It is 
noticeable that as Bolzano did not create the set of real numbers (Freudenthal, 1971, p. 
387), the proof in the lemma 9 relies on an assumption that he could not prove (an 
axiom). In this proof, Bolzano recourse to potential infinity through iteration process.  
The proof by Weierstrass of the BWT for sets 
According to Oudot (2017), while in contemporaneous textbooks the BWT is most 
often given for sequences, Weierstrass proved the version for infinite sets. He first 
defined the notion of accumulation point for an infinite set.  
Definition: an accumulation point of a given subset of the set of real numbers is a point 
such that each pointed neighbourhood has a non-empty intersection with the set.  
He then proved by dichotomy, a method inspired by Bolzano, the theorem for sets: 
Every infinite and bounded set of real numbers has at least an accumulation point.  
Here is a summary of the proof (translated from Oudot, 2017).  
Proof - If a set 𝐴 is bounded, then it is included in a closed interval [𝑚,𝑀]. As 𝐴 is 
infinite, cutting the interval through its midpoint, we get two intervals so that at least 
one contains an infinite number of points of 𝐴. The process is then iterated on an 
interval with infinite numbers of points of 𝐴 (there exists at least one), leading to the 
construction of a sequence of nested intervals with length less than %

&)
 at the step 𝑚. 

The conclusion follows because the set of real numbers being complete, it satisfies the 
property of nested intervals with length tending to 0: there exists a unique element 
belonging to each interval. This element is an accumulation point for 𝐴. 
In this proof, the data is a set, with two hypothesises: the set is bounded; the set is 
infinite. Then an interval [𝑚,𝑀] is introduced, and a process of dichotomy is 
performed. It is noticeable that the method is simpler than the method by Bolzano, 
thanks to the explicit introduction of an interval, that allows the recourse to actual 
infinite.  
A proof of the BWT for sets in an educational paper 
In a paper published in 2010, Mamona-Downs suggested that providing students 
opportunities to contrast the convergence behaviour of a sequence and the 
accumulation points of the underlying set of the sequence is worthwhile for 
undergraduates. In the paper, she provides a proof of BWT with recourse to the 
supremum property (p. 283). 

“Theorem (Bolzano–Weierstrass): Let 𝑆 be a real set that is both infinite and bounded. 
Then 𝑆 has an accumulation point4. 

As a preliminary step to the proof, the author explains that assuming the problem is solved, 
a candidate appears (the supremum of a well-chosen set, as shown in the proof below).  

 
4 The author indicates that there is no loss of generality f we suppose that S is a subset of a closed interval, [a, b] say. 
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Proof: Consider the set 𝐿: {𝑥	 ∈ 	 [𝑎, 𝑏] ∶ 	 [𝑎, 𝑥] contains none or a finite number of 
elements of 𝑆 less than 𝑥}. 𝐿 is non-empty and is bounded by 𝑏. Thus sup (𝐿) exists. Denote 
sup (L) by 𝑟. 

Take any 𝜖 > 0, and consider the interval (𝑟 − 𝜀, 𝑟 + 𝜖). Now [𝑎, 𝑟 − 𝜖] contains none or 
a finite number of elements of 𝑆, and [𝑎, 𝑟 + 𝜀 ]	contains an infinite number of elements 
of S. Then the interval (	𝑟 − 𝜀, 𝑟 + 𝜖) also contains an infinite number. This implies (	𝑟 −
𝜀, 𝑟 + 𝜖) contains an element of S5, so 𝑟 indeed is an accumulation point for 𝑆.” 

In this proof, the data is a set, with two hypothesises:  the set is bounded; the set is infinite. 
There is a first introduction of an interval, relying on the hypothesis that the set is bounded, 
followed by the introduction of the set 𝐿, which is the left part of a cut, in Dedekind sense, 
of the interval [𝑎, 𝑏]. This choice is motivated by the preliminary step because the 
supremum linked to this cut has been identified as a candidate to be an accumulation point. 
The axiom for completeness is the existence of a supremum for any bounded subset of the 
set of real numbers. Once done, the author names 𝑟 the supremum and introduces a family 
of intervals centred in 𝑟. She uses implicitly that the complement of a finite subset in an 
infinite set is infinite, to assert that at each step, there is an interval with infinitely many 
elements of S; hence each interval of the family contains infinitely many elements of 𝑆; 
this proves that 𝑟 is an accumulation point of 𝑆.  

Two classical proofs of the BWT for sequences 
In this section, we present two classical proofs of the BWT out of a textbook for 
undergraduates (Bartle & Sherbert, 2000). The two proofs of BWT are in the section 
3.4 entitled “Subsequences and the Bolzano-Weierstrass theorem”. The authors first 
enounce and prove a theorem guaranteeing the existence of monotone subsequence for 
any real sequence (p.78). We present the proof of this theorem because it is used in 
their first proof of BWT.  

“3.4.7 Monotone Subsequence Theorem  

If 𝑋	 = 	 (𝑥!) is a sequence of real numbers, then there is a subsequence of 𝑋 that is 
monotone.  

Proof. For the purpose of this proof, we will say that the mth term 𝑥𝑚 is a “peak” if 𝑥𝑚 ≥
𝑥𝑛 for all 𝑛 such that 𝑛 ≥ 𝑚 (That is, 𝑥𝑚	is never exceeded by any term that follows it in 
the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an 
increasing sequence, no term is a peak. 

We will consider two cases, depending on whether 𝑋 has infinitely or finitely many peaks. 

Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing subscripts: 
𝑥𝑚1	 , 𝑥𝑚2	 , … , 𝑥𝑚𝑘	 , ….. Since each term is a peak, we have  

𝑥𝑚1	 ≥	𝑥𝑚2	 ≥ ⋯ ≥	𝑥𝑚𝑘	 ≥ ⋯ . 

Therefore, the subsequence (𝑥𝑚) of peaks is a decreasing subsequence of 𝑋. 

 
5 Implicitly there is at least an element different from 𝑟.  
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Case 2: 𝑋 has a finite number (possibly zero) of peaks. Let these peaks be listed by 
increasing subscripts 𝑥𝑚1	 , 𝑥𝑚2	 , … , 𝑥𝑚𝑟	. Let 𝑠1 = 𝑚𝑟 + 1 the first index beyond the last 
peak. 
Since 𝑥𝑠1 is not a peak, there exists 𝑠2 > 𝑠1such that 𝑥𝑠1 < 𝑥𝑠2. Since 𝑥𝑠2 is not a peak, 
there exists 𝑠3 > 𝑠2	such that 𝑥𝑠2 < 𝑥𝑠3. Continuing in this way, we obtain an increasing 
subsequence $𝑥𝑠𝑘% of 𝑋. 

It is not difficult to see that a given sequence may have one subsequence that is increasing, 
and another subsequence that is decreasing.” (op. cit. page 78).  

In this proof, the data is a real sequence; there is no additional hypothesis. The notion 
of “peak” is introduced and depending on whether or not there are infinitely many 
peaks (actual infinity), one can construct either a decreasing subsequence or a finite 
sequence of peaks. In the former case, we have a proof of the theorem; in the latter 
case, an iterative process (potential infinity) provides an increasing sequence, and the 
theorem is proved. It is noticeable that this proof use only the order properties; the ℝ-
completeness is not involved, so this theorem holds for example for rational sequences, 
while BWT does not. Both actual infinity and potential infinity are involved.  
The authors move then to the BWT theorem for sequences for which they provide two 
proofs, the first one relying on the previous theorem.  

“3.4.8 The Bolzano-Weierstrass Theorem. A bounded sequence of real numbers as a 
convergent subsequent.  

First proof - It follows from the Monotone Sequence Theorem that if 𝑋	 = 	 (𝑥!) is a 
bounded sequence, then it has a subsequence 𝑋′	 = 	 D𝑥)'E that is monotone. Since this 
subsequence is also bounded, it follows from the monotone convergence theorem 3.3.2 that 
the subsequence is convergent.” (op. cit. p. 78-79). 

Here the data is a sequence of real numbers; the hypothesis is that it is bounded. Thanks 
to theorem 3.4.7, the authors introduce a monotone subsequence of the given sequence. 
They use, without enouncing it, the assertion that a subsequence of a bounded sequence 
is bounded. The conclusion relies on theorem 3.2.2. (A monotone sequence of real 
numbers is convergent if and only if it is bounded). The completeness of the set of real 
numbers is required for the proof of the reverse implication. This theorem is among 
those that can be chosen as axiom of completeness. It was at the origin of the creation 
of irrational numbers by Dedekind, who proved it in his ordered complete system of 
real numbers (Dedekind, 1963). In this textbook, the axiom of completeness is the 
supremum one: Every nonempty set of real numbers that has an upper bound has also 
a supremum (i.e. a least upper bound) (2.3.6, p.37).   
The second proof relies on arguments close to those of the proof by Weierstrass for the 
version for sets by introducing the set of values of the sequence.  

“Second proof – Since the set of values {𝑥𝑛: 𝑛 ∈ 𝑁} is bounded, this set is contained in an 
interval 𝐼1 = [𝑎, 𝑏]. We take 𝑛1: = 1. 
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We now bisect 𝐼1 into two equal subintervals  𝐼′1 and  𝐼′′1, and divide the set of indices 
{𝑛 ∈ ℕ ∶ 𝑛 > 1} into two parts: 

𝐴1 = {𝑛 ∈ ℕ ∶ 	𝑛 > 𝑛1, 	𝑥𝑛 ∈ 	 𝐼′1}     𝐵1 = {𝑛 ∈ ℕ ∶ 	𝑛 > 𝑛1, 	𝑥𝑛 ∈ 	 𝐼′′1} 
If 𝐴1 is infinite, we take 𝐼2 = 𝐼′1 and let 𝑛2	be the smallest natural number in 𝐴1. If 𝐴1 is a 
finite set, then 𝐵1 must be infinite, and we take 𝐼2 = 𝐼′′1 and let 𝑛2	be the smallest natural 
number in 𝐵1. 

We now bisect 𝐼2 into two equal subintervals  𝐼′2 and  𝐼′′2, and divide the set of indices 
{𝑛 ∈ 𝑁 ∶ 𝑛 > 𝑛+} into two parts: 

𝐴2 = {𝑛 ∈ ℕ ∶ 	𝑛 > 𝑛2, 	𝑥𝑛 ∈ 	 𝐼′2}     𝐵2 = {𝑛 ∈ ℕ ∶ 	𝑛 > 𝑛2, 	𝑥𝑛 ∈ 	 𝐼′′2} 
If 𝐴2 is infinite, we take 𝐼3 = 𝐼′2 and let 𝑛3	be the smallest natural number in 𝐴2. If 𝐴2 is a 
finite set, then 𝐵2 must be infinite, and we take 𝐼3 = 𝐼′′2 and let 𝑛3	be the smallest natural 
number in 𝐵2. 

We continue in this way to obtain a sequence of nested intervals 𝐼1 ⊇ 𝐼1 ⊇ ⋯ ⊇ 𝐼𝑘 ⊇ ⋯, 
and a subsequence (𝑥𝑛𝑘) of 𝑋 such that 𝑥𝑛𝑘 ∈ 𝐼𝑘 for 𝑘 ∈ ℕ. Since the length of 𝐼𝑘 is equal 
to 𝑏−𝑎

2𝑘−1
, it follows from Theorem 2.5.3 that there is a (unique) common point 𝜉 ∈ 𝐼1 for all 

𝑘 ∈ ℕ. Moreover since 𝑥𝑛𝑘 and 𝜉 both belong to 𝐼𝑘,	 we have  

*𝑥𝑛𝑘 − 𝜉* ≤
𝑏− 𝑎
2𝑘−1

 

whence it follows that the subsequence (𝑥𝑛𝑘) of 𝑋 converge to 𝜉.” (op. cit. p.79) 

In this proof, the data and the hypothesis are the same than for the first proof. The 
authors introduce the set of values of the sequence; as the sequence is bounded, the set 
is also; then, an interval is introduced to initiate the dichotomy6, that provides both a 
sequence of nested intervals with length converging to 0, and a subsequence of the 
initial sequence. By the corresponding axiom of completeness, there exists a unique 
point in the intersection, that is proved to be the limit of the sequence.  Comparing this 
proof with Weierstrass’s one enlightens the links between the set version and the 
sequence version of BWT, and the links with axioms of ℝ-completeness.  
The analysis of these five proofs confirms the potential of the BWT to work with 
undergraduates or prospective teachers on various characterisations of completeness, 
and on their links. In the second section, we provide some paths for designing a 
didactical engineering aiming at developing proof and proving skills together with 
contribution to a better understanding of the completeness of the set of real numbers.  
GUIDELINES FOR DESIGNING A DIDACTICAL ENGINEERING 
As Mamona-Downs suggested, we consider that introducing undergraduates or 
secondary mathematics prospective teachers to both versions of BWT and designing a 
didactical engineering7 around the analysis of the various proofs would offer the 

 
6 The proof is done in case this set of values is infinite 
7 For didactical engineering in university mathematics education, see Gonzales-Martins et al. (2014) 
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opportunity to contrast the convergence behaviour of a sequence and the accumulation 
points of the underlying set of the sequence, and to contribute to the cognitive 
development of proof’s skills (Dreyfus et al., 2012). 
A possible scenario for undergraduates or prospective teachers 
The scenario we now present has not yet been implemented but is based on our 
experience as a university teacher of undergraduates and as a teacher’s trainer for 
prospective secondary mathematics teachers. The analysis of the five proofs in the first 
section is part of the a priori analysis; by lack of place, we will not go deeper in it in 
this section, but only indicates the guidelines of the proposal.  
Asynchronous work – Reading the paper by Oudot (2017). This paper is online on the 
French website “CultureMaths” and provides historical and contextual elements. 
First activity – In small groups, reading and analysing the excerpt of the proof by 
Bolzano presented above, including the lemma of §9.  Possible questions are:  

1. What are the data, the hypothesis, the objects introduced along the proof?  
2. In which respect the method developed in the proof is related to the nowadays 

proof by dichotomy?  
3. Considering your own knowledge, indicate in which conditions does the lemma 

of §9 used in the proof apply.  
4. According to you, under which theoretical assumptions the proof is valid?  

Second activity8 – In small subgroups – Half of the subgroups works on the two proofs 
of the sequence version of the theorem provided by Bartle and Sherter (2000); the 
others work on two proofs of the set version – the one presented in Oudot (2017), and 
the one by Mammona-Downs (2010). The students are requested to write down an 
account of their works. Possible questions are:  

1. What are the data, the hypothesis, the objects introduced along the proof?  
2. Which are the theorems / axioms that are used explicitly or implicitly? 
3. Which mode or reasonings do you identify in the two proofs.  
4. According to you, under which theoretical assumptions the proof is valid?  

Third activity – Collective work  
1. Sharing the analysis by oral presentation with slides.  
2. Discussing the following questions: where does the assumptions on completeness 
of the set of real numbers is called for in the different proofs? Are there some 
intermediate results that would hold in uncompleted ordered fields?  

Possible further activities  
1. Design and implementation of an algorithm for methods by dichotomy of the 

proof by Bolzano of the existence of the monotone subsequence and comparison 
with algorithmic methods in computer science (Meyer & Modeste, 2018).   

 
8 An alternative for prospective secondary mathematics teachers, is to ask them to provide proofs of the BWT. 
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2. Implementation of the proofs on automated theorem provers (Hanna & Yan, 

2022) and combining pencil/paper proofs and formal proofs (Narboux et 
Durand-Guerrier, 2022). 

3. Discussing the relationships between organising and operative dimensions in the 
various proofs (Battie, 2009).   

4. Discussing infinity issues: actual versus potential infinity; other definition of the 
infinite set leading to alternative proofs (e.g. Eidolon & Oman, 2017). 

CONCLUSION  
In this paper, we have tried to highlight the opportunities offered by the Bolzano-
Weierstrass Theorem, an important theorem in Analysis with a lot of applications, to 
promote both proof skills and understanding of ℝ-completeness. We have presented 
guidelines for a didactical engineering to be further implemented and refined.  
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Modes of description and indicators of formalism in students’ 
descriptions of eigenvectors 
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Abstract. In the study presented in this paper, we investigate students’ concepts of 
eigenvectors in an early stage of their education on linear algebra. The different 
descriptions used by the students for eigenvectors are analysed with respect to both their 
chosen representations of the mathematical objects (algebraic, geometric, or abstract), 
and the indicators of formalism used in these descriptions. We find that while the modes 
of description presented to them seem to influence their own choice of description, 
students still show their ability to switch between different representations and 
descriptions and provide individual concept images. However, some shortcomings 
concerning formalism and preciseness of their descriptions indicate that some 
mathematical properties and logical relations in the context of learning about 
eigentheory require particular attention in teaching and learning activities.   

Keywords: Teaching and learning of linear and abstract algebra, teaching and 
learning of specific topics in university mathematics, eigentheory, concept image, 
modes of description. 

INTRODUCTION 

Linear algebra is of great use in many fields such as science and mathematics (Wawro 

et al., 2018). Over the last few decades, the problems in teaching and learning of linear 

algebra have received increasing attention by researchers in mathematics education 

(Dorier & Sierpinska, 2001). Eigentheory, the domain of mathematics concerning 

eigenvectors, eigenvalues and eigenspaces, is often described as a useful set of 

concepts across disciplines (Wawro et al., 2018). However, as students need to work 

with several key ideas simultaneously, eigentheory can be conceptually complex. In 

ℝ2 and ℝ3, eigenvectors can be understood geometrically as arrows that are scaled by 

the transformation or algebraically as the solutions to the eigenequation, but students 

may not be able to understand these interpretations from the start (Hillel, 2000; Wawro 

et al., 2019). Dorier and Sierpinska (2001) suggest that the many representations might 

contribute to the difficulties faced by students learning linear algebra. Wawro et al. 

(2018, p. 275) claim that research on the teaching and learning of eigentheory is “a 

fairly recent endeavour and is far from exhausted”. In accordance with that, this study 

aims to contribute to the research on students’ understanding of the concepts of 

eigenvectors and eigenvalues, by investigating which characterisation of eigenvectors 

and eigenvalues the participants chose in an early stage of their education on linear 

algebra. We work with the following overarching research question:  

What characterises the students’ conceptions of eigenvectors and eigenvalues? 
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THEORY 

Concept image and concept definition 

To describe our insight into the conceptions that the participants of our study had in the 
field of eigentheory, we make use of the terms concept image and concept definition, as 
introduced by Tall and Vinner (1981). The concept definition is a verbal definition that 
explains the concept in a precise and non-circular way (Vinner, 1983). According to Tall 
and Vinner (1981), it may be the result of rote learning of a formal concept definition, 
that is, a definition accepted by the mathematical community, often presented in lectures 
and textbooks. Alternatively, it can be the students’ own reconstruction of it, that is, his 
or her personal concept definition (Tall & Vinner, 1981). For many people, there is also 
the concept image (Vinner, 1983). Tall and Vinner (1981) describe the concept image as 
consisting of all the cognitive structures associated with a concept. It can be non-verbal, 
but it might be translated into words. Thus, the concept image may consist of various 
representations as well as examples and non-examples associated with a concept. It is 
individual and dynamic, in contrast to a formal concept definition, which can be 
considered objective and constant (Tall & Vinner, 1981). One’s concept image and 
concept definition may be more or less overlapping, contradictory or for some people, 
the concept image may be non-existent. According to Vinner (2002, p. 69), having a 
concept image is a necessary condition for understanding: «To understand, so we 
believe, means to have a concept image.». Given this, we argue that describing the 
students’ concept image can, to some extent, provide information of their understanding 
of these concepts. Using this terminology, the overarching research question could be 
rephrased as follows:  

What characterises the students’ concept images and concept definitions of 

eigenvectors and eigenvalues? 

However, as an individual’s concept image may be vast and multi-faceted, it is our 
perspective that it cannot be described in full detail in the scope of this study. Thus, we 
find it necessary to restrict our inquiry of students’ concept images to specific aspects of 
them. In the following, we will explain our interpretation of Hillel's modes of 
description, the aspect of formalism, and how these ideas have helped in shaping two 
supporting research questions. 

Modes of description 

Hillel (2000) explains that a typical course in linear algebra applies several modes of 
description to objects and operations, as well as the transfers between them. These 
include the abstract, the algebraic and the geometric mode, and they can be applied to 
vector spaces of all dimensions. Within them, vectors and transformations have different 
terminology, notation, and representations associated with them. The abstract mode of 
description uses formal language and concepts from the general 𝑛-space like dimension, 
kernel and vector space. The algebraic mode concerns the concepts from the more 
specific theory of ℝ𝑛. Here, vectors are 𝑛-tuples and key topics include matrices, rank 
and solving linear systems. In the geometric mode, vectors can be considered as arrows, 
directed line segments or points, and transformations can be understood as 
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corresponding to spatial actions, like rotations and translations. In this mode, key 
concepts like orthogonality can be visualised in 2- and 3-space but are used 
metaphorically in the general part of theory (Hillel, 2000). 

The modes are different but not entirely disjoint. According to Hillel (2000), teachers 
make shifts within and between modes easily and frequently during lectures. However, 
several researchers have suggested that students struggle to work with these transfers 
(e.g. Lapp et al., 2010; Sierpinska, 2000; Stewart 2018). In particular, when working 
with ℝ𝑛, moving from the abstract to the algebraic mode can be a particularly confusing 
shift for students (Dorier & Sierpinska, 2001; Hillel, 2000). Hillel (2000) notes that the 
ability to understand how vectors and transformations can be represented differently 
within and between modes is key to understanding linear algebra. To further explore this 
aspect of students’ concept images, identifying possible preferences and challenges they 
may have with these modes and transfers, we add a supporting research question:  

1. What modes of description do the students use to explain the concepts of 
 eigenvector and eigenvalue? 

The aspect of formalism 

Another great challenge for students learning linear algebra is its formal character 
(Dorier, 2017). According to Dorier (2017), Robert and Robinet conducted research in 
France in the 1980s, showing that students felt overwhelmed by the many new 
definitions and theorems, and the students expressed concern with the use of formalism. 
Dorier et al. (2000) have researched students' difficulties with the generalised part of 
linear algebra, and they call this the obstacle of formalism. According to Dorier and 
Sierpinska (2001), students also have difficulties with understanding formal concepts in 
relation to their geometric interpretations. However, it is our perspective that the aspect 
of formalism needs further conceptualisation. In our study, we chose to define and 
identify particular elements of mathematical statements as “indicators of (lacking) 
formalism”, as will be worked out in the next section. To further explore the aspect of 
formalism, we pose an additional supporting research question:  

2. What indicators of lacking formalism can be found in the students’ 
explanations of the concepts of eigenvector and eigenvalue? 

In this context, we would like to stress that we do not use the term “lacking” in any 
normative sense here, but only in the function of indicating the absence of something.  

METHODOLOGY 

Setting and participants 

This study took place at the Norwegian University of Science and Technology in 
Trondheim with first- and second-year students in a basic linear algebra course. The 
students were majoring in mathematics and mathematics education. The teaching of this 
course included weekly lectures where the teacher presented key definitions, theorems 
and relevant examples using the blackboard and/or PowerPoint presentations. In 
addition, there were optional weekly exercise classes where the students could discuss 
tasks from the homework with each other and teaching assistants. To gain access to the 
exam, students had to complete and submit a minimum of eight out of twelve of these 
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exercise sets and have them graded by a teaching assistant. Out of the 243 students who 
were enrolled in the course, 52 consented to participate in our study. We admit that our 
results may not be representative for the student body in the course, yet we argue that it 
is sufficient to say something about trends within the group of participants.  

To understand the students' concept images and concept definitions of eigenvectors and 

eigenvalues, we designed four tasks as part of the students’ weekly homework and 

collected the written works of the students. In addition to explaining the concepts of 

eigenvector and eigenvalue in their own terms, students were asked to determine whether 

and why statements about eigenvectors and eigenvalues are true or false, as well as use 

graphic representations to determine whether a given vector is an eigenvector 

corresponding to a matrix, and why/why not. These tasks were designed specifically to 

have students’ work with multiple representations of eigenvectors, and consequently 

modes of description, and to test their abilities to move between them. The students were 

allowed to work on the exercises for one week and all aids were permitted. In this paper, 

we will only present our analyses of the first task and our focus is on part a): «For parts 

a) and b), explain in your own words. You may also use drawings. a) What is an 

eigenvector? b) What is an eigenvalue?». The purpose of this open phrasing was to elicit 

student thinking and learn about their concept images and concept definitions.  

Method of analysis  

The students’ written works were collected through the digital learning platform 
Blackboard, that was used for the organisation of the whole course, and analysed 
qualitatively using a thematic coding approach in two rounds, each having a first and a 
second level. The coding in the first round was inspired by Wawro et al (2019). In the 
first level, descriptive codes were constructed inductively from single words or short 
phrases in the students’ written answers. Codes such as «scalar multiple» or 
«transformation» were assigned to trace the modes of description in the students’ 
answers. In the second level, codes were grouped into themes corresponding to Hillel’s 
(2000) modes of description in an interpretative process.  

For the coding in the second round, the students’ explanations of the concept were 
compared to an “ideal” formal concept definition from the textbook used in the course, 
that is, Elementary Linear Algebra (2020, p. 291) by Anton Kaul:  

 If 𝐴 is an 𝑛 × 𝑛 matrix, then a nonzero vector 𝒙 in ℝ𝑛is called an eigenvector of 

𝐴 (or of the matrix operator 𝑇𝐴) if 𝐴𝒙 is a scalar multiple of 𝒙, that is, for some 

scalar 𝜆. The scalar is called an eigenvalue of 𝐴 (or of 𝑇𝐴), and 𝒙 is said 

to be an eigenvector corresponding to 𝜆.  

This definition contains all necessary specifications of the used symbols and precise 
relations between the occurring concepts and was therefore considered as fulfilling the 
highest relevant standard for formalism in the context of our study. We compared the 
answers of the students with this definition and identified which if these specifications 
were missing. These “lacks” were considered as “indicators of lacking formalism”, and 
the categories obtained in this process are listed in the next section.  
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RESULTS AND ANALYSIS  

Various modes of description 

In this section, examples from students’ works will be presented, together with their 
codes and how they were categorised as relating to the abstract, algebraic or geometric 
mode of description. For the purpose of this analysis, the tasks and the students’ answers 
were translated from Norwegian to English. As the modes are not specific to eigentheory 
and the students gave only short explanations, it was necessary to make our own 
interpretation of this classification and restrict our analysis to single words or short 
phrases used by students. The codes, their explanation and prevalence obtained in the 
first round of coding are given in table 1. From a mathematician's point of view, many 
of these codes are interchangeable. However, we argue that this is not necessarily 
obvious to students and that realising some of these are interchangeable is related to 
having an advanced concept image. Some answers are complex, using both symbols and 
natural language, or connecting the concept of eigenvector to other concepts, while 
others are more condensed. Consequently, some answers were assigned multiple codes, 
while others were given only one or two.  

Algebraic modes of description: Answers that describe eigenvectors by writing a 
symbolic definition similar to the one from the textbook, i.e. 𝐴𝒙 = 𝜆𝒙, were considered 
as using an algebraic mode of description. This was also the case for answers that 
rephrase this relation in natural language, i.e., a discursive definition of eigenvectors. 
From table 1, it is evident that most students described eigenvectors using the symbolic 
definition, a discursive definition or a combination of the two. For example, one student 
wrote: «A vector 𝒙 is an eigenvector if you can write 𝐴𝒙 = 𝜆𝒙, where 𝐴 is a matrix and 
𝜆 is a scalar. More thoroughly explained, 𝒙 is an eigenvector if a matrix multiplied by 
the vector returns the vector scaled by 𝜆.». In this example, the first sentence defines the 
concept of eigenvector as vectors fulfilling the eigenequation. In the second sentence, 
the student tries to elaborate by explaining the equation in natural language. As the 
answer gives both a symbolic and a discursive definition, it was coded accordingly and 
categorised as having an algebraic mode of description.  

Abstract modes of description: Answers that relate eigenvectors to concepts from the 
more general part of theory were considered to have an abstract mode of description. 
Table 1 indicates that fewer answers were assigned these codes, as compared to the codes 
corresponding to the algebraic mode. Out of the abstract codes, «transformation» is the 
most recurrent within the data material, with 15 compared to 1–3 occurrences. The 
following answer was coded as «vector space», «image» and «transformation»: «An 
eigenvector 𝑣 ≠ 0 is a vector in the vector space that doesn’t change direction when it’s 
imaged by a linear transformation. This means that if a square matrix is multiplied with 
this vector, the resulting vector will be a scalar multiple of the eigenvector.». By 
describing eigenvectors in relation to multiple concepts from the more formal and 
general part of theory, the answer contains several elements corresponding to an abstract 
mode of description. As the student described an eigenvector as «not changing direction» 
(i.e., maintaining direction) and as a «scalar multiple», the answer also has elements from 
the geometric mode, and was additionally categorised accordingly.   
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Table 1: The table explains the 13 codes, how often they occur in the answers of the 52 

students and their corresponding modes of description.  

Mode of 

description 

Code  Explanation  Occurrence 

Algebraic  Discursive definition Using natural language to explain the eigenequation, 𝐴𝒙 = 𝜆𝒙. 35 

Symbolic definition Description with the eigenequation, 𝐴𝒙 = 𝜆𝒙. 31 

Linear system  Connects eigenvectors to the solution of a linear system. 1 

Linear  Describing 𝐴𝒙 and 𝒙 as linear.  1 

Abstract  Transformation  Description related to the concept of transformation, using the 

words «transforming», «transformation» etc. 

15 

Span  Description related to the concept of span, using the words 

«spanning», «spans» etc. 

3 

Image  Description related to the concept of image, using the words 

«image», «imaging» etc. 

3 

Vector space  Description related to the concept of vector space, using the 

phrasing «an element of a vector space» or similar. 

2 

Transformation 

definition 

Description with the eigenequation in terms of a 

transformation, e.g. 𝑇(𝒙)  = 𝜆𝒙. 

1 

Geometric  Scalar multiple  Description using the words «scalar multiple», «scaling» etc. 21 

Maintains direction Describing eigenvectors as vectors that do not change direction. 12 

Dynamic changes in 

size 

Dynamic description, using words like «stretching», 

«shrinking» etc. 

5 

Figure  Included a figure or sketch.  5 

Geometric modes of description: Students who described eigenvectors by referring to 
some visual representation in ℝ2or ℝ3 were considered as using a geometric mode of 
description. This includes answers that described eigenvectors as maintaining direction 
or as being scaled under a transformation (or matrix multiplication), as well as answers 
where the student made some sketch showing the relation between the matrix, the 
eigenvector and the eigenvalue. An answer that was coded as both «maintains direction» 
and «dynamic changes in size» is the following: «An eigenvector is a vector such that 
when multiplied by a matrix [it] won’t change direction, but only length.». In this 
example, the student correctly described how a matrix may change the length of an 
eigenvector and how its direction is preserved (however, the option of flipping the vector 
was not apparent in the students’ answer).  
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Indicators of lacking formalism  

The aspect of formalism was evaluated by comparing what was missing from the 
students’ description of the concepts to the formal concept definition in their textbook. 
Table 2 gives an indication about which lacks were most prevalent in the dataset. The 
most common lacks among the students’ answers appear to be not to mention the 
dimensions of the eigenvector 𝒙 (omitted by 42 students), the matrix 𝐴 (omitted by 28 
students) or specify that 𝒙 may not be equal to the zero vector (omitted by 36 students). 
From table 2, it is noticeable that the works of most of the students showed several lacks 
when compared to the formal definition. In the following example, the student correctly 
explained eigenvector and eigenvalue by referring to the symbolic definition, but the 
answer has lacks: «An eigenvector is a vector 𝒙 that can solve 𝐴𝒙 = 𝜆𝒙, where 𝐴 is a 
matrix and 𝜆 is called the eigenvalue.». The student did not specify the dimensions of 
neither the vector («L/vector dimension») nor the matrix («L/matrix dimension»), did 
not rule out the eigenvector to be equal to the zero vector («L/nonzero eigenvector»), did 
not state that 𝜆 is a scalar («L/eigenvalue unknown») and did not explicitly state that the 
eigenvector and eigenvalue correspond to the specific matrix («L/eigenvalue vector» and 
«L/vector-matrix»). In our analysis, we found several examples where it remains unclear 
whether the student was aware of the connection between the matrix, the eigenvector 
and the eigenvalue. For instance, one student wrote «An eigenvector 𝒙 is a vector that is 
scaled when multiplied by a matrix.». This could either indicate that the student thought 
of an eigenvector as corresponding to a specific matrix, or a misconception that an 
eigenvector is scaled by every matrix. In another case, the student did not mention the 
matrix at all: «An eigenvector is a vector that can be scaled but does not change 
direction.». Furthermore, three students gave answers where it is ambiguous if they were 
aware of all the ways a matrix may act upon its eigenvector(s). For instance, one student 
wrote: «An eigenvector is a vector that is stretched either in a positive or negative 
direction [...].». This could indicate the idea of an eigenvector as only being stretched 
(not shrunk etc.) when multiplied by the corresponding matrix.   

Use of visual representations: In ℝ2 and ℝ3, eigenvectors and eigenvalues have visual 
representations. The task asked the students to explain eigenvectors and eigenvalues, but 
they were also encouraged to draw a sketch to illustrate the concepts. Out of the 52 
students that participated in this study, only five drew a sketch supplementing their 
verbal description. Figures 1 and 2 give two examples of such sketches. In figure 1, the 
student drew a coordinate system and multiple arrows pointing in opposite directions to 
each other. In figure 2, the student drew the eigenvector 𝒙 and the vector 𝐴𝒙 in a 
coordinate system with scales, as well as the equations 𝐴𝒙 = 𝜆𝒙 and 𝐴𝒙 = −2𝒙, 
thereby indicating the relationship between the matrix, the eigenvector and the 
eigenvalue 𝜆 =  −2. Given this, the sketch in figure 2 is more detailed than the sketch 
in figure 1. However, as the sketch in figure 1 is not restricted to a particular 
eigenvector and eigenvalue, it could be interpreted as more general and dynamic. The 
student wrote that «An eigenvector says about how much [sic] matrix stretches/shrinks 
things in a direction. The eigenvalue is how much [sic] eigenvector stretches/ 
shrinks.». This answer could indicate a developing concept image where the student is 
able to connect the concept of eigenvector to the geometric idea of scaling. The usage 
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of very informal language here, for instance the usage of the term "things", leaves it 
unclear what object the student thought is being stretched.  

Table 2: The table explains the seven codes for lacks and how often they occur in the 

answers of the 52 students.  

Code  Explanation  Occurrence 

L/vector 

dimension  

The student does not specify the dimension of the eigenvector.  42 

L/nonzero 

eigenvector  

The student does not specify that the eigenvector cannot be equal to the zerovector. 36 

L/matrix 

dimension  

The student does not specify that the matrix needs to be square.  28 

L/eigenvalue-

vector  

The student does not specify that the eigenvalue and eigenvector form a corresponding 

pair. 

27 

L/vector-matrix  The student does not connect the eigenvector to a specific matrix.  23 

L/eigenvalue 

unknown  

The student does not specify that the eigenvalue is a scalar.  7 

L/act  The student does not describe the possible ways (i.e. stretching, shrinking, leaving 

unchanged, rotating by 180 degrees) in which the matrix may act upon its eigenvector(s). 

3 

L/matrix  The student does not mention matrix or linear transformation at all.  1 

DISCUSSION AND CONCLUSION  

The purpose of this study was to gain more insight into students’ descriptions of 
eigenvectors. Most of the students used an algebraic mode of description, which is also 
the mode the book and the lecture set their focus on. However, several students 
implemented multiple modes in their answers, indicating the development of their 
concept images. While the usage of only one mode of description in their answer cannot 
be considered as a proof of a concept image on a low level of development, we do think 
that an answer including several modes of descriptions and, even more significantly, 
some meaningful connections between these modes, can be considered as a strong sign 
of a further developed concept image. Only a handful of students included a sketch in 

Figure 1: Student sketch apparently 

depicting the act of scaling.  

 

Figure 2: Student sketch showing the correspondence 

between the matrix, its eigenvector and eigenvalue. 
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their answer, despite there being an explicit suggestion to use drawings. This could be 
because the majority overlooked it, ignored it or perhaps because they did not know how 
to provide an appropriate sketch. Furthermore, few students connected the concept of 
eigenvector to the more abstract concepts of image, span or vector space. Of the students 
who did describe eigenvectors using concepts from the more formal part of theory, the 
majority used the concept of transformation. However, we wonder if students are aware 
of the nuances that distinguish a matrix from a transformation.   

The works of the students presented a variety of lacks that may or may not result from 
flawed concept images. However, the results obtained in this study do not allow us to 
say for certain that these specific students had such misconceptions. It is also difficult to 
tell to which extent the rather open formulation of our task influenced the formalism of 
the answers given by the students. Concerning formalism, we got the impression that 
students are not used to focusing on this aspect in their weekly homework. If a higher 
level of formalism in the students’ works is indeed desired by teachers, it may be 
constructive to target this shortage by emphasising why formalism is required in 
mathematical contexts. Furthermore, a discussion (either teacher-student or student-
student) or task about «what if» could be productive. For example: «What would happen 
if we allowed the zero vector to be an eigenvector?». 

Our analysis showed that several students gave a discursive rephrasing (as described in 
table 1) of the eigenequation (i.e. 𝐴𝒙 = 𝜆𝒙), omitting aspects of the formal concept 
definition such as the correspondence between the eigenvector, eigenvalue and its 
matrix. Other students defined eigenvectors without mention of the matrix or 
transformation at all. As eigenvectors are derived from their corresponding matrix (or 
transformation), these answers were interpreted as incomplete. However, whether such 
incomplete definitions were due to a lack of formalism, some losses caused by the 
translation from a (possibly non-verbal) concept image to a written description or actual 
misconceptions remains unclear. In future studies, we will work with similar research 
questions and address the challenges presented in this paper. We acknowledge that it can 
be problematic to characterise students’ concept images from their written answers 
alone. We believe that by also analysing the students’ answers to the other tasks we 
designed and conducting interviews with students, we can gain deeper insight into their 
concept images, and consequently, their procedural and conceptual understanding of 
eigenvectors and eigenvalues. Building on this, we aim to develop tasks that explicitly 
address changes between different representations and modes of description.   
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Refutation feedback on student proofs beyond counter-examples 
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Feedback on students’ proofs is often intended to promote proof comprehension, yet 
formulating such feedback is a delicate task. In this study we investigate how refutation 
can be used for this purpose. We propose to extend Lakatos’ notion of heuristic 
refutation to feedback that contains a refutation argument, possibly incomplete. Such 
feedback is heuristic in the sense that interpreting and utilizing it invites mathematical 
reasoning that can contribute to development of proof comprehension. Based on data 
from a Real-Analysis course, we show the importance of considering different kinds of 
refutation that are not based only on counter-examples, and demonstrate the nuances 
and subtleties of formulating feedback based on such refutation. Our findings suggest 
how professors can purposefully tailor feedback for particular didactic goals.  
Keywords: Teachers’ practices at the university level, novel approaches to teaching, 
professor feedback, heuristic refutation, real-analysis.  
INTRODUCTION 
Students’ engagement with proof outside class is a central aspect of proof-oriented 
mathematics courses (Rasmussen et al., 2021). Students listen to their professors as 
they present proofs for the first time in lectures, and are expected to continue studying 
these proofs after class (Pinto & Karsenty, 2018; Weber, 2012). Weber (2012) observes 
that mathematics professors expect undergraduate students to do substantial work in 
order to understand a proof after it was presented in class, dedicating up to two hours 
to review proofs that are under ten lines long. In addition to reviewing the material that 
was presented in class, students are typically also expected to invest a substantial 
amount of time in writing their own proofs as part of their coursework, in order to 
promote further learning of proofs presented during the lectures (Rupnow et al., 2021). 
Feedback on students’ proofs is widely recognized as having a key role in shaping and 
facilitating student learning between lectures (Moore, 2016; Pinto & Karsenty, 2018; 
Rasmussen et al., 2021). According to Moore (2016), professors’ feedback on students’ 
proofs is important for conveying norms and expectations, and for directing students’ 
attention towards certain facets of the material, thus promoting proof comprehension.  
While there has a been surge of empirical research of undergraduate mathematics 
teaching practices over the last decade, most attention has been given to what transpires 
inside classrooms, and research of professors’ feedback on proofs that students submit 
as part of their coursework is fairly limited (Rupnow et al., 2021). Moore (2016) 
investigated professors’ grading of students’ proofs, and found that substantial 
variation in the scores assigned to similar proofs reflected to what extent flaws in the 
proofs indicated flawed comprehension. Moore’s findings were corroborated and 
elaborated by Miller et al. (2018), who also highlighted the link between proof grading 
and students’ apparent comprehension of the proof. Both Moore (2016) and Miller et 
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al. (2018) concluded that when grading students’ proofs, instructors were assessing not 
only the correctness of the proof or whether it adheres to the norms of proof writing, 
but also (and mainly) students’ proof comprehension. 
There is preliminary evidence that, similarly, feedback on proof aims to promote proof 
comprehension (Byrne et al., 2018; Pinto & Karsenty, 2018, 2020). Evidently, 
professors often opt to leave the required revision – or even the flaw – implicit in their 
feedback, and instead highlight certain locations in the proof, ask eliciting questions or 
request elaborations (Moore, 2016; Byrne et al., 2018; Pinto & Karsenty, 2020). Such 
feedback may be viewed as an invitation for the student to engage with the flawed 
proof not only to correct it, but also to promote proof comprehension. However, Byrne 
et al. (2018) examined students’ interpretations of six types of feedback and found that 
when instructors’ feedback did not explicitly provide the required revision, students 
typically failed both to identify the flaw in their proof and to understand how they are 
expected to revise it. Conversely, Byrne et al. (2018) observed that when feedback was 
explicit regarding the desired revision, students often followed the prescription in the 
feedback without being able to explain what was flawed in their original proof or how 
the revision addressed flaws. 
In this paper we focus on a type of feedback not examined by Byrne et al. (2018), which 
was used extensively and specifically for promoting proof comprehension in a course 
we examined in previous studies (Pinto & Karsenty, 2018, 2020). The professor in this 
course, whom we call Mike, opted to provide students with incomplete refutations of 
their proofs, arguing that such feedback often enables students to identify and fix the 
flaw in their proof almost on their own, while also promoting comprehension of the 
proof. We recognize in student engagement with this kind of feedback an interesting 
and potentially useful extension of the notion of heuristic refutation (de Villiers, 2010; 
Komatsu & Jones, 2021; Lakatos, 1976; Pinto & Cooper, under review). Furthermore, 
we observed that Mike used various kinds of refutation arguments, suggesting that 
heuristic refutation can be extend beyond the case of counter-examples considered in 
the literature. In this paper we introduce the notion of heuristic refutation feedback 
(HRF) and explore the following question: What kinds of refutation, beyond counter-
example, can be formulated as HRF, and how?  
HEURISTIC REFUTATION FEEDBACK 
The intricate connection between proof and refutation has a long and respected history, 
originating from the works of Lakatos (1976) that highlighted how an interplay 
between proving and refuting can generate new mathematical knowledge (Komatsu & 
Jones, 2021). Drawing on works of Lakatos (1976) and de-Villiers (2010), Komatsu 
and Jones (2021) use the notion heuristic refutation for a mathematical activity that 
goes back and forth between conjecturing, attempting to prove, discovering counter-
examples, and revising the conjecture, its proof, or even the definition of mathematical 
objects at stake. Komatsu and Jones (2021) stress that the term heuristic comes to 
emphasize the revision activity that stimulates growth of knowledge following the 
refutation, not the refutation itself. Counter-examples play a key role in the heuristic 
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refutation process by providing a trajectory for moving forward: the conjecture or the 
proof needs to be revised so as to neutralize the counter-example.  
Both Komatsu and Jones and de-Villiers follow Lakatos in addressing a process of 
discovery in which a statement is not known to be true and may end up being revised 
if refuted. Lakatos (1976) called refutation of the statement global refutation, as 
opposed to local refutations, which challenge only one step in the proof or some aspect 
of the domain of validity of a statement. We wish to extend the notion of heuristic 
refutation to students’ flawed proofs. Here, the global statement is known to be valid 
and will not be revised, yet we will claim that a particular kind of feedback on flawed 
proofs can invite students to engage in heuristic growth of knowledge when making 
sense of the feedback, reviewing their flawed proof with respect to the feedback, and 
attempting to revise their proof. To draw students into such heuristic activity, the 
feedback would need to unequivocally show that the proof is invalid, while leaving 
space for heuristic activity. Accordingly, we define heuristic refutation feedback 
(HRF) as any feedback on a flawed proof that contains a mathematical argument that 
indirectly implies that the proof is invalid. Here we extend the notion of global 
refutation to include cases where the refutation does not invalidate the statement, yet 
does reveal a structural failure in the proof, indicating that a local fix may not suffice, 
and that a different approach may be required. We emphasize that this definition 
extends Lakatos’s and de Villiers’ notion of heuristic refutation, which refers solely to 
engagement with counter-examples (local or global). While the literature recognizes 
different types of proof, which may have “diverse pedagogical properties and didactic 
functions in mathematics education” (Hanna & de-Villiers, 2008, p. 332), literature on 
refutation is generally restricted to counter-examples, and little is known about other 
kinds of refutation and how these may be utilized in teaching, particularly in the context 
of heuristic refutation. 
Our definition of HRF extends the notion of heuristic refutation also in how the 
refutation argument may formulated. By definition, HRF contains a (possibly 
incomplete) refutation argument. The reconstruction of an incomplete argument can be 
a challenging task that entails inference and invention of implicit connections between 
the feedback and the proof. As such, it can be seen as a case of abductive reasoning, 
and illustrated with Toulmin’s (1958) model of arguments, as discussed by Komatsu 
and Jones (2021). In this model, an argument includes, among other things, a claim 
(C), datum (D) that supports the claim, and a warrant (W) that describes how the datum 
supports the claim. Abductive reasoning, as discussed by Komatsu and Jones (2021), 
is a process that seeks to explain a surprising observation (claim) through inference of 
hypotheses (data) and recognition or invention of warrants. Komatsu and Jones (2021) 
distinguish between three types of abductive reasoning, according to whether students 
need to complete the missing datum or provide a missing warrant. While in the 
classroom activities Komatsu and Jones considered the teacher has a key role in 
orchestrating student reasoning, in the context of HRF, the only way to facilitate 
heuristic refutation is through careful formulation of the feedback. This includes not 
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only selecting what to refute in the student’s proof, and constructing an adequate 
refutation, but also deciding which elements of the refutation argument to present and 
how. Thus, we extend Komatsu and Jones’s use of Toulmin model in two ways, by 
allowing each of the elements of the refutation argument, including the claim, to be 
stated implicitly, not only completely omitted. We exemplify and discuss these 
variations below.  
METHODOLOGY 
Data for this study were collected in a Real-Analysis course. The professor (Mike) is a 
mathematician who has been teaching for more than two decades and has taught this 
specific course several times. Prior research on Mike’s goals and expectations with 
respect to this course (Pinto & Karsenty, 2018) revealed that he intended his feedback 
on students’ proofs to be restricted as much as possible to refutations, stating that this 
kind of feedback affords opportunities for students to develop proof comprehension by 
looking for their own errors and for ways to correct them; develop the practice of 
testing their reasoning by trying to refute it; and develop a notion of validity of a proof 
that is absolute and independent of the professor’s personal inclinations. Every week, 
Mike assigned a list of propositions to prove and examples to construct. Students 
submitted these proofs and examples electronically every few weeks. Mike did not 
grade students’ submissions but provided written feedback. Seven students volunteered 
to participate in this study. The data corpus included a total of 57 submissions (5-12 
submissions per student), and Mike’s 2709 markings and comments.  
Our first step in the analysis was to review all Mike’s feedbacks to locate those that 
qualify as HRF and identify the refutation arguments therein. Often the feedback did 
not provide a fully argued refutation. In some cases, it was first necessary to identify 
what was being refuted, in particular in cases where the feedback refuted an implicit 
statement in the student’s proof. When disagreements between the authors arose, they 
were discussed until agreement was achieved. Drawing on Toulmin’s model of 
argumentation (1958) and on its application to heuristic refutation (Komtsu & Jones, 
2021), we decomposed refutation arguments into three components (Claim, Datum, 
Warrant). As refutation argument typically coincided to some extent with arguments 
in the students’ proof, we occasionally applied Toulmin’s model to arguments within 
the students’ proofs as well. Comparing the arguments in the feedback and in the proofs 
helped highlighting subtle and nuanced aspects of Mike’s formulation of HRF. In this 
paper we focus on HRFs in which the datum was not a counter-example and show how 
Mike used different kinds of refutation while formulating HRF.  
FINDINGS 
At the beginning of the course, Mike defined the real numbers (ℝ) as an extension of 
the rationale numbers (ℚ) that includes non-repeating decimals and asked that students 
will prove at home that this definition implies that every non-empty bounded subset of 
ℝ has a least upper bound (Proposition 1). Mike then showed in class how Proposition 
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1 implies that ℝ is connected. One student, Alex, wrote a proof of Proposition 1 that 
relied implicitly on the connectedness of ℝ, and Mike provided the following HRF: 

HRF1 
Your argument is not only wrong, but it cannot be fixed, because you are not 
using any definition of real numbers, and hence whatever you write applies 
to ℚ [the rational numbers], for which the whole statement is false. 

In this feedback, Alex not only learns that the proof is flawed, but is invited to verify 
that the theorem does not apply to rational numbers, then retrace the line of reasoning 
in the proof, only with rational numbers instead of real numbers, recognize where the 
connectedness of ℝ is implicitly used, and realize that the proof of connectedness of ℝ 
relies on the proposition she is trying to prove. While we have not included Alex’s 
proof, we note that refuting it with a counter-example would not be straight-forward, 
since the proposition is correct, and the proof does not contain a false statement. Mike’s 
feedback does not specify the critical flaw in Alex’s proof or the required revision, but 
in inviting Alex to revisit the definition of real numbers, it provides her with a route 
for recognizing the flaw on her own. We refer to feedback that derives a false statement 
by adapting the proof or a part of it as refutation by false implication.  
We stress that HRF need not rely on global refutations, as can be seen for example in 
the case of the Extreme Value Theorem (EVT), which posits that if f is a real-valued 
continuous function on a closed bounded interval I then f attains both a maximum and 
a minimum in I. In the lecture, Mike emphasized that EVT is not as obvious as it may 
seem, noting that an analogous statement for rational-valued functions would not be 
true, even if restricted to polynomials. In the home assignment, students were asked to 
prove that there exists a polynomial f(x) with rational coefficients that does not achieve 
an extremum when restricted to rational values in the interval I=[0,1] (Proposition 2). 
All the students’ proofs of Proposition 2 roughly followed the same proof scheme, 
which can be described as follows:  

Step 1. Define a cubic polynomial f with rational coefficients.  
Step 2. Identify the critical points of f and ascertain that one or both are irrational. 
Step 3. Conclude that as a rational-valued function, f does not attain both a 

maximum and a minimum in I.  
Notably, Step 1 and Step 2 do not necessarily imply Step 3, since f may attain its 
(global) maximum or minimum in I at the rational endpoints of I. Moreover, in general, 
polynomials may have both rational and irrational critical points. Thus, Step 3 should 
be warranted by showing that the cubic polynomial f achieves its maximum or 
minimum in [0,1] at the irrational critical points identified in Step 2. Most students left 
the warrant for step 3 implicit, as illustrated for example in Bailey’s proof. Bailey 
defined 𝑓(𝑥) = !

"
𝑥# − 2𝑥$ + %

&
𝑥, calculated the roots of f’, and stated:  

Utilizing the quadratic formula, we see that the roots of the derivative of this function are 
[...] irrational. It is clear that the maximum and minimum occur at these irrational roots, 
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and thus the polynomial does not achieve its maximum or minimum value for 𝑥 ∈ 𝑄 over 
the interval between 0 and 1. 

Mike responded on Bailey’s proof in the following way: 

HRF2 f(x)=x does not have roots of the derivative (even among real numbers!) but 
it does achieve its maximum and minimum values on [0,1]. 

Notably, the polynomial Bailey proposed achieves its extrema in I at irrational points, 
and therefore has no maximum or minimum when restricted to 𝐼 ∩ ℚ. Moreover, the 
proof does not contain an explicit false statement. Nonetheless, the implicit warrant 
may be incorrect. Mike’s feedback retraces Bailey’s line of reasoning, drawing on the 
same data – the derivative of f(x) has no irrational roots – while replacing the 
polynomial f proposed by Bailey with f(x)=x, thus seemingly reaching a proof to an 
analogous statement, which is nonetheless false. Unlike HRF1, here the refutation is 
local as the proof could be readily fixed by adding an explicit (correct) warrant. 
We note that formulating HRF to Bailey’s proof entails attributing a flawed warrant to 
the unwarranted claim “It is clear that the maximum and minimum occur at these 
irrational roots”. The warrant Mike’s feedback attributes is: For every polynomial f, if 
f’(x) has no rational roots then f(x) does not obtain a maximum or minimum in 𝐼 ∩ ℚ. 
We note that Mike could have chosen to attribute other warrants, for example: For 
every closed bounded interval [a,b], if f’(x) has no roots in [a,b] then f(x) does not 
obtain a maximum in [𝑎, 𝑏] ∩ ℚ. In fact, this alternative path is reflected in Mike’s 
HRF to Adrian’s proof, which presented a line of argument very similar to Bailey’s:   

HRF3 

These are critical points, but what makes you think that the maximum and 
minimum values of this f are achieved on [0,1] at these points? The points do 
not even depend on the interval! Do you mean that the maximum and 
minimum values on every interval [a,b] are the same? But this cannot be, 
because the polynomial is unbounded both above and below. 

Attributing a false warrant to justify an unwarranted claim in a student’s proof is not 
the only way to formulate HRF. In some cases, Mike’s feedback altered data used 
explicitly but invalidly in the student’s proof, as evident in his feedback to Dylan’s 
proof of Proposition 2. Dylan, defined 𝑓(𝑥) = $

#
𝑥# + 2𝑥$ + 𝑥 and stated: 

To show [Proposition 2] we can demonstrate that the maximum value of the polynomial in 
this interval has no corresponding point in the specified domain. Since neither solution [of 
the equation f’(x)=0] is rational, we conclude that no least upper bound exists. 

 Mike responded to Dylan’s proof in the following way: 

HRF4 
Note that both values of x [in which f’(x)=0] are outside the interval [0,1]. 
Thus, according to your logic, the range of your function does not have the 
least upper bound even over the real numbers. Contradiction? 

Dylan’s proof is different from Bailey and Adrian’s proofs in that the polynomial it 
proposed is in fact a non-example, as the roots of f’ reside outside the interval I, which 
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implies that f is monotonic on I and thus obtains both its minimum and its maximum 
at the (rational) endpoints of I. Rather than refuting Dylan’s proof by a counter-
example, Mike’s feedback drew on the misused data – the critical points – highlighting 
that their irrationality plays no role in the proof, and therefore an analogous line of 
reasoning could be applied to the same data only with f as a real-valued function, and 
reach the same conclusion in contradiction to EVT.  
The cases considered so far admitted a wealth of refutation arguments. But, in some 
cases, formulating refutation feedback was not straight forward. For example, Charlie’s 
proof defined 𝑓(𝑥) = %

#
𝑥# − %

$
𝑥, found a root x of f’(x), and stated:  

You can see that the first derivative equals 0 at x (x is between 0 and 1). The second 
derivative is positive at x, indicating that we've found a minimum in this interval, and x is 
not rational. However, the second derivative equals 0 at x = 0. In order to ensure that we 
have found a minimum for the interval [0, 1], we still need to check that the value of f(x) 
is less than f(0). 

Unliked the proofs of Alex, Bailey and Dylan, Charlie’s proof provides an explicit 
warrant to why the irrationality of the critical point of f implies that f, as a rational 
function, does not obtain a minimum in the interval I. Charlie checks the sign of the 
second derivative of f at the irrational critical point 𝑥 ∈ 𝐼, and rightly concludes that x 
is a local minimum of f. However, Charlie also notes that the second derivative of f is 
negative at every point of I, except that it vanishes at zero, and wrongly argues that in 
order to show that x is a minimum of f in I it is necessary and sufficient that f(x)<f(0). 
Notably, whereas Charlie’s line or reasoning is not valid, its conclusion for the 
particular f and I is true: x is indeed the unique minimum of f in I, and 0 is the unique 
maximum. Thus, showing that Charlie’s reasoning is not always true entails the non-
trivial task of constructing (or suggesting the existence of) an example in which all the 
data Charlie drew on can be used in the same way, leading to a false conclusion. Mike’s 
feedback does just that: 

HRF5 

Apparently you see some connection between the sign of f''(0) and extremal 
values. Here is a counterexample: Consider f on the closed interval [0,10]. It 
has no local maxima, its 2nd derivative is positive on (0,10], and f(0)=0 is not 
a maximum, since, say f(2) = 5/3 > 0. Thus, according to your logic, the 
function does not achieve a maximum value on [0,10]. 

By expanding the interval from [0,1] to [0,10], Mike’s feedback demonstrates that the 
maximum of f is not necessarily achieved at a point where the second derivative is non-
negative. The warrant Mike’s feedback attributes to Charlie’s proof and refutes is: The 
minimum of f in I is achieved at points in which the sign of f’’ is not negative. Notably, 
this warrant is alluded to at the beginning of Mike’s feedback to Charlie: “Apparently 
you see some connection between the sign of f’’(0) and extremal values”.  
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So far, we have examined HRF based on global and local refutations by false 
implication. Another type of refutation argument Mike used in his feedbacks is 
refutation by contradiction. This refutation argument, similarly to proof by 
contradiction, first assumed the student’s proof or some 
statement therein is correct, only to reach a contradiction 
to the theorem that needs to be proved (and that is known 
to be true). For example, in one of the lectures, Mike 
presented the Peano curve as the limit of a sequence of 
curves 𝜙': [0,1] → [0,1]$. The curve 𝜙% is defined as the 
curve that starts from the point (1,1), moves along the 
four edges of the unit square until it returns to (1,1), and 
then moves along the diagonal of the unit square to the 
point (0,0). The curve 𝜙'(% is defined reclusively by 
replacing every diagonal line in (the image of) 𝜙' with a 
curve that consisted of 8 parts, as illustrated in Figure 2. 
Points on the unit interval mapped to horizontal or 
vertical segments on the Peano curve were labeled by ‘s’. 
The students were asked to prove that the Peano curve is surjective. One student started 
the proof by claiming that “every point on the unit interval eventually falls into an 
interval labelled as s”. Mike responded with the following feedback: 

HRF6 All ‘s’ points are mapped to points of the square with one coordinate ra-
tional; so, they don't cover the square. This contradicts the theorem. 

Taking (implicitly) the student’s claim as data, HRF6 posits that points of type ‘s’ are 
mapped to plane points with one rational coordinate. Combining these two pieces of 
data together leads to the false conclusion that the Peano curve is not surjective.  
We conclude by pointing out that refutation by counter-example can be seen as a case 
of refutation by false implication. To illustrate this, we return to Proposition 1. One 
student stated in the proof that “every closed set [of the real numbers] can be written 
as the union of only finitely many closed intervals”. Mike addressed this statement: 

HRF7 This is bluntly wrong: The Cantor set does not contain a single interval, but it 
is uncountable. 

Here, the Cantor set is given as a counter-example to the false statement. At the same 
time, the argument can also be read as a false implication: applying the statement to 
the Cantor set implies that it is a finite union of closed intervals, which is absurd. We 
stress that the converse is not true, since, as demonstrated above, refutation by false 
implications can be used to refute proofs that do not admit false statements, and thus 
cannot be refuted by a counter-example. 
DISCUSSION 
This study, situated in the under-studied area of undergraduate mathematics teaching 
and learning outside class, aims to unpack nuances of a particular practice of 

Figure 2: Construction of 
the Peano Curve 
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undergraduate mathematics teaching – providing written feedback on students’ flawed 
proofs. The work is guided by the premise that feedback on students’ flawed proof can 
support development of proof comprehension rather than merely support the writing of 
correct proofs. We have proposed heuristic refutation feedback (HRF) as an extension 
of heuristic refutation (de Villiers, 2010; Lakatos, 1976) to conceptualize the activity 
of interpreting and utilizing refutation feedback on flawed proofs, and have 
demonstrated that formulating such feedback can be a delicate and thoughtful practice. 
We have extended the notion of heuristic refutation (de Villiers, 2010, Komatsu & 
Jones, 2021) in two ways. First, we go beyond the notion of abductive reasoning 
(Komatsu & Jones, 2021), where a claim based on observation was taken as given and 
it is up to students to propose datum and/or a warrant, and consider the heuristic activity 
of completing a refutation argument that may contain only a claim, only datum, only a 
warrant, or any combination thereof. Second, we go beyond refutation by counter-
example to consider refutation by false implication. In this we are extending the space 
of pedagogical applications of refutation in mathematics education. 
Formulation of HRF was shown to involve several different pedagogical decisions that 
relate to the construction and selection of the refutation argument. Typically, students’ 
flawed proofs can be refuted in more than one way. There is often more than one flaw 
in a flawed proof, and different flaws may indicate different issues of proof 
comprehension. Thus, formulating HRF may entail a decision about what to refute. 
Presumably, and this needs to be studied further, highlighting different flaws can 
provoke different engagement of students with their proofs, their flaws, their revisions 
and their comprehension thereof. Formulating HRF entails also decisions about how to 
refute. We have delineated two kinds of refutation arguments – refutation by false 
implication and refutation by contradiction, in addition to the familiar refutation by 
counter-example. We have demonstrated that in some cases, more than one kind of 
refutation argument is applicable. The literature suggests that different kinds of proof 
have different pedagogical advantages and afford different opportunities for learning 
(Hanna & de Villiers, 2008), and further research is need to investigate whether and in 
what sense this is also is also true for different kinds of refutation. 
We have demonstrated how in some cases proofs may be flawed even if they do not 
contain an explicit invalid statement. Such proofs cannot be refuted directly by means 
of a counter-example, yet they may be refuted by identifying (or attributing) a flawed 
warrant and invalidating it. We have demonstrated how different warrants may be 
attributed to the same flawed proof, and lead to different HRF. We note that 
formulation of HRF entails also decisions about the extent to which different elements 
of the refutation argument (claim, datum, warrant) are explicated in the feedback 
(explicitly, implicitly or omitted). This aspect of the formulation of HRF is discussed 
in detail in a separate publication (Pinto & Cooper, under review). Thus far, the 
potential affordances of HRF for proof comprehension have only been substantiated 
theoretically (Pinto & Cooper, under review). Empirical research on how students 
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engage with this kind of feedback, and how this engagement can contribute to the 
development of proof comprehension remains for future research.  
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In this paper we present the first results of an ongoing PhD study which investigates 

eigentheory teaching and learning processes. Drawing on a sociocultural theory, 

namely the theory of objectification, we study students’ collective meaning-making 

processes. A specifically designed activity, aimed at supporting these objectification 

processes, is described. University engineering freshmen, working in small groups, are 

prompted to jointly reconceptualize eigentheory notions and rules and to solve some 

problems. Then a few excerpts of one small group’s work are presented and analysed 

with a focus on students’ use of different semiotic resources, their mutual relationship 

and evolution. 

Keywords: teaching and learning of specific topics in university mathematics, teaching 

and learning of linear and abstract algebra, eigentheory, objectification, embodiment. 

INTRODUCTION 

Linear algebra is widely recognised to be a major obstacle for university freshmen. A 

growing body of literature has investigated the sources of these difficulties and the way 

students comprehend linear algebra concepts. Nevertheless, only a small number of 

studies has focused on eigentheory teaching and learning processes, despite its 

importance in different applications in STEM subjects. This paper describes the first 

results of an ongoing PhD project, concerning the didactics of this specific topic.  

As described by Stewart & Thomas (2006), when eigenvector and eigenvalue concepts 

are introduced to students, the focus is turned too soon to the manipulation of algebraic 

representations. In a standard instructional sequence, the formula to compute 

eigenvalues, i.e. 𝑑𝑒𝑡(𝐴 − 𝜆𝐼)𝑥 = 0,  follows their formal definition almost without 

delay. Immediately after, the algorithm to compute the eigenvectors associated to each 

eigenvalue is given. We agree that in this way students are provided with a trusty 

procedure and do not feel the need to elaborate further these concepts’ definitions. As 

a result, “the strong visual, or embodied metaphorical, image of eigenvectors is 

obscured by the strength of this formal and symbolic thrust” (p.185). Most of the few 

studies concerning this topic, agree on the fact that consequently students prefer to rely 

on the standard algebraic procedure rather than draw on conceptual understanding to 

solve exercises and problems (Bouhjar et al., 2018; Salgado & Trigueros, 2015). 

Nevertheless, some of these researches bring evidence on how students’ understanding 

of eigentheory could be enhanced by the use of dynamic-geometry software (Gol 

Tabaghi & Sinclair, 2013), inquiry-oriented instruction (Bouhjar et al., 2018; Wawro 

et al., 2019) or modelling activities (Salgado & Trigueros, 2015). However, the 

comprehension of how students develop and coordinate the interpretations needed for 
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a deep conceptual understanding of eigentheory is not so clear and deserves further 

investigation (Bouhjar et al., 2018). 

This research tries to fill this gap, analyzing how students collectively reinterpret an 

introductory standard frontal lecture on eigentheory, in order to construct a robust 

meaning for the presented concepts. We build on a sociocultural theory on mathematics 

teaching and learning, namely the Theory of Objectification (Radford, 2021). Hence, 

we are particularly interested in collective forms of knowledge production, with a focus 

on their multimodal features (Arzarello, 2006; Radford, 2014). 

THEORETICAL FRAMEWORK 

Radford (2010, 2021), defines the process of objectification as “the process through 

which cultural knowledge (Objekt) is progressively transformed into an object of 

consciousness” (Radford, 2021, p. 99). Students must engage in suitable activities in 

order to be able to transform cultural knowledge into knowing (p. 49). Through this 

activity, the student has the chance to encounter and attend mathematics as a cultural-

historical system of thinking. This encounter does not happen all of a sudden but must 

be considered as a process; a process which is highly determined by the student’s effort 

to attend the object of knowledge. The word Activity in the theory of objectification 

“refers to a dynamic system where individuals interact collectively in a strong social 

sense” (p. 29). To distinguish this specific formulation from activity as merely meaning 

“doing something”, the notion of joint labour has been introduced (Radford, 2021). In 

joint labour, the acts of teaching and learning are not distinguished from each other any 

longer. In particular, students do not passively receive the knowledge in an “alienated” 

form of learning, but actively take part, through collective work, to the production of 

cultural social knowledge. Joint labour not only includes language as a mean for 

collective activity, rather encompasses the agency of body, matter, movement, rhythm, 

passion and sensations. Indeed, in order to become objects of consciousness, concepts 

must be actualised through material, sensuous activities (Radford, 2014). During the 

objectification process, students and teachers resort to multiple semiotic resources: 

written symbols, uttered and written words, diagrams, gestures, etc. These, together 

with object and tools, are intentionally used in social meaning-making activities in 

order to carry out actions aimed at fulfilling the goal of such activity: in Radford’s 

theory (2001) they are called semiotic means of objectification. Since we are interested 

in analysing how these different signs jointly contribute to the process of knowledge 

objectification, they must be looked at in an integrated and systemic way, with attention 

to relationships and dynamics between them (Radford & Sabena, 2013).For this reason, 

methodologically speaking, it is important to analyse semiotic nodes, namely those 

segments of students’ activities, in which different kind of semiotic resources 

intertwine and play a key role. In this investigation we emphasise the importance of 

the genesis of new signs, their evolution and the evolution of their mutual relationships 

in the process of objectification. Hence, we adopt the notion of semiotic bundle 
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(Arzarello, 2006), in order to perform an analysis of students’ sign production and their 

evolution in time. It allows to have a more precise view on the way objectification is 

occurring. A semiotic bundle has been defined as: 

a system of signs […] that is produced by one or more interacting subjects and that evolves 

in time. Typically, a semiotic bundle is made of the signs that are produced by a student or 

by a group of students while solving a problem and/or discussing a mathematical question. 

Possibly the teacher too participates to this production and so the semiotic bundle may 

include also the signs produced by the teacher. (Arzarello et al. 2009, p.100). 

In this study, specifically, we will use two theoretical constructs originating in the field 

of gestures study, namely those of growth point and catchment (McNeill, 2005), to 

show how the evolution of the relationship between gestures and other semiotic 

resources can provide information about students’ cognitive processes. A growth point 

is a cognitive mechanism that integrates linguistic and imagistic components (McNeill, 

2005) and in a discourse is identified as “the starting point for the emergence of 

noteworthy information prior to its full articulation” (Arzarello et al., 2015, p. 22). The 

information condensed in a growth point could be progressively unpacked through a 

catchment, defined as an observable sequence  of recurring gestural imagery (McNeill, 

2015). Arzarello and colleagues (2015) have shown how catchments are produced by 

students in meaning-making processes of a new mathematical concept (Arzarello et al., 

2015). 

RESEARCH AIM AND METHODOLOGY 

The investigation here presented has been conducted in an Italian public university in 

the fall term of 2021. The aim of the study was to analyse if/how students can objectify 

the concepts of eigenvector and eigenvalue, while engaged on joint labour in a 

specifically designed activity. Data were collected in three different linear algebra and 

geometry courses offered to first-year engineering students; in the Italian curriculum 

this is the unique linear algebra course offered to students in their first year of 

engineering studies, and covers standard vector-space theory (approximately: vector 

spaces, matrix algebra, linear systems, eigentheory, euclidean spaces). In total 64 

students attended the activity and they worked divided in small groups of three, or in a 

few cases four students each. Sheets of paper used were collected for all the groups, 

while eight of them were video-taped during the whole activity. This last kind of data 

was necessary to collect, considering the theoretical framework that we have outlined. 

Indeed, from a methodological point of view, “the identification of the semiotic nodes 

and the semiotic means of objectification mobilised by the teacher and the students 

provides a kind of window to the investigation of objectification processes” (Radford, 

2021, p. 106). We made sure that the recordings would capture not only the whole 

discussions, but also gestures and gazes produced by the students.  

Activity design 

As previously emphasised, activity is a key component of the objectification process. 

Even more, it is a key component of the investigation of this process, meaning that the 
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design of an appropriate activity not only can support the process of meaning-making, 

but can also provide the observer with important information about how this process 

occurs and develops (Radford and Sabena, 2015). Another key component of the theory 

of objectification is classroom interaction, and this is why we shaped our activity as a 

small-groups work.  

Because of institutional constraints - among others, the deeply-rooted habit in Italian 

engineering firs year courses of performing traditional blackboard frontal lectures and 

the extremely high number of attending students (around 200) per course - we had to 

accommodate the planning of our activity to the standard schedule of the linear algebra 

courses involved in the research and were not able to plan the activity as a first 

introduction to the topic. Consequently, we decided to perform a pilot study after the 

teachers would have conducted their frontal lecture of introduction to eigentheory. 

Because of this, we designed the first part of the activity as a collective review of the 

lecture to be performed during a two-hours tutoring class, which occurred a few days 

after the teacher’s introductory lectures on the topic. The activity was guided and 

attended by the course tutor and/or the researcher author of this paper. We prepared 

guidelines that could direct the small groups in the meaning-making process. These 

guidelines comprised very open questions such as “How would you explain the concept 

of eigenvector to someone who has never heard of that before?”. Students were not 

specifically asked to answer the question in a written or oral form, but could freely 

benefit from trying to answer to these questions in order to jointly making sense of 

eigenvalue and eigenvector concepts. They were free to use any tool and encouraged 

to use other resources that they had encountered, besides the book or notes taken during 

the lessons. In fact, the teachers of all the three courses had shown or suggested to use 

a GeoGebra applet to explore eigenvectors in two-dimensional space and to watch 

some videos about this topic retrieved from the web.  

For the second part of the activity, we prepared a set of five problems. In this paper 

we focus on student’s engagement in the first part of the activity, while students’ 

solution strategies to the problems are left for future works. For this reason we will 

not further elaborate here on the design of the problems.  

Research questions 

Considering the outlined theoretical framework, we can phrase our research questions 

as follows: 

1. Can our designed activity trigger and support first year university students’ 

objectification process of eigenvector and eigenvalue concepts, and if so, how? 

2. What information can the analysis of the evolution in time of the semiotic 

means of objectification mobilized by students give about these objectification 

processes? 
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For space reasons, we will limit to the description and analysis of one small-group’s 

work, which we consider as illustrative of a trajectory for the objectification process 

towards eigenvectors and eigenvalues: we refer to it as Group 1. We will present three 

particularly significant extracts from their first part of activity and describe key 

semiotic nodes in their objectification process. 

Tackling obstacles with the definition of eigenvalue and the formula 𝑨𝒙 = 𝝀𝒙 

The three students start from the guiding question “What are eigenvalues and 

eigenvectors and how would you explain these concepts to someone who is following 

a linear algebra course but still has not encountered this topic?” 

They decide to write the answers on a sheet of paper and one student, that we will call 

A, takes on the task of writing. They glance at their lecture notes and start focusing on 

the term “eigenvalue”. At the beginning, they seem to focus on writing a correct 

definition of the term, without really trying to make sense of the concept or to look for 

specific and possibly clear examples.  

A: So I would say, starting from eigenvalues, that eigenvalues are values that 

can represent a linear transformation with a number. 

B: Yes 

A:                  Via a value … 

B:                Yes, at the end, if you think about it, if I’m not wrong, it is like multiplying 

the matrix of the associated function … 

Student B, immediately starts focusing on procedures to find eigenvalues and A stops 

him and goes back to trying to find a definition. They keep looking for a reasonable 

definition until B’s intervention leads them to facing another conflict: 

B:                because λ can be a 2x1 matrix 

A:               [thinks about it some seconds] No, λ is just a number 

B:                eh! 

A:                𝜆𝐼 is the matrix 

B:                yes, ok, but you can think about λ also as a matrix, can’t you? 

The two students discuss about this conflict, each persuaded by his own idea. After a 

while, B understands that he is not able to make A understand his point with verbal 

language only. He starts writing formulas on his tablet. This is a first significant 

semiotic node to be analyzed in the group’s activity. He insists on the fact that when 

finding the image of a vector, 𝑓(𝑣), a matrix that he calls 𝑀 must be multiplied by that 

vector. He links then this idea to the formula used by the teacher and the textbook to 

define eigenvalues, namely 𝑓(𝑣) = 𝜆𝑣. He correctly deduces the equality 𝑀𝑣 = 𝜆𝑣, 

but interprets it as if λ must be a matrix as well, for the equality to stand. Stewart and 

Thomas (2006) have indeed described how the use of this formula can be a source of 

difficulty for students:  

One serious problem with Ax = λx for students is that the two sides of the equation are 

quite different processes, but they have to be encapsulated to give the same mathematical 
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object. In the first case the left hand side is the process of multiplying (on the left) a vector 

by a matrix; the right hand side is the process of multiplying a vector by a scalar. Yet in 

each case the final object is a vector that has to be interpreted as the product of the 

eigenvalue and its eigenvector. (p. 186)  

B’s explanation of why he thinks that λ could be a matrix, shows how he has 

encountered this misconception. A seems to understand the reason of B’s error, and 

tries to solve the conflict by rewriting the equality as 𝑀𝑣 = 𝜆𝐼𝑣, so to make clear that 

λ is a scalar, while 𝜆𝐼 is a matrix. He keeps using this formulation from that moment 

on. We cannot say from the analysis of the rest of this segment of activity if B has 

understood his error; surely, as argued in Stewart and Thomas’ work, reasons behind 

and ways to avoid this misconception need to be better studied. 

As we have shown in this subsection, students struggle in finding a suitable verbal 

definition of Eigenvalue. In our opinion, their difficulty might be due to the fact that, 

ontologically speaking, it is challenging to think of an eigenvalue before even 

considering the existence of a linear transformation and of eigenvectors. In the 

following subsection, we will see how the comprehension of what an eigenvalue is 

can be supported by a geometric context. In fact, in it, we can define a linear 

transformation, and what happens to different vectors under its effect becomes more 

tangible. 

Picturing a geometric example and gesturing as a meaning-making tool 

An important shift in the advance of the activity, occurs when B suggests to use an 

example. In particular he suggests to consider an example offered by the teacher during 

the lecture. He refers to the teacher using a GeoGebra applet to explore and show the 

students a possible representation of eigenvectors in the two-dimensional space. 

Student C, who had not particularly got involved in the first part of the discussion, 

suddenly appears interested. He tries to recall the way eigenvectors could be identified 

in the applet, by gesturing with his two index fingers: first he moves them towards each 

other and then overlaps them (Fig. 1). These gestures allow a shift in the focus of the 

discussion: it moves from trying to define eigenvalues, to attempt to understand what 

eigenvectors are. After different efforts to verbally describing the situation, finally A 

states: 

A:                […] It is possible to find an eigenvalue associated with an eigenvector when 

the image of the linear application coincides…[B and C look baffled] 

B:                  How to say it? Can we say “overlapping”? 

A:                 When the eigenvector and its image overlap.  

The three of them seem happy with this definition, but C, again with the help of 

gestures to make himself understood, shows that the words “coincides” and 

“overlapping” are not satisfactory because 

C:                With this definition it means that the vectors reach the same point (Fig. 1) 
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A then refines his definition with: 

A:                 When they have the same direction. 

C:                 Same direction and same sense.  

At this point B steps in and, he too gesturing (Fig. 2a and 2b), shows that actually the 

eigenvector and its image can have opposite senses. The so refined definition satisfies 

the whole group. 

                         

                    Fig. 1                                        Fig. 2a                                      Fig. 2b 

Objectifying eigenspaces 

One last episode deserves being mentioned. Later in the discussion, the doubt about 

the number of eigenvalues that can exist for a same direction, triggers the need to bring 

eigenspaces into play. Talking about eigenvectors laying on the same line, B asks: 

B:                 There are different values for λ, aren’t there? 

A:                 No 

C:                 Why not? 

A:                 No, because if a linear application let’s say multiplies an eigenvector times 3, 

if you multiply the eigenvector times 3, its image is time 3, then times 9 with 

respect to the first one. 

Providing this answer, A performs a gesture (Fig. 3) that is the first one of a series of 

repeated and very similar gestures that will have a key role in the development of the 

discussion. Apparently he starts gesturing – he almost hadn’t done that yet during the 

activity – in order to align with his group mates’ discourses. Obviously this is just our 

interpretation. In order to convince B and C that all vectors lining on an eigenvector’s 

direction are associated to the same eigenvalue, he starts with this embodied idea of 

stretching different vectors in the span of (1,1) by the same factor 3: 

A:                 if you, the vector (1,1)..(3,3), the vector (3,3) goes into (9,9). On the other 

way round if you take (-1,-1) (Fig. 4a) it goes into (-3,-3) (Fig. 4b) 

The interesting part of this excerpt is the way the semiotic bundle evolves: from a 

gesture used to convey an embodied conceptualization of this property, A progressively 

moves to the use of written diagrams and then to symbolic formulas. Firstly, he 

converts the idea shown with his gestures into a diagram and then from this he shows 

to B and C how this idea can be formalized with symbols (Fig. 5) and to provide an 
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almost correct proof of the fact that each vector laying on the same direction of an 

eigenvector is an eigenvector as well, associated to the same eigenvalue.  

                       

                   Fig. 3                                       Fig. 4a                                     Fig. 4b 

  

                                        

                        Fig. 5 

Moreover, the catchment generates from that first gesture (Fig. 3), accompanied by 

language. The idea guiding the described process seems to arise from this language-

gesture integration that we have indeed identified as a growth point.  

CONCLUSION  

From the presented results we can outline some, however partial, conclusions. We can 

assert that the designed activity was suitable to make students engage in an 

objectification process. Firstly, students’ management of time is a relevant indicator. 

As already stated, the whole activity lasted two hours. We had not recommended a 

partition of the whole available time, but were expecting students not to engage in the 

first part for longer than 25 minutes and that they would have hurried to start solving 

the problems. Unexpectedly, all the small groups engaged for at least 40 minutes in the 

first part of the task, before moving to the second one. We interpret this fact as an 

indication of the fact that students felt the need to really grasp the meaning of the 

concepts at stake. As we could notice from the recordings, students never settled for 

just repeating the definitions seen during the lecture. Rather, they tried with conviction 

to build strong meanings for those concepts and to pinpoint connections with other 

linear algebra concepts. As well, they tried to ensure that all the members of their group 

grasped the same meaning. Secondly, the analysis of students’ means of objectification 

We can identify A’s recurring gesture as a 

catchment. He keeps replicating it, or a slightly 

modified versions of it, throughout his whole 

process of development of thought: from the 

example grounded in embodied reality, to the 

more formal formulation. The repeated gesture 

appears as the element of cohesion between 

these different levels of conceptualization, and 

that allows the other members of the group to 

follow and comprehend this development.  
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and their evolution and mutual relationships actually allowed us to study their 

collective meaning-making process. Thanks to the use of the semiotic bundle as an 

analytical tool, we could detect semiotic nodes in which the emerging and evolving 

relationships between signs help accomplish the objectification process (Radford & 

Sabena , 2015). It is particularly interesting to notice how students preferably appealed 

to different semiotic registers. Student A from the beginning privileged the use of oral 

or written verbal discourse, and this, despite his evident confidence on the topics, 

represented an obstacle for the objectification of eigenvalues. B apparently was more 

confident with symbolic manipulation and resorted different times to this kind of 

representations in order to connect to A’s discourse. The role of C was relevant, even 

if from the beginning he seems to be the least confident on the subject. In the first part 

of the activity, he struggles in following the conversation and easily gets distracted. 

When they switch to a geometric example, he is able to actively engage in the dialogue 

using gestures, with which he is able to convey the intended meanings. In this case, it 

is clear how gestures, as also highlighted by previous researches (e.g., Arzarello et al., 

2015), are not only a means for communication, but can be productive resources that 

help constitute thought. They are indeed key actors in the objectification process. Even 

more, it is the combination of these different semiotic resources in the bundle and 

conflicts arising between them, that allowed objectification to occur. “In fact, the 

activity through which knowledge is actualized is an activity of conflicting 

significations” (Radford & Sabena, 2015, p. 164). The intertwining of means of 

objectification activated by different students was possible only thanks to their joint 

labour. One last remarkable aspect is the fact that the observed group, despite required 

to deal with eigenvalues and eigenvectors, autonomously felt the need to deeply 

investigate the concept of eigenspace, in order to really understand them. This is a quite 

informative result, considering also the fact that research concerning eigenspaces 

teaching and learning is really limited (cf. Wawro et al., 2019), and will be more deeply 

described in future works.  

To conclude, it is important to remark the fact that in this activity the course’s teacher 

was almost absent. The issue of considering teachers’ lectures and students’ reflections 

in two separated moments poses a relevant question which requires further research 

also because of still scarce consideration in the literature. How can the teacher’s role 

be integrated with a students’ joint activity as that described? In future stages of our 

research, we are planning to move the focus to this aspect, whose investigation might 

provide further insights and perspectives to the same process of objectification. 
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This paper introduces an emerging framework for integrating computational thinking 

into the teaching and learning of linear algebra. To achieve this, we refer to the notions 

of three teaching principles of linear algebra, theory of instrumental genesis and 

computational thinking. Through the emerging framework, we present a vignette 

involving a set of activities using GeoGebra’s specific commands, tools and functions. 

We approach the case of systems of linear equations and limit ourselves to a linear 

algebra course whose students do not have a strong background in a programming 

language (much like the one for lower secondary mathematics teacher education 

programs in different countries). We propose several further steps to ameliorate the 

emerging framework.  

Keywords: Teaching and learning of linear and abstract algebra, Digital and other 

resources in university mathematics education, Computational thinking, Three 

teaching principles, Instrumental genesis. 

INTRODUCTION 

The term computation is considered one of the basic skills in school curricula; 

therefore, it could sound familiar to every mathematics teacher and mathematics 

educator (Li et al., 2020). When we combine computation with thinking, it immediately 

leads to a certain meaning: the practices of computer science, such as coding and 

programming. However, the notion of computational thinking is a way of thinking that 

encompasses a number of interrelated thinking skills (e.g., algorithmic thinking and 

problem-solving) that are beyond computing/programming practices (Lockwood, 

DeJarnette & Thomas, 2019; Wing, 2006). As a result, a growing body of research has 

recently attempted to define and characterize computational thinking in mathematics 

and science education (i.e., Kallia et al., 2021; Weintrop et al., 2016). 

In addition to the growing interest in different levels of education (that involve various 

unplugged and plugged activities), a recent call for higher education has been raised 

by Lockwood and Mørken (2021). Lockwood and Mørken (2021) invite researchers to 

focus on machine-based computing activities in undergraduate mathematics education, 

especially those associated with practices of creating algorithms and running them 

through digital tools. However, this might require a certain level of maturity in 

programming languages (Buteau et al., 2020). Lockwood and Mørken’s (2021) call has 

motivated us to focus on an undergraduate linear algebra course. Our question is: How 

can computational thinking be integrated into teaching and learning linear algebra?  

We focus on linear algebra because it includes various mathematical notions (e.g., row 

reduction, echelon forms, linear independence, and rank), and different representations 
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(e.g., equations, vectors, matrices and so on) that are interrelated with algorithmic 

thinking and problem-solving. Students are often challenged when they encounter such 

unusual (and new) ideas/steps/representations after high school, and “for a majority of 

the students, linear algebra is no more than a catalogue of very abstract notions” (Dorier 

et al., 2000, p. 85). We believe that the integration of the computational thinking 

perspective would be beneficial for linking different representations specific to linear 

algebra. Consequently, the current paper introduces an emerging framework for 

integrating computational thinking practices into linear algebra by grounding the 

framework in three perspectives as described in the next section. 

CONCEPTUAL FRAMEWORK 

Three teaching principles of linear algebra.  

Learning linear algebra requires a certain level of coordination among different 

contexts, so designing the teaching setting for this has a core role in arranging the shifts 

and balance between the (new) notions and representations. Harel (2000) proposes 

three teaching principles that can be used for designing a teaching setting: 

concreteness, necessity and generalizability. The concreteness principle considers 

students’ cognitive backgrounds and readiness for learning the proposed concept(s); 

this is strongly connected to student difficulties. The students need to be equipped with 

the proposed notions/concepts, and they need to have “… mental procedures that they 

can take these objects as inputs” (Harel, 2000, p. 180).  

The necessity principle is about finding problematic situations that invite students into 

doing mathematics, and this should correspond to students’ intellectual needs. Harel 

(2000) suggests that considering a need for computation, which means providing 

contexts that ask students to compute objects and explore mathematical properties, is 

the most effective way to invite students to start a mathematical discussion. This could 

enable students to find their way by elaborating a number of core ideas from their own 

work. The generalizability principle is strongly connected to the previous two 

principles because it enables students to arrive at a generalization in the end. The 

classroom activities, argumentation and teachers’ orchestration of student learning 

should provide an environment where students move from their (own) work to 

generalization and the formation of ideas. 

Harel (2000) highlights the use of digital tools for student exploration and geometry as 

a pedagogical context to enter a problematic set of situations. Following the three 

principles above, this context with digital tools should include a particular emphasis on 

the notion of the “need for computation” and development of ideas and generalization 

of the mathematical concepts. However, this is based on the manner of “tool use”. The 

tool use shapes student thinking, and this process shapes tool use synchronously 

(Drijvers, 2019). Here, therefore, we point out the importance of estimation of student 

thinking (with tool use) to design the teaching-learning context. This brings us to the 

idea of “hypothetical [utilization] schemes” (Drijvers et al., 2010, p. 113) regarding 

tool use, which mainly comes from theory of instrumental genesis. 
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Theory of Instrumental genesis. 

Theory of Instrumental Genesis (TIG) is based on the distinction between artifacts and 

instruments (Artigue, 2002). Here, an artifact can be any material, both physical and/or 

digital, but it is called a tool when used by the user for a particular aim. When the user 

develops one or more utilization schemes while using the artifact, we speak of 

instruments. Here, instruments involve the utilization schemes the user develops over 

time, in addition to the artifact(s). As a result, this can be simplified into the following 

formula: “Instrument = Artifact + Scheme” (Drijvers, 2019, p. 15). This process of 

scheme development is called instrumental genesis (Artigue, 2002). The process of 

instrumental genesis involves the development of both conceptual and technical 

elements. However, it is a subtle, continuous, and complex process. Techniques, which 

are the manner of tool use that lead to accomplishing a task (Artigue, 2002), are 

observable and explicit. The techniques give us clues regarding those utilization 

schemes that are invisible. Conceptual elements, on the one hand, convey the 

techniques that the user develops (over time); on the other hand, they are shaped by the 

artifact’s affordances and constraints (Drijvers, 2019).  

In the current paper, we focus on the hypothetical [utilization] schemes (Drijvers et al., 

2010), (under the umbrella of TIG) that capture the synergy between techniques 

regarding the artifact and conceptual elements and their development. We hypothesize 

that the estimation of student thinking with tool use could help us design classroom 

activities with a particular lens that links the three teaching principles. 

Computational thinking. 

Computational thinking is an “umbrella term” (Kallia et al., 2021, p. 180) that involves 

a number of overarching and sophisticated skillsets, such as algorithmic thinking, 

decomposition, modelling, and abstraction. Wing’s (2006) seminal description of 

computational thinking which “… involves solving problems, designing systems, and 

understanding human behaviour, by drawing on the concepts fundamental to computer 

science” (p. 33) opened the door to a growing body of research on computational 

thinking. Weintrop et al. (2016) define a four-category taxonomy regarding 

computational thinking in mathematics and science education (p. 135): “data practices, 

modelling and simulation practices, computational problem-solving practices, and 

systems thinking practices.” The commonalities between Wing’s (2006) and Weintrop 

et al.’s (2016) approaches concerning mathematics show a particular link to problem-

solving, which means breaking a problem down into subproblems.  

Recently, a particular characterization of computational thinking in mathematics 

education has been proposed by Kallia et al. (2021). This characterization has three 

main aspects (Kallia et al., pp. 179–180): 

• Problem-solving (like understanding the problem, developing a solution 

strategy, performing the strategy), 
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• Cognitive processes (like abstraction, decomposition, pattern recognition, 

algorithmic thinking, modelling, logical and analytical thinking, generalization 

and evaluation of solution and strategies), 

• Transposition (like phrasing the solution of a mathematical problem in such a 

way that it can be transferred/outsourced to another person or a machine). 

The characterization above does not necessarily imply considering all aspects in a 

setting. For example, following a particular didactical aim, the topic and appropriation 

of the tools (both physical and digital) would not be practical if one tries to combine 

all the aspects described above. We concur with Kallia et al. (2021), who note: 

“… maybe some aspects of computational thinking are more critical than others and 

learning opportunities that consider computational thinking should provide opportunities 

for students to practice as many aspects as possible.” (Kallia et al., 2021, pp. 179–180) 

Therefore, based on the context, the teacher or educational designer can focus on 

specific aspects that invite students to perform (mathematical) explorations. Another 

fact is that the characterization above does not propose a particular set of tools, even 

though some of the aspects are directly related to computer science. If we go back to 

the context of linear algebra, there seem to be many topics related to computational 

thinking, for example, linear systems (particularly row reduction and echelon forms), 

matrix transformations and applications to computer graphics, the Gram-Schmidt 

process and so on. 

The emerging framework for task design. 

In this subsection, we relate the three teaching principles to those hypothetical 

utilization schemes with aspects of computational thinking. The first item that we need 

to address is that the backgrounds of the three teaching principles and TIG seem to be 

similar regarding students’ mental development. The three teaching principles come 

from a Piagetian perspective (Harel, 2000), while TIG has foundations in both 

Piagetian (i.e., schemes) and Vygotskian (i.e., tool use) perspectives (Drijvers, 2019). 

Our particular aim is not networking these lenses and checking their grand theories, 

but rather considering and combining them into design tasks with a computational 

thinking lens. Regarding the shared theoretical background, there exists a link between 

tool use and the notion of the need for computation. Before beginning to explain this 

link, let us address the function of the concreteness principle in the emerging 

framework. The concreteness principle is carefully specific to the choice of the context. 

In other words, this principle is something that we can think of as a point of departure 

to think/decide about the setting. We claim that the following (interrelated) questions 

would be beneficial in setting the scene: 

1) Which topic is going to be considered?  

2) What is the (tentative) didactical aim/goal? 

3) What do students know, what do they not know (perhaps this is the most 

important one), what would be concrete to the students’ eyes, and why? 

4) How to build on their existing knowledge/phenomenological experiences? 
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These questions bring us to the necessity principle, indeed to the notion of the “need 

for computation.” To invite students into a rich context that is open to exploration, 

argumentation, conjecturing, and testing conjectures, we underline the role of tools 

(Harel, 2000) as mediators: 

5) Which tool(s) would be beneficial and why? 

6) How would these tools function to achieve the didactical goal? 

7) What kind of experience do the students have with the thought tools? 

8) Which conceptual elements would emerge when students use the tools? 

These four questions imply an estimation of the “manner of tool use” (Artigue, 2002) 

to design the teaching-learning environment, which brings us to the notion of 

hypothetical utilization schemes (Drijvers et al., 2010) and TIG. The main aim of these 

questions is to elaborate on the (hypothetical) techniques and associated conceptual 

elements that could help us picture/discuss the potentiality of the tools for the didactical 

aim. The responses to the questions (5 to 8) could be research-informed. A literature 

search for potential tools and manner of student use would be helpful here as well. The 

third point concerns embedding the aspects of computational thinking into the eight 

questions above. The designer could focus on certain aspect(s) in the sense of Kallia et 

al. (2021) by considering the following (general) question: 

9) How would the context and tool enable students to engage with a problem-

solving activity, cognitive processes, and transposition? 

The generalization principle plays a central role here, and it is linked to the cognitive 

processes (aspect) of computational thinking. The designer could focus on the function 

of the tools at stake, along with how this would create a mathematical sense, meaning-

making or would help students arrive at a conclusion. Hence, the designer could then 

finalize their didactical aim/goal. To conclude, we note that the combination and 

synergy among the nine questions above constitute the emerging framework for task 

design. Figure 1 summarizes the nine questions, which shows the components as the 

axes of a Cartesian view.  

The designer can refer to Figure 1 by considering ordered triples (from three teaching 

principles to aspects of computational thinking) while brainstorming. For example, 

point A represents the role of concreteness, the tool and problem-solving and how these 

three (the selection of the context/aim, student pre-knowledge and deciding on the tool 

and problem-solving activity) would be aligned. As another example, B represents the 

triple of necessity, conceptual elements, and transposition. Focusing on B would help 

the designer think about and discuss how the need for computation would interlace 

with the targeted conceptual elements after instrumented activity. Through this way, it 

can be discussed how the solution of a mathematical problem can be transferred to 

another person/machine. It may not be necessary to discuss all the possible (27) triples 

here, however, we believe that Figure 1 would guide the designer as they consider and 

decide on the function of each component considered here.  
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Figure 1: A Cartesian view of the emerging framework 

A VIGNETTE 

We present an exemplary vignette by following the concreteness principle (particularly 

point A in Figure 1). We have decided on the topic of systems of linear equations (SLE) 

for two main reasons. The first is the topic (in itself), specifically because SLE is one 

of the core topics in elementary linear algebra, which has many applications in different 

fields (Anton & Rorres, 2014). The second reason is SLE’s dynamic geometry software 

availability. We have recently shown how a dynamic geometry environment creates 

coordination between algebraic and 3D geometric views regarding SLE (Turgut & 

Drijvers, 2021). The second question in the above subsection and notion for the need 

for computation help us consider the parameters in the task. As we have experienced 

(Turgut & Drijvers, 2021), the use of parameters in SLE creates a rich context to 

explore the geometry of lines and planes in ℝ3. Therefore, we formulate a tentative 

aim: making sense of the role of parameters in SLE. We believe that the topic is more 

relevant after the matrix algebra topic and after the students have learned to solve SLEs 

on paper-and-pencil activities. Therefore, we plan to build on matrix algebra and 

consider that the target group does not know the role of the parameters in SLE yet. 

The paragraph above can be summarized as addressing those questions from 1 to 4. 

Now, we focus on questions 5 to 8. In our exemplary case, we refer to GeoGebra based 

on three criteria. The first is GeoGebra.org’s classroom function, where the teacher can 

design a set of activities/tasks and share the interface of the activity by providing a 

code. The second is the commands and some tools of GeoGebra that have been recently 

considered part of the computational thinking activity (van Borkulo et al., 2021). The 
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software is now popular in many countries, so we consider that the target group is 

familiar with the basic tools/functions. The third is that we focus on the case where the 

target group does not have a programming language background. 

Now, we briefly summarize hypothetical techniques and utilization schemes (based on 

Turgut & Drijvers, 2021) as follows. While exploring SLE solutions, students could 

refer to synchronic algebra and geometry windows that provides dynamic variations. 

The “Solve” command could be used to solve the given equations, and the software 

would provide different solutions where students could explore different values of the 

parameters. For example, in certain cases, there is a solution or no solution. Students 

could type and form matrices of given SLE through a spreadsheet window and attach 

sliders to matrices. The students later could also refer to the “Reduced RowEchelon 

Form” command to compute the echelon form of the matrices. This could enable 

students to see completely zero rows etc. in the matrix and its meaning in the SLE 

solution, helping them create a link between the role parameters of in row echelon 

forms. The latter command could also provide a meaning for infinite solution, single 

solution, or no solution. To plot lines and planes, the students could use the “Input” 

line and the “Intersect” command, which could provide a geometric feature of the role 

of parameters (like the intersection of planes and its meaning in the SLE solution).  

Regarding computational thinking, we focus on algorithmic thinking and 

generalization with a problem-solving activity for solving a set of SLEs. In light of 

this, we re-design a set of activities borrowed from literature (Anton & Rorres, 2014; 

Turgut & Drijvers, 2021), which are divided into three episodes. The first starts with a 

figure to overview and link some key notions about SLE and the associated commands 

of GeoGebra. The first step of the activity (Episode 1) is presented in Figure 2. 

  

Figure 2: The First Step of Episode I 

As a first step (Step 1 in Figure 2), the students discuss some key notions and associated 

commands of GeoGebra. They can also recall their knowledge by watching some topic-

related Khan academy videos (e.g., reduced row echelon form, as seen on the right-
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hand part of Figure 2). Step 2 asks the students to sketch a tentative algorithm on an 

embedded (blank) GeoGebra applet to approach solving SLE (by keeping in mind the 

key notions and associated commands of GeoGebra, as in Figure 2).  

Figure 3 summarizes Steps 3 and 4. The third step asks the students to solve a system 

of linear equations, including a single parameter 𝑘: 𝑥 + 𝑦 + 𝑧 = 4, 𝑧 = 2 and 

(𝑘2 − 4) ∙ 𝑧 = 𝑘 − 2. We provide a blank GeoGebra applet that includes an algebra 

window, and 3D graphics window with a spreadsheet window by considering the 

hypothetical utilization schemes explained on the previous page. For example, the use 

of the slider 𝑘 could be referred to solve the proposed SLE. 

  

Figure 3: Steps 3 and 4 in Episode 1 

In this part, the use of a slider as 𝑘 is an estimated technique that could help to explore 

the dynamic effects of the parameter in the given SLE. As a fourth step, the students 

must discuss the initial algorithm after they have solved the given SLE with a single 

parameter. The final step of Episode 1 asks to discuss the role of 𝑘 in the given system 

(the left-hand-side of Figure 4).  

    

Figure 4: Step 5 of Episode 1 and Step 1 of Episode 2 

The second episode starts with another system (the right-hand-side of Figure 4) that 

has two specific parameters: a and b. The user is asked to use the (updated) algorithm 

while solving the given system. As in Episode 1, as a next step, the students are asked 

330



  

to review the algorithm after solving SLE, and then discuss questions to overview the 

role of parameters in SLE. However, the parameter(s) in the given two SLE appear 

both in coefficients and known parts. Therefore, in the final episode, a specific system 

is proposed: 𝑥 + 𝑦 + 𝑧 = 𝑎, 2𝑥 + 2𝑧 = 𝑏, and 3𝑦 + 3𝑧 = 𝑐, which has three 

parameters. In the final SLE, all three parameters are defined in the known part of the 

system. This episode also follows reviewing algorithms and making a generalization 

regarding the role of parameters in SLE by overviewing all episodes and (revisiting) 

all versions of algorithms.  

CONCLUSIONS 

In the current paper, we have introduced an emerging framework for integrating 

computational thinking into teaching and learning linear algebra. We present an 

exemplary case where the aim is to promote the knowledge and role of parameters in 

SLE and associated solutions. We note that the emerging framework needs further 

elaborations (e.g., through design-based research) to discuss its functioning in teaching 

learning settings. For example, the presented set of activities could be merged and 

field-tested with some come from matrix transformations and applications to computer 

graphics, and Gram-Schmidt process. As a limitation, the exemplary case is GeoGebra 

centric. Another context, such as R, Python or Trinket, could be focused on when 

designing machine-based computing activities (Lockwood & Mørken, 2021). These 

could be further steps to ameliorate the presented emerging framework. 
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Abstract: Both in school mathematics and in university mathematics, cloze texts are 

used rather rarely to build up and develop mathematical language skills. It is 

therefore not surprising that the use of mathematical cloze texts in mathematics 

didactics has hardly been researched so far. In order to investigate the specific 

comprehension processes that play a role in the processing of mathematical cloze 

texts, an empirical study was conducted in which the verbalized thoughts of the 

participants were recorded in think-aloud protocols. This paper presents Steinbring's 

epistemological triangle as a possible analytical tool for these comprehension 

processes as well as the first results of the analysis. 
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EINLEITUNG 

Das Erlernen der mathematischen Sprache stellt für viele Studierende eine große 

Herausforderung dar. Dies ist nicht verwunderlich, wenn man bedenkt, wie weit die 

Fachsprache der wissenschaftlichen Mathematik von der Alltagssprache entfernt ist: 

Sie ist nicht nur deutlich formaler und exakter, sondern auch zeitlos und 

unpersönlich. Geringe Formulierungs- und Notationsunterschiede bewirken zum Teil 

große semantische Unterschiede, weshalb präzises Lesen und Schreiben notwendig 

ist (Liebendörfer, 2018). Die Beherrschung der mathematischen Sprache ist für das 

Mathematikstudium zentral und Voraussetzung für ein tieferes Verständnis. Doch 

trotz ihrer Bedeutung findet eine explizite Thematisierung der Fachsprache häufig 

nur zu Beginn des Studiums statt, wenn ausgewählte Regeln der Logik gelehrt 

werden. „Danach bleibt die Vermittlung der Fachsprache weitestgehend implizit“ 

(Liebendörfer, 2018, S. 28). Dies trifft auch auf die zahlreichen Fachbegriffe zu, die 

in den Vorlesungen und Seminaren eingeführt und oft nebenher erlernt werden 

sollen, da bisher entsprechende Aufgaben, mit denen Fachbergriffe erlernt oder 

trainiert werden können, eher selten in der hochschulmathematischen Lehre 

verwendet werden. Eines der wenigen Beispiele dafür stellt die Mathematikvorlesung 

für Pharmazie- und Biologiestudierende der Philipps-Universität Marburg dar 

(Strauer et al., 2019). In dieser Veranstaltung werden seit dem WiSe 2017/18 

Lückentextaufgaben mit Freitext-Lücken eingesetzt, um die präzise Verwendung von 

Fachbegriffen und die eigenständige Formulierung von Begriffserläuterungen zu 

üben. Als mögliches Mittel für das Erlernen und das Einüben der mathematischen 

Sprache wurden Lückentexte aber bisher kaum beforscht, sodass es nicht nur an 

Gestaltungskriterien und Empfehlungen für den Einsatz in der Lehre fehlt, sondern 
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auch kaum Informationen darüber vorliegen, wie Studierende mit Lückentexten 

arbeiten (sollen), wie sie Lückentexte verstehen und welche Fähigkeiten sowie 

Fertigkeiten mithilfe von mathematischen Lückentexten überhaupt gefördert werden 

können. In diesem Artikel soll es daher um eine grundlegende Fragestellung gehen:  

Wie gestalten sich die Begriffsdeutungen, die bei der Bearbeitung von 

mathematischen Lückentextaufgaben von Studierenden entwickelt werden, und wie 

hängen diese von den vorgegebenen Antwortoptionen ab?  

Um diese Frage beantworten zu können, wurde in einer Studie im Frühjahr 2020 der 

Lückentext „Der Gauß-Algorithmus“ (siehe Abb. 3) als Diagnoseaufgabe eingesetzt. 

Bei den Teilnehmenden der Studie handelte es sich um zehn Studierende der Leibniz 

Universität Hannover aus unterschiedlichen Studiengängen
1
, die im Wintersemester 

2019/20 die Grundlagenveranstaltung „Lineare Algebra I“ besucht und im Rahmen 

dieser Veranstaltung Online-Tests als Teil der Studienleistung bearbeitet hatten. Den 

Aufgabentyp „Lückentextaufgabe“ kannten die Teilnehmenden vor der Studie daher 

schon. Für die Untersuchung wurden die Studierenden in der vorlesungsfreien Zeit zu 

freiwilligen Einzelinterviews mit der Autorin eingeladen, bei denen sie eine 

Lückentextaufgabe unter Laborbedingungen
2
 bearbeiten sollten. Damit die kognitiven 

Prozesse der Studierenden erfasst werden konnten, wurden die Studierenden während 

der Einzelbearbeitung dazu angehalten, die Laut-Denken-Methode (Deffner, 1984; 

Bise, 2008) anzuwenden. Das bedeutet, dass die Probandinnen und Probanden 

während der Bearbeitung alle Gedanken, die aufkommen, laut äußern sollten. Die 

Audioaufnahmen wurden im Anschluss transkribiert und hinsichtlich der eingangs 

gestellten Fragen analysiert. 

Da die Analysen noch nicht abgeschlossen sind, sollen in diesem Beitrag die 

Auswertungsmethodik und erste Analyseergebnisse diskutiert werden. Hierzu wird 

zunächst die theoretische Grundlage, das epistemologische Dreieck nach Steinbring, 

vorgestellt sowie die Analysemethodik erläutert. Abschließend werden die ersten 

Ergebnisse entlang eines Analysebeispiels illustriert. 

DAS EPISTEMOLOGISCHE DREIECK 

Um mathematisches Wissen erfassen, repräsentieren, kommunizieren und kodieren 

zu können, werden in der Mathematik bestimmte Zeichen- bzw. Symbolsysteme 

verwendet, wobei solche Zeichen/Symbole für sich allein keine Bedeutung besitzen 

(Steinbring, 2006). Die Bedeutung eines mathematischen Zeichens muss vom dem 

oder der Lernenden aktiv konstruiert werden (Steinbring, 2000; Steinbring, 2005).  

Steinbring geht davon aus, dass sich die Bedeutung eines mathematischen Begriffs 

aus den konstruierten Wechselbeziehungen zwischen Zeichen/Symbolen und 

                                           
1
 Studiengänge: Physik, Mathematik und Mathematik auf Lehramt (Gymnasium) 

2
 Die Bearbeitungen fanden im Büro der Autorin statt. Die Studierenden hatten keine zeitlichen Begrenzungen für die 

Bearbeitung der Aufgabe. Die Lückentextaufgabe wurde von den Studierenden über einen von der Autorin 

bereitgestellten Laptop bearbeitet. Als Hilfsmittel wurden nur Papier und Stift zugelassen. Beides wurde ebenfalls 

gestellt. 
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konkreten oder abstrakten Gegenständen/Referenzkontexten ergibt. Allgemein 

können Mathematische Begriffe somit als „symbolisierte, operative Beziehungen“ 

(Steinbring, 2000, S. 34) verstanden werden, welche zwischen ihren kodierten 

Formen und „den sozial intendierten Deutungen“ (Steinbring, 2000, S. 34) bestehen. 

Mathematische Begriffe drücken demnach keine Dinge aus, sondern Beziehungen. In 

mathematischen Lehr-Lernkontexten wird mathematische Bedeutung also 

beispielsweise dadurch generiert, dass mögliche Bedeutungen von einem relativ oder 

teilweise bekannten Referenzkontext auf ein unbekanntes Zeichensystem, welches für 

den Lernenden noch keine Bedeutung besitzt, übertragen werden (Steinbring, 2005).  

Der Zusammenhang zwischen den Zeichen zur Kodierung des Wissens und den 

Referenzkontexten zur Etablierung der Bedeutung des Wissens lässt sich im 

epistemologischen Dreieck darstellen. (Steinbring, 2000, S. 34) 

 

Abb. 1: Das epistemologische Dreieck (Steinbring, 2000, S. 34) 

 

Der Gegenstand/Referenzkontext stellt bei Steinbring kein unabhängiges Element dar, 

das vorab eindeutig vorgegeben wird (Steinbring, 2005). Stattdessen wird der 

Gegenstand/Referenzkontext im Prozess der Wissensentwicklung „mehr und mehr in 

einen strukturellen Zusammenhang umgedeutet“ (Maier & Steinbring, 1998, S. 309). 

Darüber hinaus sind die Beziehungen zwischen den Eckpunkten des 

epistemologischen Dreiecks nicht explizit definiert. Vielmehr handelt es sich um ein 

ausbalanciertes System, dessen Eckpunkte sich wechselseitig stützen (Maier & 

Steinbring, 1998; Steinbring, 2000; Steinbring, 2005). Hierbei kann „eine Änderung 

in jeder der Ecken direkt Reaktionen in den anderen und den jeweiligen 

Beziehungen“ (Rieß, 2018, S. 91) auslösen, daher handelt es sich um ein Gebilde, das 

sich ständig verändert. Übertragen auf mathematische Lehr-Lernkontexte kann man 

sich dieses Spannungsverhältnis folgendermaßen vorstellen: Die Bedeutung 

mathematischer Zeichen/Symbole, die in einem solchen kulturellen Kontext 

verwendet werden, können aus dem bereits konstruierten Wissen und den bekannten 

Gegenständen/Referenzkontexten generiert werden. Es besteht allerdings die 

Möglichkeit, dass die Bedeutung sich mit der Beschäftigung neuer 

Gegenstände/Referenzkontexte ändert. Beispielsweise werden Variablen wie 𝑥 im 

Mathematikunterricht mithilfe von Aufgaben wie 2 + 𝑥 = 5 als eine Unbekannte 

eingeführt. Das Symbol steht also für ein Objekt, das noch unbekannt ist, aber (unter 
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bestimmten Konditionen) bestimmt werden kann. Beschäftigt man sich aber auch mit 

Aufgaben zu funktionalen Zusammenhängen wie z.B. 𝑓(𝑥) = 𝑥 + 2, so erhält das 

Symbol in diesem Kontext eine neue Bedeutung: Es steht für eine Veränderliche. Die 

Umdeutungen und Neuinterpretationen der Zeichensysteme und Referenzkontexte 

bewirken eine sukzessive Weiterentwicklung des mathematischen Wissens, sodass 

die „Deutung mathematischer Zeichen nicht zu endgültigen, eindeutigen 

Definitionen“ (Akinwunmi, 2012, S. 51) führt. Die Vorstellung von einer komplexen 

Wechselbeziehung zwischen Zeichen/Symbol und Gegenstand/Referenzkontext 

bildet einen Kontrast zu anderen statischeren Zeichenmodellen (Ogden & Richards, 

1923; Frege, 2019). Mithilfe des epistemologischen Dreiecks kann die mathematische 

Bedeutungsentwicklung mit einem stärkeren Fokus auf den Prozess untersucht 

werden.  

Zu beachten ist allerdings, dass sich die Ecke Begriff in der Regel nicht explizit in 

den Äußerungen von Studierenden finden lässt. Betrachtet man das Beispiel in 

Abb. 2, so lässt sich schnell erkennen, dass das Symbol 3 für die drei schwarzen 

Kugeln und die drei Äpfel stehen kann, weil sie die Mächtigkeit der dargestellten 

Mengen ausdrückt. Diese formulierte Beziehung/Relation „drückt die Mächtigkeit 

aus“ allein kann aber nicht die Komplexität des Zahlbegriffs abbilden. Um die 

Komplexität mathematischer Begriffe erfassen zu können, ist eine Akkumulation der 

aufgestellten Relationen zwischen Gegenstand/Referenzkontext und Symbol 

notwendig, die auf verschiedene Aspekte des Begriffs abzielen. 

 

Abb. 2: Das (Steinbring, 2006, S. 141) 

 

ANALYSEVERFAHREN 

Mithilfe des epistemologischen Dreiecks können die Bedeutungen für die zentralen 

mathematischen Begriffe und Sätze, die von den Probandinnen und Probanden 

konstruiert wurden, identifiziert werden. Angelehnt an das Verfahren von Steinbring 

(Steinbring, 1993; Maier & Steinbring, 1998) wurden dafür zunächst die die beiden 

Ecken Zeichen/Symbol und Gegenstand/Referenzkontext sowie die 

Relation/Beziehung für jeden Fall bestimmt.  

Für den vorliegenden Transkriptionsausschnitt wurden dazu die Äußerungen der 

interviewten Person in vier unterschiedliche Kategorien eingeordnet: 
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1. Zeichen/Symbol: Elemente, Begriffe, Phrasen oder Sätze, die den Probandin-

nen und Probanden unbekannt oder mit einer gewissen Art der Unsicherheit 

behaftet sind, d. h. dass sie den Teilnehmenden unbekannter sind als die Ele-

mente der zweiten Kategorie. 

2. Gegenstand/Referenzkontext: Elemente, Begriffe, Phrasen oder Sätze, die 

von den Probandinnen  und Probanden herangetragen werden, um die Elemen-

te aus der ersten Kategorie zu bestimmen. Diese Elemente sind den Teilneh-

menden (relativ) bekannt. 

3. Relation/Beziehung: Da die Ebene des Begriffs nicht direkt in den Äußerun-

gen identifiziert werden kann, werden stattdessen Äußerungen kodiert, in de-

nen ein Bezug oder eine Verbindung hergestellt wurde zwischen Elementen 

aus der ersten und zweiten Kategorie. 

4. Nicht zuordenbare Äußerungen: Äußerungen, die sich in keine der oberen 

drei Kategorien zuordnen lassen. 

Im Anschluss daran wurden die Wechselwirkungen zwischen dem Gegen-

stand/Referenzkontext und dem Zeichen/Symbol untersucht. Daneben wurden die 

aufgestellten Dreiecke auch miteinander verglichen, um den Prozess einer möglichen 

Bedeutungsverschiebung oder Änderung abbilden zu können. 

BESIPIELANALYSE 

Lückentextaufgabe und Transkriptausschnitte 

Bei der ausgewählten Diagnoseaufgabe handelt es sich um eine Online-Aufgabe zum 

Thema Gauß-Algorithmus, die für den Einsatz in der Grundlagenveranstaltung 

„Lineare Algebra I“ (WiSe 2019/20) entwickelt worden ist. Die Aufgabe stellt eine 

Mischform aus Lückentext und Auswahlaufgabe dar. Bei Lückentextaufgaben muss 

die Testperson einen unvollständigen Text ergänzen (Eichler, 1977). Welche Art von 

Element fehlt, kann je nach Aufgabe variieren. Denkbar wären beispielsweise 

Symbole, Wörter, Wortbestandteile, Wortgruppen oder gar ganze Sätze. 

Auswahlaufgaben, sind derart gestaltet, dass die Testperson aus einer vorgegebenen 

Auswahl an Antwortoptionen eine richtige oder mehrere richtige Antworten wählen 

kann. Existiert nur eine richtige Antwort, handelt es sich um eine Single-Choice-

Aufgabe, im anderen Fall wird die Aufgabe als Multiple-Choice-Aufgabe bezeichnet. 

Bei der Aufgabe zum Gauß-Algorithmus gibt es sowohl Auswahlen mit Single-

Choice als auch Auswahlen mit Multiple-Choice. Die Antwortoptionen, die für jede 

Lücke vorgegeben werden, sind nicht willkürlich gewählt worden. Die Erstellerinnen 

und Ersteller haben versucht, nach Möglichkeit nur falsche Antwortoptionen zu 
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formulieren, die tatsächlich in der Mathematik existieren
3
 und mindestens eine der 

folgenden Eigenschaften
4
 erfüllen: 

 Sie müssen zum dargestellten mathematischen Kontext passen. 

 Sie müssen graphisch/formulierungstechnisch ähnlich zur richtigen 

Antwortoption sein. (Eine Verwechselungsgefahr sollte bestehen.) 

 Sie müssen eine Fehlvorstellung enthalten. 

Mit diesen Kriterien für die Antwortoptionen sollten die Lückentexte den 

Studierenden die Möglichkeit bieten, ihr Begriffsverständnis zu vertiefen, indem sie 

die zur Auswahl stehenden Ober-, Unter-, Gegen- und Nachbarbegriffe aus einem 

Themenkomplex miteinander vergleichen und gegeneinander abgrenzen können. 

Der Lückentext „Der Gauß-Algorithmus“ besitzt vier inhaltliche Abschnitte. Der 

erste Abschnitt stellt eine allgemeine Einführung der Begriffe Gauß-Verfahren und 

LGS dar. Im zweiten Abschnitt werden die elementaren Zeilenumformungen sowie 

der grobe Aufbau des Verfahrens thematisiert. Der dritte Abschnitt beschreibt im 

Detail den Aufbau der Zeilenstufenform und im letzten Abschnitt wird die normierte 

Zeilenstufenform behandelt. Insgesamt besitzt die Lückentextaufgabe 19 zu 

ergänzende Lücken. Für die Beispielanalyse werden wir uns im Folgenden lediglich 

auf den ersten Abschnitt konzentrieren. 

 

Abb. 3: Ausschnitt zur Lückentextaufgabe „Der Gauß-Algorithmus“ 

Die beiden folgenden Transkriptausschnitte stammen von einer Versuchsperson und 

beziehen sich auf den Aufgabenausschnitt in Abb. 3, genauer auf die erste 

auszufüllende Lücke. Im Transkript folgen sie – wie man an den angegebenen Zeiten  

sehen kann – kurz nacheinander. 

                                           
3
 Nicht zugelassen wurden beispielsweise falsche Antwortoptionen, bei denen einfach nur ein Rechtschreibfehler 

enthalten ist, wie z.B. Zailenstufenform statt Zeilenstufenform oder Begriffe, die nicht existieren, wie z.B. begrenzte 

Zeilenstufenform. 
4
 Da es für die Konzeption mathematischer Online-Lückentextaufgaben bisher in der Forschung keine konkreten 

Empfehlungen oder Kriterien gab, orientieren sich diese hier formulierten Kriterien an den Arbeiten von Vollrath und 

Roth (2012) zum Erarbeiten und Verstehen von mathematischen Begriffen. Da die Lückentextaufgaben zudem seit 

2019 in den Grundlagenveranstaltungen Lineare Algebra und Analysis eingesetzt wurden, konnten die Lückentexte 

mithilfe von Ergebnissen aus regelmäßig stattfindenden Studierendenbefragungen zu den Aufgaben immer wieder 

überarbeitet und verbessert werden. 
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Erster Transkriptausschnitt: 

ProbandIn: (seufzt) -ähm- Naja. Also, (.) ich weiß halt nur, was eine Zeilenstufenform ist 

und ich weiß ja auch, (.) also, dieses Muster innen und -ähh- und dass das 

beim Gauß-Algorithmus eben rauskommt. Dann bereinigte Normalform 

habe ich noch nie gehört und Spaltenstufenform (.) ist halt eben nicht das, 

was rauskommt. Also also/ Außerdem hat hat man diesen/ dieses Wort 

Zeilenstufenform, hat man auch schon irgendwie oft gehört. 

Also/#00:22:28# 

Zweiter Transkriptausschnitt: 

ProbandIn: Naja. (seufzt) Ich weiß nicht. Also, (..) egal, der Gauß-Algorithmus/ Ich weiß 

halt, was man damit macht. Man bringt den halt auf diese Zeilenstufenform 

und ich weiß auch gar nicht jetzt, wo ich darüber nachgedacht habe, was 

eigentlich eine Spaltenstufenform ist. Also, wahrscheinlich das gleiche 

irgendwie andersrum symmetrisch, aber/ (.) Ja. (lacht) #00:24:00# 

Zuordnungen und Analyseergebnisse 

Die folgende Tabelle enthält die Zuordnungen zu den aufgestellten Kategorien für die 

beiden Transkriptausschnitte
5
: 

Nr. Zeichen/ Symbol Relation/Beziehung Gegenstand/Referenzkont. 

1 „eine 

Zeilenstufenform“ 

„innen“ „dieses Muster“ 

2 „eine 

Zeilenstufenform 

„das beim [Gauß-

Algorthmus] eben 

rauskommt“ 

„Gauß-Algorithmus“ 

3 „bereinigte 

Normalform“ 

„habe ich noch nie“ „gehört“ 

4 „Spaltenstufenform“ „ist halt eben nicht das, 

was rauskommt“ 

„Gauß-Algorithmus“ 

5 „der Gauß-

Algorithmus“ 

„Ich weiß halt, was man 

damit macht. Man bringt 

den halt auf“ 

„diese Zeilenstufenform“ 

6 „eine 

Spaltenstufenform“ 

„Also, wahrscheinlich 

das gleiche irgendwie 

andersrum symmetrisch“ 

„diese Zeilenstufenform“ 

Tab. 1: Zuordnungen zu den Kategorien 

                                           
5
 Die restlichen Elemente aus den Ausschnitten wurden der Kategorie „nicht zuordenbare Äußerungen“ zugeordnet und 

werden dementsprechend nicht in diesem Beitrag thematisiert. 
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Betrachtet man die Zuordnungen, so lassen sich verschiedene Aspekte erkennen: 

1. Die gewählten Referenzkontexte können Elemente sein, die bereits in der 

Aufgabe enthalten sind wie Gauß-Algorithmus oder Zeilenstufenform. 

Gleichzeitig werden aber auch Referenzkontexte gewählt, die nicht oder nicht 

wortwörtlich im Lückentext enthalten sind, wie gehört oder Muster. Mit gehört 

könnten beispielsweise die akustischen Zeichen gemeint sein, die im Rahmen 

von Vorlesungen, Übungen, etc. kommuniziert wurden, d. h. mündliche 

Erwähnungen, Beschreibungen und Erläuterungen. Mit dem Muster, das sich 

innen befindet, sind möglicherweise die Art und Anordnung der Koeffizienten 

bzw. die Matrixeinträge gemeint, die eine Dreiecksform oder Treppenform 

bilden. 

2. Die Relation zwischen den Zeichen und Referenzkontexten wird häufig vage 

und recht unpräzise formuliert. Deutlich wird dies zum Beispiel bei der 

formulierten Relation zwischen dem Zeichen Spaltenstufenform und dem 

Referenzkontext Gauß-Algorithmus. Hier beschreibt die Versuchsperson die 

Spaltenstufenform lediglich als das, was eben nicht beim Gaußalgorithmus 

rauskommt. Diese Relation ist insofern noch vage, als dass sie auf alle 

möglichen Referenzkontexte zutrifft. Eine Spaltenstufenform erhält man 

beispielsweise auch nicht, wenn man eine quadratische Ergänzung durchführt. 

Gleichzeitig entsteht die Vagheit auch durch den gewählten Referenzkontext, 

denn durch die Anwendung des Gauß-Algorithmus erhält man beispielsweise 

auch keine bereinigte Normalform, da dieser Begriff aus der Prädikatenlogik 

stammt. 

3. Es wird durchaus mehr als ein Referenzkontext herangezogen, um ein Zeichen 

zu deuten. Das Zeichen Zeilenstufenform wird nicht nur mit Muster, sondern 

auch mit Gauß-Algorithmus in Beziehung gesetzt. Das Gleiche gilt für das 

Zeichen Spaltenstufenform, welches ebenfalls mit Gauß-Algorithmus ins 

Verhältnis gesetzt wird, aber auch mit Zeilenstufenform. Bei der 

Spaltenstufenform lässt sich durch die zweite konstruierte Relation sogar eine 

Art Entwicklung hin zur Präzisierung erkennen, denn die Spaltenstufenform ist 

nicht mehr nur das, was nicht bei der Anwendung des Gauß-Algorithmus 

entsteht. Der formulierten Relation kann man entnehmen, dass sie für die 

Probandin/den Probanden vergleichbar mit der Zeilenstufenform ist, nur 

irgendwie andersrum symmetrisch. Andersrum symmetrisch könnte wiederum 

eine unpräzise Beschreibung der Transponierten darstellen, da eine 

transponierte Matrix durch die Spiegelung der Ausgangsmatrix an ihrer 

Hauptdiagonalen entsteht. 

4. Selbst bei einer einzelnen Lücke bleiben die Zuordnungen zu den Ecken des 

epistemologischen Dreiecks nicht stabil. Zu Beginn ist Zeilenstufenform ein 

Zeichen, das gedeutet wird. Im Verlauf der Bearbeitung wird Zeilenstufenform 

aber auch als Referenzkontext genutzt, um andere Zeichen zu deuten. Auffällig 

sind hier auch die Zuordnungen in Zeile zwei und fünf der Tabelle 1: Gauß-

Algorithmus ist hier zunächst der Referenzkontext, mit dessen Hilfe  
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Zeilenstufenform gedeutet wird. Später werden die Rollen dieses Paares 

vertauscht. Die formulierten Relationen ähneln sich semantisch. Die zweite 

Relation ist sogar unpräziser, da sie suggeriert, dass der Gauß-Algorithmus in 

Zeilenstufenform gebracht wird, dabei müsste man eigentlich von der 

Ausgangsmatrix sprechen. 

5. Wie die Zuordnungen in Zeile zwei und vier der Tabelle 1 zeigen, können 

gleiche Referenzkontexte und syntaktisch ähnlich formulierte Relationen 

herangezogen werden, um Unterschiede oder Kontraste zwischen den 

Begriffen zu verdeutlichen. Zeilenstufenform und Spaltenstufenform werden 

dadurch als Gegensatzpaar markiert. 

FAZIT UND AUSBLICK 

Die eingangs gestellte erste Frage Wie gestalten sich die Begriffsdeutungen, die bei 

der Bearbeitung von mathematischen Lückentextaufgaben von Studierenden 

entwickelt werden und wie hängen diese von den vorgegebenen Antwortoptionen ab? 

kann bisher noch nicht im vollen Umfang beantwortet werden. Die ersten 

Analyseergebnisse deuten aber darauf hin, dass durch die Vorgabe spezifischer 

Auswahloptionen bestimmte Prozesse der Bedeutungsgenerierung angestoßen 

werden.  

Werden Begriffe zur Auswahl gestellt, die aus einem mathematischen Kontext 

stammen und in der Begriffshierarchie gleichwertig zueinander sind wie z. B. 

Spaltenstufenform und Zeilenstufenform, dann kann dies dazu führen, dass der 

Versuch unternommen wird, diese Begriffe voneinander abzugrenzen, indem jeweils 

eine Relation zu einem übergeordneten Begriff (in diesem Fall Gauß-Algorithmus) 

formuliert wird. Gewissermaßen wird hier eine gemeinsame Vergleichsbasis 

herangezogen. Daneben konnte aber auch beobachtet werden, dass Begriffe, die als 

Lösung für eine Textlücke zur Auswahl standen, direkt miteinander in Beziehung 

gesetzt wurden. 

Die Deutungen, die entstehen, entsprechen keiner präzisen mathematischen 

Definition, sondern bleiben häufig vage. In einigen Fällen verbleiben sie (wie bei der 

Deutung für bereinigte Normalform) auf einer intuitiven Ebene. Im Verlauf der 

Bearbeitung können die Deutungen für ein Zeichen allerdings präziser werden, wie 

man am Beispiel Spaltenstufenform erkennen kann. Die formulierten Relationen 

sollten also nicht als etwas Isoliertes betrachtet werden, denn Zeichen/Symbole und 

ihre Gegenstände/Referenzkontexte bauen immer auf Wissen auf, das bereits im 

Vorfeld konstruiert worden ist, also anderen epistemologischen Dreiecken. Sie 

können sich gegenseitig ergänzen, wobei „die Ecken des epistemologischen Dreiecks 

als Summe der bisher mit dem Konzept […] verbundenen positionsgleichen 

Elemente zu verstehen“ (Rieß, 2018, S. 93) sind.  
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INTRODUCTION 
Mathematical proofs have a central role in developing, establishing and 
communicating mathematical knowledge. Given the importance of mathematical 
proofs, introductory courses in mathematics bachelor’s degrees are dedicated to 
introducing students to the proving process. The goal of this study is to characterise 
proof teaching in university mathematics lectures by using the framework of 
commognition (Sfard, 2008). The basic tenet of this framework is that thinking can 
be conceptualised as communication with oneself. This poster focuses directly on 
proof teaching in an introductory mathematical lecture. The research question of this 
study is: what are the characteristics of proof teaching in a first-year university 
mathematics course? 
METHODOLOGY 
Six online lectures (out of 17) by an exemplary mid-career lecturer teaching a first-
year university mathematics course on real analysis were analysed. Inductive 
thematic analysis was performed, using themes (characteristics of proof teaching) 
from Karavi et al. (2022). Thus, the following characteristics were used, flexibility 
(i.e., performing a proof in more than one way), bondedness (i.e., making connections 
between the different steps of the proof), applicability (i.e., discussing the application 
of a proving process in other situations), agentivity (i.e., making decisions for the 
proving processes, evaluating and showcasing how one can explore them), 
objectification (i.e., increasing the level of abstraction of a mathematical object) and 
substantiability (i.e., establishing the criteria to judge and reflecting on the essence 
and key ideas of the outcome of the proving process). 
RESULTS 
All quotes in this section were taken from the proof of the characterisation of 
compact sets (  in  is compact if and only if  is closed and bounded). We 
identified a structure for the teaching of proofs in the first-year university 
mathematics course under study that we discuss briefly in this section. When 
introducing a proof the lecturer first stated what exactly needed to be proved. 

The first statement is  as a subset of real numbers is compact, and the theorem asserts 
that this is equivalent to saying that  is both closed and bounded. 
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He showed how this theorem relates to previous proofs or results (bondedness)  

So, this connects back to two questions earlier on the chat, are all compact sets closed? 
He explored what definitions and tools could be used and what proving approach will 
be taken (agentivity).  

Well, let's do a proof by contradiction. Let's assume that a set  is not bounded, so I 
assume  is compact, and I assume  is not bounded. And then I want to force a 
contradiction. 

During the proof itself, the lecturer related the (steps of the) proof to other steps, 
proofs and results (bondedness). 

Okay, this is only half of the proof. If  is compact, then it is bounded. But I still need to 
show that  is closed as well. Okay, so that will be the next slide.  

He applied previously known theorems and definitions (applicability). 
So here we go. Since  is a limit point of , we know that there has to be a sequence  
in , such that  equals the limit of this sequence .  

He showed that (steps of the) proof can be performed in multiple ways (flexibility), 
and finally repeated the statement of what exactly was proved.  

So, here's one characterization of compact sets, a set is compact if and only if it is closed 
and bounded. 

When closing the proof, the lecturer repeated the main ideas of the proof and 
explained them in other ways (substantiability).  

So, if I assume that  is compact, then the assumption that  is not bounded gives me a 
contradiction. And therefore, the compactness of  implies boundedness of . 

In this poster, we explored the proof teaching through the identification of 
characteristics that originated from the literature. Each characteristic appeared to have 
a specific function given its place in the proving process. These identified 
characteristics can be a starting point for future researchers who aim to further 
investigate proof teaching. 
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Das Ziel des Mathematikstudiums ist Studierende in eine Wissenschaft einzuführen 

(Weber & Lindmeier, 2020), in der Beweise eine zentrale Rolle spielen (Hanna & 

Barbeau, 2008). Inwieweit allerdings CAS in den Beweisprozess einbezogen werden 

kann, ist noch nicht ausreichend erforscht (Jankvist & Misfeldt, 2019). 

THEORETISCHER HINTERGRUND UND FORSCHUNGSFRAGE 

In der Mathematikdidaktik wird in Anlehnung an Wittmann und Müller (1988) 

zwischen experimentellen, operativen und formalen Beweisen unterschieden, dieses 

Modell ist nach wie vor aktuell (Brunner, 2014). Experimentelle Beweise verifizieren 

einen vermuteten Zusammenhang anhand einiger konkreter Beispiele, zeigen aber 

nicht dessen Allgemeingültigkeit. Operative und formale Beweise sind demgegen-

über deduktiv und unterscheiden sich voneinander nur in der Ebene der Darstellung: 

Während bei formalen Beweisen an durch Symbole dargestellten Objekten 

symbolische Operationen durchgeführt werden, stützen sich operative Beweise auf 

konkrete Operationen, die an konkreten Darstellungen ausgeführt werden. 

Jankvist und Misfeldt (2019) identifizieren in Schulbüchern drei Typen des Einsatzes 

von CAS bei Beweisen. Beim ersten und beim zweiten Typ wird die Führung eines 

Beweises vollkommen oder teilweise dem CAS überlassen, beim dritten Typ werden 

bereits bewiesene Sätze an konkreten Beispielen überprüft. Diese Typen des CAS-

Einsatzes lassen sich durchaus mit den Beweistypen nach Wittmann und Müller 

(1988) vereinbaren: Der erste und der zweite Typ stellen formale Beweise dar, deren 

Schritte allerdings ausgeblendet werden, sind also verkürzte formale Beweise. Der 

dritte Typ entspricht einem experimentellen Beweis. Das Modell von Wittmann und 

Müller (1988) eignet sich also, bereits erbrachte CAS-unterstützte Beweisprodukte zu 

klassifizieren, auch wenn hierbei das Modell nicht vollständig ausgeschöpft wird. Es 

stellt sich somit die Frage, inwieweit das Modell bei der Entwicklung von CAS-

unterstützten Beweisen, d.h. beim Beweisprozess erfolgreich eingesetzt werden kann. 

ERGEBNISSE 

Der Einsatz von CAS ermöglicht vor allem Manipulationen an algebraischen 

Ausdrücken (Zehavi & Mann, 2009), demzufolge kann CAS bei der Vermittlung 

solcher Beweise verwendet werden, die überwiegend algebraische Umformungen 

erfordern. Solche Beweise findet man in der Hochschulmathematik vor allem in der 
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linearen Algebra und der Zahlentheorie. In einem ersten Schritt wurden daher 

Beispiele aus diesen beiden Disziplinen mit Hilfe des CAS für alle drei Beweistypen 

entwickelt, wobei formale Beweise ohne Ausblendung der Beweisschritte erstellt 

worden sind. Dies wird an einem konkreten Beispiel (Abbildung 1) verdeutlicht.  

 

 

 

 

Abbildung 1: Multiplikation zweier komplexer Zahlen in Polarform (oben links: 

experimenteller Beweis; oben rechts: operativer Beweis; unten: formaler Beweis) 

Weitere Beispiele werden im Beitrag präsentiert. Die Unterstützung des 

Beweisprozesses von Studierenden durch die Thematisierung solcher CAS-

unterstützten Beweise wird im Wintersemester 2022/23 empirisch untersucht. 
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Reasoning about mathematics is central in many of the scientific disciplines. Students 
often utilize mathematical concepts and procedures, mathematize physical constructs, 
and interpret mathematical entities in terms of physics (Uhden et al., 2012). For 
example, quantum mechanics problems often involve reasoning about linear algebra 
content such as matrix-vector operations, change of basis, eigentheory, projection, 
orthonormality, and inner products (e.g., Schermerhorn et al., 2019; Serbin & Wawro, 
2022). Our broad research project investigates students’ understanding, symbolization, 
and interpretation of eigentheory in quantum mechanics (US NSF #1452889). This 
poster will focus on the following research questions: in what ways do students 
recognize if quantum mechanical matrix equations are eigenequations, and how does 
this relate to their reasoning for eigentheory in mathematics and quantum contexts?  
The data consist of video, transcript, and written work from individual, semi-structured 
interviews (Bernard, 1988) with ten volunteers from a senior-level quantum mechanics 
course at a medium-sized public research university in the United States. One interview 
question probed students’ reasoning about three equations E1-E3 (Figure 1).  E2 is a 
quantum mechanics eigenequation for a spin-½ system [1], and E3 is an equation in 
which the operation "flips" the spin state; E3 is not an eigenequation. 

Figure 1. The interview question used to gather the data analysed in this poster. 

In this work, we adopt a theoretical stance consistent with the Knowledge in Pieces 
framework (diSessa, 1993). This assumes that students’ intuitively held knowledge 
pieces are productive in some context and that knowledge change involves 
evolutionary refinement and reorganization of ideas. We conducted our analysis by 
iteratively examining the data for nuance in student imagery and noting relevant 
discursive cues (Gee, 2005) that we then organized into themes.  
The results presented in the poster will focus mostly on student reasoning about E3. 
One aspect will delineate results related to student reasoning about if E3 was a valid 

“I have a few equations prepared. For each one, I want you to explain what the equation means to you.” 
[E1]   𝐴𝑥 = 𝜆𝑥, where 𝐴 is a 2x2 matrix, �⃗� is a 2x1 vector, and 𝜆 is a scalar 
[E2]    𝑆'!|+⟩! =

ℏ
#
|+⟩! 

“You mentioned both related to eigentheory. Please compare and contrast how you personally conceptu-
alize eigentheory in the two situations.” 

[E3]    𝑆'$|+⟩! =
ℏ
#
|−⟩! 
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equation. Of the four students who this engaged in this way, two of them used written 
calculations to eventually convince themselves of the equation’s validity, and two of 
them believed it to be an untrue equation. The second aspect will delineate results 
related to student reasoning about if E3 was an eigenequation, with eight of them 
eventually determining that E3 was not an eigenequation. All eight in some way 
discussed the two kets in the equation not matching, either by reasoning about co-
existing distinct vectors (a static view of the equation) or reasoning about not getting 
same vector back (a dynamic view of the equation); these are synergistic with results 
about E1 and E2. For example, one student stated, “So not so much an eigenvalue 
equation because we don't have the same vector on either side.” In their examination 
of E3’s structure, they seemed to leverage a static view of the equation as they looked 
for the same vector on both sides of the equal sign. This is consistent with Sherin’s 
work on symbolic forms (2001), which interprets students’ understanding of equations 
in terms of pairing symbol templates with conceptual justifications for the structure of 
the equation. The remaining two students displayed reasoning that indicated they knew 
E3 contained some aspects that related to eigentheory but were not sure if it was an 
eigenequation. For example, one student explained E2 in terms of measuring spin but 
voiced uncertainty about interpreting E3 with respect to measurement. The poster will 
include a broad synthesis of results across all three equations, highlighting instances of 
synergistic and potentially incompatible interpretations of the three equations, will 
offer pedagogical implications related to linear algebra, and will discuss avenues for 
future research such as the use of symbolic forms in mathematics education research. 
NOTES 

1. Spin is a measure of a particle’s intrinsic angular momentum. Possible spin states are represented by normalized kets 
|𝜓⟩ which behave mathematically like vectors. The eigenstates |+⟩! + and |−⟩!	for the spin-½ operator 𝑆'! correspond to 
the two possible spin measurements of ± ℏ

2
 along the 𝑥-axis, encapsulated in the eigenequations 𝑆'!|±⟩! = ± ℏ

#
|±⟩!. 
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THE CONTRIBUTIONS IN TWG4 
These proceedings evidence the rich content of the presentations in TWG4. Several 
“other disciplines” were considered by the authors: engineering, physics, chemistry, 
life sciences, with different foci that we briefly evoke here.  
Some studies concern interventions, from their design to their implementation and the 
evaluation of their impact for students. Pollani and Branchetti designed and 
implemented a course for future mathematics teachers about mathematics-physics 
interdisciplinarity, where the students investigate the characteristic features of the two 
disciplines and their boundaries (Akkerman & Bakker, 2011). Cabrera, Vivier, 
Montoya and Vandebrouck, referring to the Mathematical Working Spaces theory 
(Kuzniak et al., 2022), explore student learning in an experimental course where 
trigonometric polynomials and Fourier series are used for modelling sounds. Rizzo 
introduces an active teaching approach, where Natural Science students collectively 
work on modelling tasks. Hernández-Méndez, Cuevas-Vallejo and Orozco-Santiago 
also implement a modelling-based course about differential equations and the harmonic 
motion. Rønning investigates the impact, in terms of students’ perceived relevance, of 
a contextual learning approach to mathematics teaching, where students use 
mathematics to solve engineering problems. In these studies, concerning modelling-
based courses, different kinds of technological tools play a significant role, providing 
in particular access to specific representations (e.g. Audacity representing the sounds 
as sinusoidal curves).  
Several intervention studies in TWG4 concern Study and Research Paths (SRPs, Bosch 
et al., 2020) and refer to the Anthropological Theory of the Didactics (ATD, 
Chevallard, 2015). Lombard presents an epistemological analysis grounding the design 
of an SRP at the interface between mathematics and quantum mechanics. Markulin, 
Jessen and Florensa focus on the cross-disciplinary collaboration needed for managing 
an SRP in statistics for business administration (including the active participation of 
the client). Freixanet, Alsina and Bosch also implemented and SRP about statistics. In 
their study, the questions were proposed by the students (first-year future engineers) 
themselves, about the proposed topic of water as an indispensable resource.  
While the researchers were involved in the design of the courses in the above-
mentioned studies, some institutions also propose innovative courses. Salinas-
Hernández, Kiliç, Kock and Pepin consider a challenge-based course for future 
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engineers. Referring to the instrumental approach (Trouche, 2004), they investigate the 
use of resources by students in such courses, and how they perceive their learning both 
professional and in mathematics. The issue of “authenticity” is also important in the 
study by Hilger, Schmitz, and Ostsieker, which concerns the views of engineering 
students about application examples (provided in ‘usual’ courses), and how these views 
are linked to students’ beliefs (Rooch et al., 2014) about mathematics.  
‘Ordinary’ mathematics courses for non-specialists are also studied by other authors. 
Rogovchenko and Rogovchenko analyse Calculus and differential equation courses in 
terms of potential conflicts for student learning, in particular in terms of concept image 
(Tall & Vinner, 1981). Burr studies the teaching and learning of Numerical Analysis. 
Gueudet, Doukhan and Quéré focus on teachers’ practices in mathematics courses for 
non-specialists, using ATD (Chevallard, 2015) and the concept of didactical 
praxeologies to identify specificities of these teaching practices.  
Cuenca, Barquero and Florensa also refer to ATD, and analyse a reform of the 
engineering mathematics curricula in Ecuador. They evidence the stability of the 
contents of the courses, in spite of changes in their titles.  
We note that, whatever their focus is, all these studies took into account the specific 
features of teaching mathematics to non-specialists. In what follow we briefly 
summarize the thematic discussions in TWG4. 
INTERVENTIONS 
One of the main discussions of the group, accordingly to the number of proposals 
including them addressed interventions in different programs and courses. The first 
aspect regarded the need to establish collaborating groups in order to reflect and to 
design the interventions. Secondly, the group addressed the need to systematize the 
dissemination of mathematics education research results in order to ensure an impact 
on the actual teaching practice.  
The need for collaborations between researchers in mathematics education, 
mathematics teachers and teachers of the “domain” where the mathematics courses are 
taught (engineering, business administration, etc.) was considered as a necessity 
emerging from the analysis of the different contributions to the TWG4. Specifically, 
one of the proposals was to consider the members of the mathematic education research 
community as the brokers between the teachers of the domain and mathematics 
teachers to facilitate the design and implementation of new teaching proposals 
considering the need of each domain. This idea of networks of mathematic researchers 
and teachers was seen as a way to study and modify the conditions affecting the 
research-based proposals avoiding the fragility of the implementations leaded by a 
single person doing at the same time the role of researcher-teacher.  
However, the development of these collaborations needs to consider several factors 
explicitly. For example, it is important to define the inputs considered and the outputs 
expected of these collaborating groups. Another aspect to be considered is the need to 
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fix the institutional settings to ensure the ecological viability of interventions: as long 
as this activity is not considered as a part of the institutional activity, and that might 
involve different departments, their viability might be very fragile. The discussion also 
addressed the importance to reflect on the level for implementing interventions: lesson, 
course, or even full program.  
Regarding the dissemination of the research results, the discussion considered two 
main proposals. Firstly, the participants considered that there is a need to develop 
resources around the teaching of mathematics to non-mathematicians addressed to 
mathematics teachers. One of the points that were considered is the need that these 
resources should be developed by mathematicians, mathematics educators and non-
mathematicians working together. A second aspect that was considered to facilitate the 
dissemination of research results is the need to develop professional development 
proposals further from pedagogical courses. One of the specificities of undergraduate 
mathematic teachers is often the need to hold a doctorate in mathematics and some 
pedagogical course while the courses on didactics are often seen as complementary.  
MODELLING  
A second aspect that was addressed during the discussions of TWG4 was the 
consideration of modelling as one of the proposals that should be incorporated to the 
mathematics courses for non-mathematicians. However, the discussion revolved 
around the need to consider “authentic modelling tasks” coming from the workplace 
of engineers, biologists, etc. and avoiding giving a ready-to-use model to students. In 
other words, activities such as developing the model, validating and proving its 
accuracy that often do not exist in mathematics courses were considered by the 
participants as crucial as other activities such as using the model to obtain results which 
are very common in school settings.  
A second aspect, related to the theories used to analyse modelling processes concerns 
the need to overcome the classical dichotomy between “non-mathematical” and 
“mathematical” contents proposed by diverse models. The discussion also considered 
important to enrich the different theories emerging from mathematics education with 
the theory of models in philosophy or the analysis of modelling in other disciplines 
such as engineering. 
EPISTEMOLOGY  
Finally, the need to develop appropriate tools to explicitly describe knowledge was 
considered as a priority by the participants. There was a clear consensus on the need to 
question of what is conceived as mathematics when addressing problematic 
phenomena in the teaching and learning of mathematics. In other words, the “classical 
knowledge labels” (such as derivatives, differential calculus, or statistics) are not a 
precise enough way to describe knowledge: the activity developed under these labels 
can be significantly different depending on the teaching proposal.  
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The role of proof also was addressed during the TWG4 discussions. Often, the 
mathematical activity of non-specialists does not explicitly include proofs: however, 
the models used are founded and considered valid because they had already been 
validated. A clear open question is how to deal with this “hidden” role of proof in the 
mathematics taught to non-mathematicians. 
FUTURE DIRECTIONS  
The future directions discussed in TWG4 were linked with the different issues 
discussed above. They concern both research and development, which are closely 
linked in these issues. Developing groups associating mathematics education 
researchers, mathematicians, specialists of other disciplines is a need for the design of 
productive interventions. Nevertheless, the conditions allowing the existence of such 
groups in various institutional contexts are complex and deserve a specific study. 
Similarly, understanding the conditions for a productive design of resources for 
university teachers – mathematics teachers teaching to non-specialists, or teachers of 
disciplines using mathematics – grounded in research results, and contributing to the 
dissemination of these results is a complex issue requiring further research. Would it 
be possible, for the “UME for non-specialists” research community, to write a ‘white 
paper’ presenting recommendations for stakeholders and policy-makers? Would it be 
possible for this young community to identify a list of “solid findings” that could 
support recommendations for practice, and/or professional development programs? 
The successful interventions designed are often very local; further research could work 
in the direction of interinstitutional projects, to evaluate the generalizability of these 
interventions.  
Other research directions concern the epistemological basis of the studies, and the need 
to deepen our understanding of the links between mathematics and other disciplines. 
Including historical sources in our studies, which enlighten the historical genesis of the 
contents at stake, their raison d’être, appears as a promising mean for investigating this 
direction.   
Finally, while ATD (Chevallard, 2015) seems to be increasingly used in TWG4, other 
frameworks were also present in the group (e.g. boundary crossing, the instrumental 
approach). The question of the theoretical frameworks relevant to identify and study 
research questions specific to mathematics for students following physics, chemistry, 
biology, engineering, economics or other subjects remains open.    
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The teaching of trigonometrical functions usually is carried out from relationships with 

measurement of arcs and the unit circle. Within the properties of trigonometric 

functions, periodicity is one of the most important. We present the first results of a 

sequence of tasks whose objective was to model sounds using trigonometric 

polynomials and Fourier’s theory, through experimentation in 1st university year with 

Audacity and Geogebra software. The circulations and activation of planes in the sense 

of the Mathematical Working Space of the students were analysed while the students’ 

transits for the different stages of the modeling cycle. Among the main results, we 

recognize that students build the concept of trigonometric function from time-

amplitude variables, avoiding the concept of angle or radian. 

Keywords: digital technologies, teaching analysis, periodical functions, trigonometric 

polynomial, modelling, 

INTRODUCTION 

The study of periodic phenomena has been developed for centuries cultures such as the 

Babylonian and the Egyptian used the periodic to make predictions (Montiel, 2005). 

One of the first steps that transitioned trigonometric functions away from geometry 

was the recognition of their periodicity. In 1670, in Wallis’s mechanica as sine curve 

with two complete periods may be found. The conversion and full admittance of 

trigonometric quantities to the family of functions was accomplished by Euler (Van 

Brummelen, 2021). 

The first periodic functions taught in secondary education are the trigonometric 

functions sine and cosine, this is due to the importance they have within mathematics 

and science (Fourier series, electricity, waves, sound, harmonic oscillator, diffusion of 

heat, etc.). The teaching of these functions in secondary education may vary depending 

on the country or the educational institution, however, they are often taught based on 

the teaching of trigonometry. 

In relation to the trigonometric function, research has recognized that for the student 

there is no distinction between ratios and functions, or at least that there is a mixture of 

concepts to solve problems related to functions (Tanguay, 2010; Winsløw, 2016; 

Loeng, 2019). 

Sound is one of the periodic phenomena that is modeled by trigonometric functions. 

From a physical point of view, sound is a mechanical wave produced by a vibrating 

body that propagates in an elastic medium. Any sound, such as a musical note, can be 
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described in physical terms by specifying the frequency, amplitude or air pressure, and 

timbre or waveform. 

In the other hand, the integration of technologies in education has had a sustained boom 

during the last decades, however, the results have not been as expected (OECD, 2015). 

Due to its importance, over time the interest in carrying out studies on the uses of 

technologies to improve calculus concepts at the university level has increased. In 

addition, one main difference between secondary school and university work is the use 

of artifacts, mainly digital tools, to make calculations and develop multiple 

representations of mathematical objects. Artifacts and tools are widely used at 

secondary school whereas practices at university level tends to banish technologies 

from students’ activities.  

Based on the above, we have set ourselves the objective: study the mathematical work 

of first-year university students in a task of modelling periodic phenomena related to 

sound, which integrates technological tools. This task also allows students to 

conceptualize trigonometric functions from variables related to time and amplitude, 

rather than angles. 

FRAMEWORK 

Based on the proposed objective and the design of the task, we used the mathematical 

modeling cycle (Borromeo-Ferri, 2010) and the Mathematical Working Space [MWS] 

(Kuzniak, Montoya-Delgadillo & Richards, 2022) articulately. 

The MWS allows describing and characterizing the mathematical work of an individual 

from a specific task. With this approach it is possible to describe how epistemological 

and cognitive elements are articulated in the solution of a task, showing the circulations 

between the activated MWS components (Kuzniak et al., 2022). 

 

Fig 1a. Mathematical Working Spaces 

diagram (Kuzniak et al., 2022) 

 

Fig 1b. Modeling cycle (Borromeo-Ferri, 

2010) 

The MWS consists of the articulation of two planes: Epistemological and Cognitive, 

which interact with each other, through a genesis process (Kuzniak et al., 2016; 

Kuzniak et al., 2022). It is worth mentioning that there is also an articulation between 

the different genesis, generating three vertical planes: [Sem-Ins], [Ins-Dis], [Sem-Dis]. 
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Mathematical model is defined as a set of symbols and mathematical relations that 

represents, in some way (graphic, numerical or algebraic), the phenomenon in question. 

We incorporate certain concepts related to mathematical modeling from the cognitive 

point of view, for this, we will use the Blum-Borromeo modeling cycle (Borromeo-

Ferri, 2010). The starting point of the modeling process is a real world situation, which 

the students read and understands, then idealized (2), simplified or structured to obtain 

a real model. The real model is mathematized (3), i.e., translated into mathematical 

language to obtain a mathematical model of the initial situation. A mathematical 

treatment (4) leads to mathematical results, interpreted as "real results" (5) which will 

be validated or not in relation to the model situation (6). Then, if the results obtained 

seem to be coherent, they will be consistent, they will be presented as predictions about 

the real situation (7).  

CONTEXT AND METOD 

The methodology that guides this research is Didactic Engineering (Artigue, 1995). To 

respond to the proposed research objective, the methodology used is 

qualitative (Bikner-Ashbahs, Knipping & Presmeg, 2015), where the Case Study (Yin, 

2009) was used to know and understand the context of the students. The 

implementation is made up of 5 second semester undergraduate students in 

mathematical (2021-2022, period), who are taking the subject of Mini-Project de 

Mathématique who formed 3 work groups. Each group makes up a case. The first group 

(G1) was made up of one student, the second and third groups were made up of two 

students each (G2, G3). The proposal was developed during 4 classes of 2 hours each. 

The first task was developed during classes 1 - 2, the second task was developed in 

class 3, and the third task in the last session. As part of the course, students were given 

a document with a brief definition of Fourier Series and its application, from which the 

definition of trigonometric polynomial is presented. This last concept should be used 

by the students in this proposal. 

The design of the proposal had the intention of generating a modeling process, which 

would encourage the incorporation of technological tools such as Geogebra or 

Audacity by students. Audacity is free software that allows you to record and edit 

audio. Audacity's interface provides a graphical representation of the sound using the 

variables time and amplitude. Both software’s allow you to export the data in Excel 

files. 

The participant observation technique was used by the researcher, since he was the 

group's teacher during the class sessions. The data has been extracted from the written 

productions of the students, from the geogebra and Excel files constructed by the 

students. Mathematical work in the sense of the MWS will be analyzed, as the students 

go through the different phases of the modeling cycle. We have considered the 

methodology carried out by Reyes-Avendaño (2020), in which analyzes the activation 

of the genesis, plans [Sem-Ins], [Ins-Dis], [Sem -Dis] and the circulations between 

them, in each one of the phases of the modeling cycle, indicating with arrows within 

the MWS diagram the activation chronology at each phase. 
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PRESENTATION OF THE TASKS 

The objective of the situation is for students to model periodic phenomena through 

trigonometric polynomials presented as a Project that included three tasks. The first 

two tasks given to the students and the objective of these tasks will be described below, 

in the next section the results of these tasks will be discussed. The third task only its 

objective will be presented. 

First task the objective was to recognize that pure sounds are those that are modeled 

by trigonometric functions. To accomplish this objective, two subtasks were designed. 

The subtask 1.1 given was: Characterize the sounds present in the folder. Students are 

presented with a folder with 10 different sounds, and the software Audacity to play 

these sounds. Students are expected to build the real model (RM) of the situation using 

their extra mathematical knowledge (EMK) in relation to music or physics. The 

classification is expected to be made in terms of the nature of the sound, the shape of 

the wave through what is observed in the Audacity interface or from the vibrating body 

that produces it. The transition to Mathematical Model (MM) is guided by subtask 1.2: 

calculate the function associated with each of these sounds. To do this, students export 

data from Audacity to Excel spreadsheet and using Geogebra's Two Variable 

Regression Analysis tool obtain a graphical representation of the sound. Mathematical 

Results (MR) obtained are given in terms of the analytical expression of each sound, 

thanks to the adjustment made by Geogebra. In the transition to the real results (RR) it 

is expected that students generate a second classification, since pure sounds can be 

adjusted by a sinusoidal function and complex sounds cannot. 

In terms of MWS, Audacity is an artifact that allows students to activate semiotic 

genesis to construct RM, because they visualize the behavior of the sound graph in the 

software interface. This artifact allows students to obtain approximations of the 

periodicity of the wave to calculate the frequency. In the construction of RM and the 

transition to the mathematical world, it is the instrumental genesis that directs the 

activation processes of the semiotic genesis through the visualization of the wave and 

its representation on the Cartesian plane. It is the semiotic genesis that leads the testing 

processes when adjusting process is developed in Geogebra. Finally, the proof 

processes in the transition to RR can be based on the activation of the [Ins-Dis] and 

then [Sem-Dis] plane since the new classification is made in relation to the adjust made 

it and the analytical expression provided by Geogebra and what is visualized in it. 
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Fig 2. Genesis and plans activated during the modeling cycle of first task. 

Second task. The objective was to determinate the trigonometric polynomial 

associated with the superposition of two pure sounds. To accomplish this objective, 

were designed two subtasks. Subtask 2.1 given to students is: Using the Audacity mix 

tool, mix the sounds LA 440hz and DO 264hz present in the given folder and determine 

the function that models this sound. The RM is obtained from the sound mixed in 

Audacity, which provides a graphic representation in its interface that allows it to be 

classified as a complex sound, following the classification made it in the first task. In 

the transition to MM, students are expected to relate the superposition of sounds to the 

sum of the functions that model each sound separately, obtaining that the function is 

𝑆(𝑥) = sin(2𝜋 ∙ 440 𝑥) + sin(2𝜋 ∙ 264 𝑥), which can be written as 𝑆(𝑥) = sin(2𝜋 ∙
3 ∙ 88 𝑥) + sin(2𝜋 ∙ 5 ∙ 88 𝑥) which allows transit from MM to MR, concluding that 

the function 𝑆 is obtained as a superposition of two sound with a frequency of 88hz, 

whose period is approximately 𝑇 =  
1

88
= 0,01136. On the way to the RR, students can 

export the mixed sound data and graph it in geogebra, to graphically contrast it with 

the function 𝑆 obtained earlier. 

Subsequently, subtask 2.2 given to students was: Determine the first coefficients of 

trigonometric polynomial from the data set provided by Audacity. This subtask will 

allow the students to resignify the previously described model, since it will be obtained 

from Fourier Theory. In terms of modeling cycle, the resignification process is oriented 

from RR to MM. For the construction of the new MM, students must determine the 

period of the graphed wave, obtaining the interval [𝑡0, 𝑡0 + 𝑇], whose values they will 

use from Excel cells. After that, students must calculate the Fourier coefficients 𝑎𝑛 and 

𝑏𝑛 as: 𝑎0 =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0
, 𝑎𝑛 =

2

𝑇
∫ 𝑓(𝑡) ∙ cos(𝑛𝜔𝑡) 𝑑𝑡

𝑇

0
 and 𝑏𝑛 =

2

𝑇
∫ 𝑓(𝑡) ∙

𝑇

0

sin(𝑛𝜔𝑡) 𝑑𝑡, with 𝜔 =
2𝜋

𝑇
. 

However, since the coefficients will be calculated from a data set, in the transition to 

MR, students must use the Riemann sum to approximate the value of the integral, 

therefore, they must calculate the coefficients as: 𝑎𝑛 = ∑ 𝑓(𝑡𝑛) ∙ cos(
2𝜋

𝑇
𝑡𝑛)

𝑡0+𝑇
𝑡0

 and 

𝑏𝑛 = ∑ 𝑓(𝑡𝑛) ∙ sin(
2𝜋

𝑇
𝑡𝑛)

𝑡0+𝑇
𝑡0

. As MR students are expected to determine that 𝑏3 = 1 

and 𝑏5 = 1. In the validation process towards the RR, students can use Geogebra's 
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PlaySound tool and analyze the difference between the sound created in Audacity and 

the one delivered by Geogebra, or graphically determine the error between the 

calculated trigonometric polynomial and the set of data delivered by Audacity. 

Figure 3 shows the mathematical work developed during subtasks 2.1 and 2.2. 

Audacity is an artifact that allows groups to recognize the wave graph to construct the 

RM as a complex sound related with a superposition of sounds. Semiotic genesis is 

activated from the software interface in the transition to MM. Students can relate the 

wave modeled by Audacity with the function obtained through the visualization in 

Geogebra. They can use the graphical view as a pragmatic proof to determine that this 

function is the one that models the mix of sounds. In relation to subtask 2.2, when 

calculating the trigonometric polynomial with the data provided by Audacity, Excel 

spreadsheet is a first available resource. The organization of mathematical work in the 

spreadsheet is based on the students' theoretical referential of the concept of integral 

and Riemann sum. Students must organize a set of interrelated operations in the 

software to develop the calculation of the coefficients. It observes semiotic components 

associated with reasoning in relation to definitions and mathematical properties that 

are articulated, thanks to the intentionality given to the use of this digital artifacts, 

therefore, it is from the discursive genesis that the plane [Sem-Ins] is activated. 

 

Fig 3a. Mathematical work developed in 

subtask 2.1 

 

Fig 3b. Mathematical work 

developed in subtask 2.2 

Third task. The objective of the third task was to model a complex sound through a 

trigonometric polynomial. The students were given only one task: Determine the 

function that models this sound. The students received an audio file with the sound of 

a flute playing the note LA. Students are expected to carry out a modeling process like 

the one developed in the second task.  

DATA ANALYSIS AND RESULTS 

The results obtained in the implementation of the elaborated proposal are presented 

below. 

First Task 

In relation to subtasks 1.1 and 1.2, the three groups achieved the proposed objective: 

to characterize pure and complex sounds and calculate the function associated to each 

sound. Students made a transit through the different phases of the modeling cycle when 
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developing both tasks. They play the sounds in Audacity and that allows him to create 

a classification between pure and complex sounds due to graph provides them (Fig 5a) 

and their EMK. Particularly, G1 associates the pure sounds to sinusoidal functions 

whose algebraic expression is: 𝑓(𝑡) = 𝐴𝑠𝑖𝑛(𝑡𝑥 +  𝜑). Likewise, it describes complex 

sounds as those that have a fundamental frequency and other frequencies called 

harmonics (Fig 5b).  

 

 

Fig 5a. view of violin and LA sounds in 

Audacity 

 

Fig 5b. G1 analysis, evidencing 

knowledge of music  

Students used the Audacity data export tool and thanks to the Geogebra’s tool Two 

Variable Regression Analysis get the graphical approximation. Fig 6 shows the 

function obtained (red one) for the adjustment of the LA 440hz sound. This value is 

sound closely approximates the theoretical result, which is 𝑓(𝑥) = sin(2764.5992𝑥).  

 

Fig 6. Adjustment obtained LA-tone 440hz made by G2 

In relation to a priori analysis carried out, Audacity is an artifact that allowed students 

to activate semiotic genesis thanks to its interface. This artifact allowed the students to 

obtain approximations of the periodicity of the wave to calculate the frequency. In the 

construction of the RM and the transition to the mathematical world, it is the 

instrumental genesis that directs the visualization processes. In turn, in the adjustment 

processes, it is from the semiotic genesis that the mathematical work is oriented. 

Finally, in the transition to RR, the students classify that the pure sounds are those that 

are approximated by trigonometric functions as expected. 

Second task 

Subtask 2.1 was to determine the function associated with two-tone superposition 

created in Audacity. To perform this subtask, Audacity “mix” tool is used. The three 

groups were able to perform this task and determine the function associated with the 
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superposition of sounds. In relation to the a priori analysis, students export the data 

from Audacity to Excel and then graph it in Geogebra. G1 and G3 after graphing the 

data set, immediately input a function that is the sum of 𝐿𝐴(𝑥) and 𝐷𝑂(𝑥). G2 uses the 

Geogebra adjustment (Fig 7a), without obtaining results, later it uses the strategy of the 

sum of the known functions (Fig 7b). Three groups determine that the function 𝑆(𝑥) =
sin(880𝜋𝑥) + sin(528𝜋𝑥), is the one that approximates the behavior of the data. 

 
Fig 7a. Adjustment developed by G2 

 

Fig 7b. Graph of the mix obtained by G3 

In the validation process, groups mobilize the concept of approximation error through 

the graph of the function. In it they recognize that the distance between the values of 

the data set and those of the function is good except in the relative maximums and 

minimums of the function.  

In relation to subtask 2.2, students were asked if they could determine the trigonometric 

polynomial associated with the first coefficients of Fourier Series using the data’s 

provided by Audacity. In Fig 8 is presented how G1 construct their MM, previously be 

entered in the spreadsheet to calculate the coefficients using Riemann Sum knowledge, 

identifying the interval of integration as T = [0, 0.0113] and the fundamental frequency 

𝜔 =  
2𝜋

0,0113
 of the periodic wave. 

 

Fig 8. Expression to calculate the coefficients of trigonometric polynomial in Excel, G1 

The spreadsheet developed by G3 is shown in Fig 9, unlike the above, builds the MM 

directly on the spreadsheet of Excel using Riemann Sum knowledge. In the developed 

programming, it is observed that G3 determines that the period is 𝑇 = 0.011.  

 

Fig 9. Excel spreadsheet built by G3 
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Columns A and B are the ones that Audacity delivers when exporting the data. G3 

creates in column D the distance between two consecutive cells of time variable, e.g., 

𝐷3 = 𝐴3 − 𝐴2, which represents the base of the rectangles in the Riemann method. In 

column F, G3 calculates the sine value for a given time, and then multiplies this sine 

value by its amplitude (column G). Finally, in column H, determine the area of each 

rectangle by multiplying the values in the columns 𝐷 and 𝐺. The value of the sum, 

Excel delivers it by selecting all the values of column H, finally the value of the sum 

is multiplied by  
2

𝑇
. 

As expected in the a priori analysis, the students mobilized knowledge from their 

theoretical referential related to the definite integral. The validation process towards 

the RR occurs in terms of the graphical behavior of the trigonometric polynomial 

calculated in relation to the set of values delivered by Audacity, however, they do not 

develop a testing process from an extra-mathematical point of view. 

CONCLUSION 

In terms of the research objective, we can conclude that students build the concept of 

trigonometric function as one that models pure sounds. Likewise, the trigonometric 

functions are defined in relation to the time and amplitude variables, proposing an 

approximation to these functions different that using the concepts of angles and 

radians. From this conceptualization of trigonometric functions, integrating knowledge 

of physics and music, students make sense of the phenomenon in question by relating 

elements of trigonometric functions such as amplitude and periodicity to the sounds 

reproduced. In relation to complex sounds, these encourage the student to mobilize the 

knowledge related to Fourier Theory to be able to model them mathematically. 

In terms of digital artifact, audacity made a link between the two disciplines, music and 

mathematics. This allowed understanding that pure sounds were associated with 

trigonometric functions from the software interface. Audacity allows it to export data 

in Excel to be graphed in Geogebra, thus providing graphical, numerical and acoustic 

representations of sounds. Geogebra also allows to develop pragmatic testing processes 

based on the graphic representation obtained and the adjustment function delivered. 

The design of a modeling proposal allows the connection of different mathematical 

fields through the integration of technologies. The proposal allows connecting 

knowledge of physics, music and mathematics, often disconnected, to conceptualize 

trigonometric functions as those that model pure sounds. This conceptualization 

promotes the understanding and modeling of periodic phenomena, such as sound, 

through the calculation of trigonometric polynomials associated with Fourier's Theory. 

We conclude that the design of mathematical modeling tasks integrating technological 

tools seems to be a good way to transition from high school to university. 
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This paper analyses the curricular reforms that have been carried out in the 
engineering mathematics curricula in the context of the Universidad Técnica 
Particular de Loja (Ecuador). Starting from diverse documentation related to a 
specific curricular reform, we conduct an analysis using the levels of didactic 
codeterminacy. More concretely, we analyse the criteria used to develop the reform, 
the real and effective changes that are reflected in the new programmes as well as the 
level of questioning of the knowledge to be taught. 
Keywords: Teaching and learning of mathematics for engineers, Curricular and 
institutional issues concerning the teaching of mathematics at university level. 
INTRODUCTION 
Research on mathematical education in engineering education is a flourishing field, 
especially within the framework of the anthropological theory of the didactic (ATD) 
(Chevallard, 1992). The previous CERME (see, for instance, González-Martín et al., 
2019) and the INDRUM conferences have also gathered and discussed research papers 
on engineers’ mathematics education. Moreover, addressing both, problems related to 
the teaching and learning of mathematics for undergraduate engineers and the advances 
in creating suitable conditions for innovative proposals in mathematics for engineers 
(González-Martín et al., 2021). The analysis of how mathematics teaching programmes 
have been defined and implemented are important aspects to progress on analysis of 
the ecological conditions, in the terminology of the ATD, under which mathematics is 
taught for undergraduate students. With this respect, Bosch et al. (2021) focus on 
analysing some didactic phenomena related to the definition of university mathematics 
programmes, when comparing how they have been established in mathematics 
university degrees in some European countries. The research presented in Kaspary 
(2020) presents some advances in the analysis of the interaction between the different 
actors and institutions involved in programmes’ definition.  
Another area of research is that of discontinuities, already announced by Felix Klein 
(2016). The first discontinuity refers to the students’ difficulties encountered in the 
transition from secondary school to university. Several studies have addressed this 
phenomenon, including those by Gueudet (2008) and Fonseca (2004) about 
mathematics and didactic discontinuities in the transition from secondary school to 
university. The second discontinuity, announced by Klein, focus on the discontinuity 
that mathematics students experience when moving from university to become 
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secondary school teachers, when they are faced with the transposition of scholarly 
knowledge into knowledge that is to be taught.  
In the case of mathematics education at engineering degrees, the recent work by 
Florensa et al. (2022) focuses on the characterisation of the triple discontinuity in 
mathematics education for engineers. Specifically, the first one is equivalent to Klein’s 
first discontinuity (transition from secondary school to university), which according to  
Fonseca (2004) since in the tenth conjecture he states that:   

School mathematics has a strong pre-algebraic character in secondary school and 
undergoes an abrupt algebraization at the beginning of university education, given that in 
secondary school, equations and formulas are used as calculation algorithms, while at 
university they are used as algebraic models. (Fonseca, 2004, pp. 147, our translation). 

This conjecture is evidenced in the study carried out by Cuenca and Granda (2020) at 
the Universidad Técnica Particular de Loja (UTPL) in which they found that students 
face difficulties when solving problems in contextualized situations, being accustomed 
to solving them in an algorithmic and mechanic way. 
The second discontinuity occurs between mathematical and engineering courses. In 
other words, this is a discontinuity that is internal to the school of engineering and is 
associated with the difference between the mathematics courses compared to the 
engineering courses. The third discontinuity refers to the passage from engineering 
school to professional practice. 
In this context, our research focuses on the curricula reform as it has occurred in the 
Universidad Técnica Particular de Loja (UTPL), selecting the mathematics training of 
undergraduate engineers. Specifically, we address the following research questions: 

RQ1. How is the need for a curricula reform justified? In what terms do the 
intervening “noospherian” institutions describe and justify this need? 

RQ2. What are the criteria this reform is based on?  
RQ3. Which are the real and effective changes that crystalise in the resulting 

mathematics programmes? 
CONTEXT AND CURRICULAR REFORM 
The university institution we focus on is the Universidad Técnica Particular de Loja 
UTPL, placed in the city of Loja (Ecuador). This is an institution that offers ten 
university degrees in engineering: agricultural, food, civil, geological, computer, 
telecommunications, chemical, industrial, logistics, and transport. These ten 
engineering degrees have a 9-semester structure, which is developed in four and a half 
years and with an academic load of 15 credits (not ECTS) per semester (where 1 credit 
is equivalent to 26,67 hours of teaching). As it is usual in most of engineering 
programmes (Romo, 2009), during the first four semesters all degrees have common 
subjects of mathematics.  
In the context of the UTPL, the curricular reform was initiated from the request of the 
Higher Education Council to the higher education institutions to work on the reform of 
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university degree programmes under the third transitory provision of the Academic 
Regulations issued by the council (CES, 2015). Thus, the process of restructuring the 
mathematics courses was initiated considering some results obtained by Cuesta et al. 
(2016), stating that university students had difficulty understanding and addressing 
problems, which are often non-adapted to the university degree they have chosen. This 
is aligned with González-Martín and Hernandes-Gomes (2020) and González-Martín 
et al. (2021) who state that mathematics content is generally taught separately from 
professional courses, which implies that there is a disconnection between mathematics 
and its application to engineering in contexts. Cuesta et al. (2016) also mention that 
one of the possible causes that pronounce these problems is in the curriculum itself. In 
the UTPL curriculum, until 2016, mathematics subjects included a wide range of 
content that grouped together two or more domains (e.g. “Mathematics” course 
covered contents on the domains of Geometry, Linear Algebra, and Statistics). 
Furthermore, there is not a compulsory proposed sequencing of mathematics subjects. 
Sometimes students, joining one advanced course (e.g. Calculus), have not passed 
courses with more basic content (e.g. Basic Mathematics). 
Implementing of the curricular reform 
The team in charge of working on the reform consisted of two teachers: the first with 
a university background in pure mathematics and the other with a background in 
mathematics education. This team oversaw the project of restructuring the mathematics 
courses. They were also responsible of writing the final report of the reform project 
(Cuesta et al., 2015). This team of specialists was supported by 4 lecturers from the 
Physicochemical and Mathematics departments, who carried out an analysis of the 
mathematics courses taught in all the university's degree before the reform in 2016. 
This project resulted in a final report on the redesign of Mathematics and Physics 
subjects, which was submitted to the UTPL authorities. 

Degree 
Courses  

Pre-reform  Credits  Year Post reform  Credits  Year  

Geology  
and mining 
engineering  

Calculus 6 1   
Geometry fundamentals 3  1  

Linear algebra  3  1  
Univariate mathematical analysis 3  2  

Statistics 4 2 
Multivariate mathematical analy-

sis  3  3  

Differential equations and  
numerical methods  3  4  

Civil  
Engineering  

Mathematics  7   1 Geometry fundamentals 3 1 
Linear algebra 3 1 

Calculus 7 2 
Univariate mathematical analysis 3 1 
Multivariate mathematical analy-

sis 3 2 

Advanced  
calculus 6  3 Differential equations  3 3 

Numerical methods  3 4 

Computer 
and  

Mathematical 
fundamentals 4   1  Mathematical fundamentals   3 1 

Calculus  6 2 Linear algebra  3 2 
Statistics  4 3 Univariate mathematical analysis 3 2 
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Information 
Systems engi-
neering 

Quantitative meth-
ods 4 4 Differential equations  

and numerical methods  3 3  

Table 1: Mathematics courses and workload pre and post-reform 

Table 1 presents a summary of the different mathematics courses proposed in the pre- 
and post-reform curriculum, part of the three main engineering degrees in the UTPL. 
These curricular and programmes reforms are the result of, on the one hand, the 
specialist team who proposed the distribution of the courses and the prerequisites. On 
the other hand, the local teams who worked on the reform of the course programmes, 
selecting, and reorganising the contents.  
DATA SELECTION AND METHODOLOGY 
To analyse the reform process, the material to be analysed was selected by the authors 
of this paper. Firstly, three of the ten engineering degrees taught at the UTPL were 
selected: Geology and Mining Engineering, Civil Engineering, and Computer and 
Information Systems Engineering. The criteria for selecting them was that they are the 
engineering degrees with a higher load of mathematics courses in the post-reform. 
Then, the pre- and post-reform programmes of the mathematical subjects are used as 
empirical data for the analysis. Specifically, there have been analysed 3 pre-reform 
courses (Mathematics, Calculus, and Advanced Calculus) and 6 post-reform subjects 
(Univariate Mathematical Analysis, Multivariate Mathematical Analysis, Linear 
Algebra, Fundamentals of Geometry, Differential Equations, and Numerical Methods). 
We have decided not to include, in this first round of analysis, the courses on Statistics. 
Secondly, the reports produced by the teams and commissions responsible for the 
reforms have been also important documents for the analysis. Finally, eight interviews 
have been carried out with the teachers in charge of these courses (five of them with 
experience in the pre-reformed courses) to complement the information about how the 
programmes are effectively implemented in the university classrooms. Due to space 
limitations, we do not include this last empirical data in this paper.   
Levels of didactic codeterminacy as methodological tool for the analysis 
The analysis of the empirical material has been done through the theoretical and 
methodological tool of the levels of didactic codeterminacy (Chevallard, 2002). Our 
aim is, in part, to analyse the conditions, also the constraints, set up by the curriculum 
reforms developed at the UTPL. To develop this analysis, we use the levels of didactic 
codeterminacy (see Figure 1, adapted from Barquero et al., 2014) as a common 
framework to illustrate and distinguish between the different conditions and constraints 
affecting the teaching and learning processes of mathematics courses for the training 
of undergraduate engineers. These levels go from the most generic level, civilisations, 
to the most particular one, the specific questions considered in a particular course. The 
lower levels refer to the way a discipline, mathematics in our case, is organised (in 
domains, sectors, themes, and questions) in a given teaching and learning process. The 
upper levels refer to the more general constraints coming from the way our civilisations 
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and societies, through schools (universities, in particular) and their particular 
pedagogical conditions, organise the teaching and learning of the disciplines. 

  
Figure 1: Scale of levels of didactic codeterminacy. 

The second notion mobilised in the analysis is that of the “noosphere”. The noosphere 
is understood as the set of institutions and agents belonging to these institutions that 
decides and delimits the mathematics to be taught in school institutions, in particular, 
at university. The “noosphere” goes beyond the community of teachers, and includes, 
for instance, agents that legislate on curricular changes, teachers' associations, 
university quality agencies, among others. Thus, considering the levels of didactic 
codeterminacy and the notion of the “noosphere”, an analysis of the documents cited 
has been carried out and is presented in the following section. 
RESULTS 
Origin and need for the reform: proposals from the commissions 
The reform arises in front of several needs that can be detected in the official documents 
considered and in the corresponding interviews with members of this commission in 
charge of the curriculum reform. Firstly, one of the stated aims is to close the gap 
between the Ecuadorian secondary education and the first years at university. 
Secondly, other aims are to homogenise the subjects, disaggregate them and ask about 
prerequisites before selecting the courses to be taken. The report drawn up by the 
commission of experts highlights that: 

 […] The current curriculum at UTPL has a serious deficiency since there is no sequence of 
components. Under these conditions, students enrol in one course without having studied the 
necessary content taught in other course (Cuesta et al., 2015, p. 7, our translation). 

Thirdly, and resulting from an interview with one of the two members of the 
commission, it is explained that the commission work consisted of analysing the 
content of the subjects: Mathematics, Basic Mathematics, Mathematics for the 
biological sciences, Pre-calculus, Calculus, Calculus I, Calculus for the biological 
sciences, Mathematics for the biological sciences II. It was then found that more than 
80% of the content was similar in the different engineering specialties, leading them to 
work on unifying the content into common courses to then look for the specificities 
according to the engineering degree. 
Last but not least, the other member of the commission highlights the importance of 
showing the usefulness of mathematics to thinking and solving problems in the 
engineering context. In one of the reports delivered, it is underlined that: 

[…] After restructuring the subjects, it is expected to result in a course that: (i) enables the student 
to acquire the language of mathematics and the ability to use it to express and understand 
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mathematics and the science under study, and (ii) that enables the acquisition of the fundamental 
concepts in mathematics in a meaningful way. This is precisely the most important challenge of 
mathematics teaching, whose current formalistic approach leads to the fact that the knowledge 
acquired in class is not useful for students. 

At the society-school level, the reports underline the need of characterising better and 
smoothing the abrupt change between the mathematics taught at the Ecuadorian 
secondary education and that of the first mathematics university courses.  
In relation to how the teaching of the different disciplines is organised, that is, placing 
at the university-pedagogical level, several aspects are emphasised. The first is related 
to the fact that, as the pre-reform subjects are arranged, there is a great deal of 
intersection in their contents. This leads to the proposal to unify them insofar as they 
are common and to integrate a specificity by promoting the use of contexts and 
situations specific to the studies being undertaken. As described above, it is proposed 
that in addition to the mathematics subjects providing a “mathematical language and 
the ability to grasp and use it in mathematics and other disciplines”, the ability to use 
this knowledge in the specific contexts of application in the professional field of 
engineers must be assessed.  
At the disciplinary-pedagogical level, another agreement is when proposing a better 
sequencing of the subjects and to propose subject itineraries, which cannot be started 
without the prior approval of those taken. Consequently, the mathematics courses are 
proposed with less teaching load (from 6-7 credits in the pre-reform to 4 credits in the 
post-reform).  
Effective changes in the resulting programmes 
As already mentioned, we base our analysis of the mathematics courses’ programmes 
in the pre-reform (3 courses) and in the post-reform (6 subjects). The main tool here 
used are the specific or lower levels of didactic codeterminacy, which are used to 
analyse how a particular discipline is organised into domain, sector, theme, topics, and 
type of tasks.Figure 2 shows the results using the levels of didactic codeterminacy for 
the course of “Mathematics” (pre-reform course). Figure 2 and Table 2 show how the 
contents were redistributed, changed or reorganised in the post-reform courses 
proposed. Due to the space limitation, we are not able to include the analysis developed 
for the rest of the courses, but the results are available at 
https://bit.ly/INDRUM2022_RM.  
Concerning Figure 2 (and the ones the reader can find in the repository), it is important 
to explain that different colours are used to indicate how the content of a pre-reform 
course is distributed in different subjects (indicated between them with different 
colours) in the post-reform. In the case of the analysis of the “Mathematics” course’s 
programme (pre-reform vs post-reform), the summary is illustrated in Figure 2. Based 
on the contents structure of the “Mathematics” course, the orange boxes indicate the 
contents that were assigned to the domain “Linear Algebra” that are transferred to the 
course of Linear Algebra in the post-reform, the dark green the ones assigned to the 
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domain “Analytical Geometry” that are transferred in the post-reform as a course of 
Geometry fundamentals and, in light green colour, the new learning outcomes declared 
for each of the courses (“Linear Algebra” or “Geometry fundamentals”), and associated 
to specific themes. 

Pro-reform 
course  

Post-reform course  
 

Comments about the changes in the 
post-reform programmes 

Mathematics 

Linear algebra One new sector, ten topics, 35 types of 
tasks, and one type of task from the 
geometry domain is maintained. 

Geometry 
fundamentals 

Two new domains, seven sectors, twelve 
themes and 45 types of tasks are added. 

Calculus 
Univariate analysis 14 new types of tasks. 

Multivariate analysis One new domain, two sectors, seven 
topics, and 37 new task types. 

Advanced 
Calculus Differential equations  Two new sectors, three new themes and 

one new task types. 

 Numerical methods  Not derived from any (pre-reform) 
course  

Table 2: Changes identified in the courses in the post-reform 
In the initial analysis of the course of “Mathematics”, two domains are identified 
“Linear algebra” and “Analytical geometry”. They are, in fact, delimited as two courses 
in the post-reform. Regardless of this change, the distribution of the sectors, topics and 
types of tasks remain almost the same plus some additions. Most of these “additions” 
are located at the specific levels of the type of tasks associated with each topic. In other 
words, the new additions do not introduce big changes to the rigid structure of the two 
post-reform courses. 
A similar situation occurs with the calculus and advanced calculus courses. The 
changes observed are oriented to redistribute the contents in the new courses in the 
post-reform, as well as to add new types of tasks. Additionally, the inclusion of the 
numerical methods course, which does not derive from any course from pre-reform, 
includes a new domain and three new sectors "errors, roots, curve fitting", that helps to 
distribute better the contents. 
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CONCLUSIONS AND OPEN ISSUES 
This work can be considered as a first step of a broader analysis that is being conducted, 
and which will be enriched by the results of interviews with different teachers involved 
in the mathematical courses at UTPL. Nonetheless, the data analysed show that the 
noospherian institutions, in our case the Higher Education Agency and the commission 
in charge of the reform, play a crucial role as the initiator of the reform process. In 
addition, this agency establishes the main criteria to be followed, focused on softening 
the transition from upper secondary mathematics education to undergraduate 
programmes for engineers. Additionally, the analysis of the pre- and post-reform 
curricula and programmes reveal that the main changes have been introduced at the 
pedagogical level. That is, the changes have consisted of proposing a redistribution of 
contents into the different courses (disciplines-domains), a shortening of the courses 
(by a reduction of the number of credits) and the organisation of a pre-requisite system 
between courses. Most of the changes, besides this reorganisation of the already 
existing content, is the introduction of new content, most of the time at the very specific 
levels of the “type of tasks” or some new “topics”. Another relevant change is the 
introduction of a new subject related to “Numerical Methods”. In this case, the 
definition of the contents introduces more novelties than in the rest of the cases. 
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This paper describes a teaching proposal in engineering education based on the 

introduction of a study and research path (SRP) in the subject of Statistics of a 

Bachelor’s Degree in ICT Systems Engineering. The conditions in which this SRP 

was designed and the first steps of its implementation are explained. Since an SRP 

starts with a generating question, special attention was paid to how the students 

worked on its formulation and the corresponding construction of the derived 

questions. With respect to the statistical knowledge mobilised, the problem of finding 

appropriate data in a format that can be applied appears as a key step to determine 

the study suitability of the generating question.  

Keywords: study and research paths, statistics, anthropological theory of the 

didactic. 

INTRODUCTION 

Research on the implementation of study and research paths (SRPs) in university 

education is one of the developing areas of research in the Anthropological Theory of 

the Didactic (Barquero et al., 2021; Chevallard, 2015). SRPs appear as a specific type 

of enquiry-based teaching proposal that aims to make the prevailing pedagogical 

paradigm evolve from a knowledge-based study method towards a question-centered 

form of study. Their specificities compared to other forms of enquiry-based teaching 

formats are analysed in (Markulin et al., 2021). Various modalities of integrating 

SRPs into current university teaching have been explored (Bosch et al., 2020), 

together with the specific instructional devices implemented and the institutional 

constraints found. These constraints are mostly related to the prevailing pedagogical 

paradigm and the critical changes in the traditional didactic contract required by the 

new instructional proposal. 

We present an experience related to the implementation of an SRP in a first-year 

course of Statistics for engineering students. Two previous studies present similar 

teaching proposals: three editions of an SRP in a Statistics course for second-year 

Business Administration students (Markulin et al., 2022), and an SRP in a Statistics 

course for Chemistry Engineering students (Quéré, 2022). Even if all the proposals 

correspond to the same theoretical model materialised in an SRP, numerous 

differences in the educational institutions, type of studies, course syllabi, students, 

group size, duration, form of implementation, etc. are observed. What they have in 

common is that the SRPs start from the consideration of an open question proposed 

by the teachers or by an external organisation – for instance a client or a firm – about 
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the professional environment of the studies: a marketing study in the first case, 

quality control of pharmaceutical products in the second. 

This paper presents a research study in process that is also based on the 

implementation of an SRP in a university Statistics course including different 

characteristics that will be explained later. The productivity of approaching a real 

question is taken from (Markulin et al., 2022) and (Quéré, 2022). In this respect, 

SRPs (as other project-based or enquiry-oriented instructional proposals) lead 

students to encounter many aspects of data analysis that are usually absent from 

traditional classroom statistics practice, like data gathering, cleaning, and sorting. The 

current research relies on some findings of previous studies about SRPs for 

engineering students like the use of questions-answers maps as a tool to describe, 

share and manage the steps and components of the study process followed 

(Bartolomé et al., 2019; Florensa et al., 2018), and the importance of the situation and 

external contract in which the initial question is formulated (Barquero et al., 2021).  

The novelty of this SRP is the delimitation of the open question that generates the 

SRP. Instead of presenting the students with a situation where an open question is 

raised (by the teacher or by an external organisation), they are provided with a topic 

and are asked to formulate questions they find interesting related to it. Our research 

question is the following: is it feasible to start an SRP with an open topic and let the 

students decide upon the generating questions by themselves? What are the 

consequences of this choice? Given the fact that the project takes place in a statistics 

course, it goes without saying that the questions raised will be addressed using data 

available or produced. 

This paper describes the experience of the first step of the SRP in the collective 

construction of the generating question. We first present the analytical tools used, 

then the educational context of the experience. After that, we describe the activities 

implemented in class and the results obtained. The last section puts forward some 

learnings that can help better understand the potential of SRPs and the different forms 

they can take, together with the limitations of the options chosen. 

THEORETICAL TOOLS FOR THE ANALYSIS 

We will use the Herbartian schema proposed by Chevallard (2011) to identify some 

key elements of an SRP. Its reduced form is S(X; Y; Q)  A and indicates a didactic 

system S where a group of students X, with the help of a group of teachers Y, 

addresses a question Q to provide their own answer A. In this case, no generating 

question was provided, but a topic T that would lead to some questions Qi requiring 

their corresponding answers Ai
, being the new schema S(X; Y; T)  < S(X; Y; Qn)  

An
 >. The developed form of the schema [S(X; Y; Q)  M]  A includes a milieu 

M with all the resources used by S(X, Y, Q) during the enquiry: questions Qi derived 

from Q, external answers or works Aj 
 elaborated by others that seem useful to 

address Q, empirical data Dk and other pieces of knowledge, virtual and material 

objects Om: 
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[S(X; Y; Q)  {Qi, Aj
, Dk, Om}]  A. 

In the case of this SRP, the schema could be described as follows: 

[S(X; Y; T)  < S(X; Y; Qn)  {Qni, Anj
, Dnk, Onm}]  An

 >. 

Qni being the questions derived from Qn, Anj 
 the answers or works that seem useful 

to address Qn, together with empirical data Dnk and other pieces of knowledge, virtual 

and material objects Onm. The implementation of SRPs produces important changes in 

the responsibilities assigned to the teacher and the students in the management of the 

different steps of the enquiry. These changes can be approached in terms of the 

evolution of the traditional didactic contract (Brousseau, 1997), and the tranfer of 

responsibilities from the teacher to the students. 

DESCRIPTION OF THE INSTITUTIONAL SETTING 

The Universitat Politècnica de Catalunya (UPC), like other European universities, 

has been going through a methodological transformation in education for some years, 

especially since the adoption of a competence-based curriculum within the European 

Higher Education Area. Educational innovation and student-centred methodologies 

have been developed in different areas, in particular since the implementation of the 

Research and Innovation in Learning Methodologies (RIMA) project by the UPC 

Barcelona Tech Institute of Education Sciences, and the foundation of the Journal of 

Technology and Science Education in 2011. Another significant boost was in 2017 

with the creation of the Barcelona Science and Engineering Education (BCN-SEER), 

renamed to EduSTEAM, a research group in education mainly composed of senior 

researchers who, in addition to working in their areas of knowledge, had also been 

working on engineering education issues for some years (https://bcn-seer.upc.edu/en). 

After that, in 2020 the university was granted permission to offer a PhD programme 

in Education in Engineering, Science and Technology. 

The SRP we are considering is part of the subject of Statistics offered in the second 

semester of the Bachelor's degree in ICT Systems Engineering in the Manresa School 

of Engineering – EPSEM, a campus of the UPC located one hour away from 

Barcelona. Although it is the first explicit implementation of an SRP at the UPC, it is 

some kind of evolution of previous experiences carried out by one of the authors in 

previous years (Alsina, 2022b). We can hence expect to find good conditions for its 

implementation.  

Important institutional constraints also exist. UPC has engineering schools in 

Barcelona and in several nearby towns. However, they have a common Mathematics 

Department for most of them. The Manresa School of Engineering offers different 

Bachelor’s degrees: The degrees in Industrial Electronics and Automatic Control 

Engineering, in Mechanical Engineering, and in Chemical Engineering share all the 

first-year subjects, and the students are distributed into three groups that work in a 

coordinated way for each subject. The bachelor’s degree in ICT Systems Engineering 

has a different curriculum, but Statistics is offered in the second semester of the first 
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year too, which means it shares the syllabus, the assessment criteria and a final exam 

with the rest of the degree programmes.  

At the syllabus level, the subject is organised into five main blocks, each one with a 

list of exercises and problems to be solved: descriptive statistics, probability and 

random variables, probability distributions, fundamentals of statistical inference and 

quality control, and main components. Assessment of the subject is based on two 

individual written exams (70%) and three individual activities to be done with the 

software used in class (30%). If necessary, the students will have to take a final exam, 

which is common for all the degrees.  

Before this experience, other project-based activities had been carried out in the 

subject of Statistics by one of the authors, who is acting as an observer and researcher 

in this experience. Due to the organisation of the subject, those activities were 

implemented in the degree of ICT Systems Engineering, taking advantage of the 

software skills of the students. Following the same criteria, the SRP is also being 

developed in the same degree by the first author of the paper (who will be referred to 

as the teacher) with the approval of the Mathematics Department at EPSEM. The 

implementation coincided with the change of software used in the subject, from 

Minitab to R and R-Commander. 

To decide on the assessment of the subject incorporating the SRP, we encountered 

the constraint that the final test (in case of not passing the continuous assessment) had 

to be the same for all the degrees, and we were asked to keep individual activities. 

Finally, the assessment was agreed upon as follows: 

• SRP (20%): final report (10%) and a poster with including an oral presentation 

(10%). 

• Two individual written tests (60%) 

• Two individual activities to be done with the software used in class (20%) 

The SRP topic chosen was “water as an essential natural resource”, related to 

Education for Sustainability and the 2030 Agenda and its Sustainable Development 

goals (SDGs). This topic is linked to the UPC-led science dissemination project 

AquaeSTEAM, which seeks to propose scientific and technological questions, in 

which water is the common denominator. It is considered a challenge for students to 

explore, develop or create solutions, and find answers. On the website, educators and 

collaborators are provided with approaches, derived questions, resources, data and 

tools to work in the classroom (https://aquaesteam.upc.edu/).  

To develop the SRP, the students were asked to work in teams of three or four 

members. The main operating tool used is the UPC virtual campus Atenea (a type of 

Moodle platform), in which the rest of the tools used in the project (padlet, Google 

Drive, Forms and Docs) are available. In this course, the lessons are structured into 

two weekly sessions of two hours each: one session with the entire group of students, 

and the other session with half the group, which is taught twice. The SRP is mainly 

carried out during the small group sessions, except when a pooling session is needed. 
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THE PROCESS OF FORMULATING A GENERATING QUESTION 

In the very first session, for the students to gain insight into the whole subject, several 

activities were presented by the teacher. As an introductory activity, every student 

received a dice, and had to decide whether it was a trick dice or not. This activity 

follows a structure that allows the students to understand the subject, and have an 

overall perspective of what they are going to learn (Alsina, 2022a). It helps students 

to adopt a participatory role in the subject and work collaboratively, from the very 

first session, on an experimental activity directly related to statistics. It also allows 

them to gain self-confidence and use suitable vocabulary.  

The SRP was then presented to the students: its objectives, the investigation process, 

the assessment criteria, and the schedule, as well as how it was going to be carried 

out: in teams of 3-4 students, and Atenea as the main tool used. See Figure 1 below 

for an image of the presentation of the course. 

 

Figure 1. Project presentation (our translation) 

Step 1: formulating questions related to water 

Inspired by water and its relationship with sustainability, climate change, or energy, 

the students were asked to propose and discuss some questions they were interested 

in. It allowed knowing the interest of the students, to make their priorities emerge, 

and get them used to the activity of questioning the reality and formulating questions. 

The students formed teams and started doing some research, gathering information 

and data related to water. They were asked to share their work with the rest of the 

group through a padlet (https://padlet.com/mariajosepfreixanet/hhlc43z62pqd0xo3) 

(see Figure 2). They started thinking of what caught their attention, what they wanted 

to know. This had to be formulated as a question, possibly the generating question of 

their project.  

In the next session, with all the students, each team presented its research and its 

project proposal. Some of the project proposals were the following: 

• What effects does society have on water?  

• Has Covid-19 contributed to an increased water consumption of the 

population? 

• What is the variation of water in the rivers of Catalonia every year? 
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• How to maintain a clean swimming pool and avoid fungi? 

• Has water consumption increased in the last years? 

 

Figure 2. Padlet with the gathered information, data and project proposals 

Step 2: linking questions with data 

As a second step in the delimitation of the generating question, the teacher proposed 

the following task: 

▪ Write a short description of the aim of the study, the variables that are going to 

be analysed and why. What are these variables like? 

▪ Include the link to a questions-and-answers map, which will be completed 

throughout the project. 

▪ Enclose the data files you are going to use in your project. 

The teacher wrote a feedback report for each team and identified some difficulties 

most of the teams had when formulating the project proposals. In general, the 

questions were interesting, but some weaknesses appeared in the data provided: 

a) Data format: wrong or difficult to analyse (five teams of 12 members)  

b) Data content: not related or not answering the question (nine teams of 12 

members)  

With respect to (a), our interpretation is that the students lacked experience in the 

support software, and could not foresee the kind of data structure that was appropriate 

for the their project. As to (b), there may be two possible causes: difficulties in 

finding data, or in identifying statistical variables and their meaning. 

A few examples of questions-answers maps (Q-A map) constructed by the students 

are included in Figure 3. It has to be noted that no Q-A map was provided by the 

teacher a priori, since the generating questions had to be given by the students. 

Nevertheless, the teacher explained what it was, the purpose of it and gave some 

examples. The teams only had to deal with the first level of the derived questions, 

without answers. Questions about the waste of water in Catalonia, or how the 

lockdown affected water consumption in Barcelona were topics of interest, but it is 

not easy to find data that can give accurate information about those issues. 
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Figure 3. Two examples of questions-and-answer maps 

Step 3: analysing the project proposals 

Instead of writing a feedback comment to each team, the teacher decided to explain 

some descriptive analysis concepts as well as the first steps of how to use R for the 

students to be aware of the difficulties related to their data, and to have a critical 

perspective. It was also to help them identify what type of data they could work with. 

This took three more sessions. The assessment of this first task was postponed. 

Univariate and bivariate descriptive statistics concepts, as well as written examples 

and exercises in R were explained in these three sessions. A questionnaire about the 

students’ previous contact with statistics was used to easily gather data and introduce 

the basic tools for its description and analysis (Figure 4).  

 

Figure 4. Results of the questionnaire on previous contact with Statistics 

Once the descriptive statistics concepts and tools were introduced, each team of 

students had to analyse their own project proposal and the proposal of two more 

teams. A guide of questions was given to homogenise the analysis and to let the 

students think about the difficulties encountered by themselves. The questions to the 

students were asked are the following: 

a) Data format: Can the provided data easily be analysed? YES/NO, 

Identified problem: The data are difficult to analyse, or have the wrong format  

• Can a descriptive study be implemented? 

• Can the data easily be uploaded to R? 

• Is it possible to find relationships between two variables? Which ones? 

• Is it possible to compare these variables with other data?  

b) Data content: Can the provided data answer the main question?  YES/NO 

Identified problem: The data do not answer the question  

The students had to post this analysis as an answer to the project in the forum. Here 

are some of the results of the analysis of this activity, categorised by problems 

previously encountered by the teacher: 
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a) Data format: the data are difficult to analyse, or have the wrong format 

Can the data easily be uploaded to R? 

• A5 by A3: “No Excel document is provided, so it would be annoying to gather all the 

information manually.” 

• B3 by B3: “No, there is a lack of tables of values.” 

• B3 by B1: “No, the data are not presented in tables.” 

Can a descriptive study be implemented? 

• B3 by B2: “No, there is an important lack of data.” 

• B4 by B3: “Information should previously be filtered. No tables of data are provided.” 

b) Data content: the data do not answer the question 

• B3 by B2: “In the water footprint webpage, you have access to the total national 

consumption and the national consumption per capita. You can also find information on 

natality, general health, or income per capita and compare it to water consumption 

(https://waterfootprint.org/en/resources/interactive-tools/national-water-footprint-

explorer/)” 

• A5 by A4: “the provided data indicate the water volume nowadays, a year ago, 5 and 10 

years ago. It will not be possible to focus on the past 3 years”. 

• A4 by A4: “we should search for new data about the water volume in reservoirs for 

more time periods. We could also consider a new variable about population increase, so 

we can analyse if there has been an increase of water consumption per inhabitant”. 

• A3 by A1: “some more variables should be included: the presence of fungi, the quantity 

of fungi, the water volume, or the dimensions of the swimming pool (it may have a 

direct impact on how easily fungi grow) and if the swimming pool is private or public 

(public swimming pools tend to be bigger, water is more agitated and more people 

swim in them)”. 

At the end of this task, the students were asked to fill in a questionnaire to know their 

opinion of the analysis, and their perception of their learning process. When asked 

about their learning, the students mentioned the limitations of their initial proposals 

(“Unnecessary data were provided.”, “The main question was too general.”, “The 

data provided corresponded to many different years.”), new aspects about data 

management and analysis (“Different approaches and how the others have used the 

data”, “To carry out a good descriptive analysis and to select proper data”, “To check 

if the revision and our data were correct”), and some improvement and ideas to move 

on with their project (“Possible mistakes we hadn’t taken into account previously”, 

“To find relationships between variables and inspiration for our project”, “Aspects 

the other groups and our group can improve”). In total, seven sessions were used to 

implement steps 1, 2 and 3: two sessions for step 1, one session for step 2 and four 

sessions for step 3. 

DISCUSSION AND CONCLUSION 

The experience here presented focuses on the first step of the enquiry described by 

the Herbartian schema: [S(X; Y; T)  < S(X; Y; Qn)  {Qni, Anj
, Dnk, Onm}]  An

 >. 

We observed how the topic of water (T) proposed to the students led to the 
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formulation of different generating questions Qn and to the first steps of their study 

based on the identification of derived questions and the search of available answers 

Anj
 and data Dnk. The task proposed by the teacher in step 2 (linking questions with 

data) aimed at exploring the elements that could easily be integrated into the milieu 

during this phase of the enquiry. The teacher approached the students’ difficulties by 

introducing new statistical tools and notions (Onm) related to the concept of variable 

and the requirements of the statistical software used (R Commander). This work led 

the enquiry community to reject some of the proposed generating questions and to 

agree upon a few that appear to be suitable for the study – under the given conditions. 

As far as the management of the SRP is concerned, the experience breaks some of the 

implicit clauses of the didactic contract, while maintaining others. Let us start with 

the first research question about the problem of choosing a productive generating 

question, which is an important issue related to SRPs (Markulin et al., 2021). By 

letting the students choose the SRP generating question Qn instead of directly 

proposing it, a new responsibility is passed on to the students and, in a way, assumed 

by the entire study community composed of the students and the teacher. What is also 

shared with the students is the process of analysing the productivity of the questions 

raised and the viability of their study (their “studiability”) concerning an important 

topic: the kind and quality of available data. This is an aspect of statistics that 

remains even more in the shadows than data cleaning and management, at least in 

educational contexts, and it certainly deserves more attention. It can be concluded 

that this way of starting the SRP has given the students the opportunity to learn the 

data suitable to be analysed statistically and the characteristics those data should 

have. However, this strategy took up more sessions than expected and represented an 

effort for the teacher to redirect the SRP. It is interesting to see how the use of 

questions-answers maps appears as a good strategy in this context.  

Several aspects of the study process remained under the sole responsibility of the 

teacher. This is more than likely due to the prevalence of the traditional didactic 

contract. These aspects include the organisation of the tasks, the introduction of new 

concepts and tools, the pooling of results, and the planning of the sessions.  

An important consequence shown in this paper is how much the movement of 

responsibilities from the teacher to the students results in the motivating and learning 

of a new type of statistical knowledge that would rarely appear otherwise. The 

conditions of “studiability” of the initial questions generating an SRP appear as a 

critical issue for the implementation of enquiry-based teaching proposals. Their 

approach does not seem to be only a question of the SRP design – therefore under the 

responsibility of the teacher – but of the SRP management – by both the teacher and 

the students. 

383



  

ACKNOWLEDGEMENTS 

The research leading to these results received funding from the Spanish R&D Project 

PID2021-126717NB-C31 (MCIU/AEI/FEDER, UE). 

REFERENCES 

Barquero, B., Bosch, M., Florensa, I., Ruiz-Munzon, N. (2021) Study and research 

paths in the frontier between paradigms. International Journal of Mathematical 

Education in Science and Technology, 53(5), 1213-1229.  

Bartolomé, E., Florensa, I., Bosch, M., & Gascón, J. (2019). A ‘study and research 

path’ enriching the learning of mechanical engineering. European Journal of 

Engineering Education, 44(3), 330-346.  

Bosch, M., Barquero, B., Florensa, I., Ruiz-Munzon, N. (2020). How to integrate 

study and research paths into university courses? Teaching formats and ecologies. 

INDRUM 2020, Université de Carthage, Université de Montpellier. ⟨hal-

03113981⟩ 

Florensa, I., Bosch, M., & Gascón, J. (2018). Enriching engineering education with 

didactics of mathematics: Study and research paths in engineering education. IEEE 

Global Engineering Education Conference (EDUCON) (pp. 751-759).  

Alsina, M. (2022a) An inquiry to generate in a natural way Statistics syllabus: Is it 

just a matter of luck? (submitted). 

Alsina, M. (2022b). Questions used as a compass: an experience in engineering 

degrees (submitted). 

Bosch, M. (2018). Study and research paths: a model for inquiry. In B. Sirakov, P. N. 

De Souza, M. Viana (Eds.), Proceedings of the International Congress of 

Mathematicians, ICM 2018, vol. 3 (pp. 4001-4022). World Scientific Publishing.  

Brousseau, G. (1997). Theory of didactical situations in mathematics: didactique des 

mathématiques (1970-1990). Kluwer Academic Publishers 

Chevallard, Y. (2015). Teaching Mathematics in tomorrow’s society: a case for an 

oncoming counter paradigm. In S. J. Cho (Ed.) Proceedings of the 12th 

International Congress on Mathematical Education (pp. 173-187). Springer. 

Markulin, K., Bosch, M., & Florensa, I. (2021). Project-based learning in statistics: A 

critical analysis. Caminhos da Educação Matemática em Revista, 11(1), 200-222.  

Markulin, K., Bosch, M., & Florensa, I. (2022). Study and research paths in statistics: 

an ecological analysis. Proceedings of CERME12 (in press). 

Quéré, P. V. (2022). Bridging the mathematics gap between the engineering 

classroom and the workplace. International Journal of Mathematical Education in 

Science and Technology, 53(5), 1190-1212.  

 

384



  

Teaching mathematics to non-specialists: a praxeological approach 

Ghislaine Gueudet1, Camille Doukhan², and Pierre-Vincent Quéré3  

1University Paris-Saclay, Études sur les Sciences et les Techniques, France, 

ghislaine.gueudet@universite-paris-saclay.fr; ²Université de Strasbourg, LISEC 

équipe AP2E, France, camille.doukhan@espe.unistra.fr; 3Université Rennes 1, 

CREAD, France, pierre-vincent.quere@ac-rennes.fr 

The study presented here concerns teaching practices at university for non-specialist 

students. Referring to the Anthropological Theory of the Didactic, our aim is to 

investigate the personal didactical praxeologies of university teachers (at the School, 

Discipline and Content levels) and to observe what can be considered as specific for 

non-specialists in these practices. We interviewed three experienced teachers with 

different profiles and collected their teaching resources. Analysing this data, we 

identified several didactical praxeologies specific for non-specialists at the Discipline 

level. At the Content level we give the example of a specific didactical praxeology and 

claim that many more exist, due to the mathematics-didactic codetermination.  

Keywords: Anthropological approach to didactic, Teachers’ and students’ practices at 

university level, Teaching and learning of mathematics in other fields, Teaching and 

learning of mathematics for engineers 

INTRODUCTION AND BACKGROUND  

In their survey of research in University Mathematics Education, Biza et al. (2016) 

mention ‘mathematics teaching at tertiary level’ and ‘the role of mathematics in other 

disciplines’ as two emergent themes. Indeed, research about each of these two themes 

has developed significantly in the last few years. However, studies combining these 

two themes are scarce. González-Martín et al. (2021) note in their synthesis of research 

concerning teaching mathematics to non-specialists that many authors evidence 

ruptures between the mathematics taught in mathematics courses and in courses of 

other disciplines. Nevertheless, Pepin et al. (2021), focusing on mathematics in 

engineering education, observe that while several studies address the issues of 

instructors’ expectations and their views about the mathematics that should be taught 

to future engineers, only a few authors investigate the ordinary practices of teachers in 

their mathematics courses for future engineers. Interviews with teachers having 

different backgrounds (studies in mathematics, in engineering, in physics, professional 

experience as engineer) evidence that they declare having different practices, regarding 

e.g. the links between mathematics and other disciplines, or the level of rigour 

expected. These differences can be a consequence of their different backgrounds 

(Hernandes-Gomes & González-Martín, 2016; Sabra, 2019). 

González-Martín (2021) uses the Anthropological Theory of the Didactic (ATD, 

Chevallard, 1999) for analysing textbooks and teaching practices in two different 

engineering courses using the concept of integrals. Analysing interviews with two 
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teachers, he observes that their practices seem to be strongly influenced by the 

textbooks they use; and that the mathematical content (integrals) finally plays a limited 

role in their courses. Following this work of González-Martín, we use ATD and the 

concept of didactical praxeologies to investigate teaching practices in the context of 

courses for first year non-specialists students. Our aim is to deepen our understanding 

of these practices, and elucidate the issues identified by the teachers and the strategies 

they develop to address these issues. Our work belongs to the DEMIPS [1] network in 

France (Theme 5: teachers’ practices at tertiary level).  

THEORETICAL FRAMEWORK  

The theoretical framework guiding our study is the Anthropological Theory of the 

Didactic (ATD, Chevallard, 1999). Chevallard considers that the knowledge taught is 

shaped by the institutions. In our study, secondary school and university are 

institutions; a mathematics course or a chemistry course for first year students are also 

institutions. How the knowledge is shaped is described in ATD by the concept of 

praxeology. A praxeology comprises four elements: a type of tasks T, a technique τ to 

perform this type of task, a technology θ which is a discourse explaining the technique, 

and a theory Θ grounding the technology. In mathematical praxeologies, the type of 

task concerns mathematics, e.g. Tnsv: "Compute the norm of the sum of two vectors". 

This type of task can be present both in mathematics and in chemistry courses, and will 

be associated with different praxeologies in each course. In didactical praxeologies, the 

type of task concerns the teaching of mathematical praxeologies in a given institution: 

"Teach the mathematical praxeology associated with Tnsv". A didactical type of tasks 

is associated with didactical techniques and technologies; the didactical theory usually 

remains implicit. The didactical and mathematical praxeologies mutually influence 

each other (Bosch & Gascón, 2001). The conditions and constraints underpinning any 

teaching or learning process (e.g. questions from the teacher to the students) can be 

located and analysed at different levels, classified in a scale extending from the more 

general to the more precise point of view. Florensa et al. (2018) separate this scale in 

an "Upper scale" (Humanity <> Civilisation <> Society <> School <> Pedagogy<>) 

and a "Lower scale" ( <> Discipline <> Domain <> Sector <> Theme <> Question). 

While most studies referring to didactical praxeologies focus on six predetermined 

‘moments’ (see e.g., González-Martín, 2021), in our study we consider the personal 

praxeologies developed by teachers (Bosch & Gascón, 2001). We try to identify 

didactical types of tasks T, techniques τ and technologies θ. These didactical 

praxeologies of the teacher are empirical (Bosch & Gascón, 2001), developed by the 

teachers along their work in different institutions. The levels presented above also 

concern didactical praxeologies, and identifying to which level a didactical praxeology 

belongs can enlighten teachers’ practices (Florensa et al. 2018). Nevertheless as 

acknowledged by these authors this identification is complex; for this reason we have 

chosen here a simplified version of the codetermination scale: School <> Discipline 

(here mathematics) <> Content (e.g. vectors). What we call “School” includes the 
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whole “Upper scale”. For example, "Ensure that students do personal work" is a 

didactical type of task at the School level; "Teach students how to present the solution 

of a mathematics exercise" is at the Discipline level, while "Teach the mathematical 

praxeology associated with Tnsv" is at the Content level. Drawing on these theoretical 

elements, the research questions we study here are: 

What didactical praxeologies are developed by teachers teaching mathematics to non-

specialists students? What is specific for non-specialists students in these 

praxeologies?  

METHODS  

The DEMIPS theme 5 group designed interview guidelines in order to investigate 

university teachers’ practices (in mathematics, physics or chemistry). During the semi-

structured interview, after general questions about their teaching experience and the 

courses they deliver, the teachers were asked to focus on a particular course. They were 

informed ahead of the interview, and were asked to bring with them the material they 

used for this course. Concerning this course, they were firstly asked to present it and 

the resources offered by the institution to the students (e.g. digital platform). Then they 

were asked about their views on the students’ needs and potential difficulties, about 

their own practices (including the resources they design, how they design them, their 

collective work with colleagues) for the tutorials and for the students’ assessment. 

Interviews were conducted during the academic year 2021-2022 (9 interviews when 

we write this paper). The material brought for the interview (e.g. exercises sheets for 

students, exam texts) was collected, and the interviews were transcribed.  

For the study presented here, we selected 3 of the 9 teachers. We chose teachers who 

focused in the interview on courses for first-year non-specialist students; and 

experienced teachers, who might have a rich repertoire of didactical praxeologies. The 

profiles of the three teachers chosen are presented in table 1 below. 

 

Table 1. Profiles of the three teachers interviewed and courses. 
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For analysing the data collected, we started by searching in the interviews the type of 

tasks mentioned by each teacher. The three authors of this paper confronted their initial 

analyses, and the level (S, D, C) of the corresponding task. While the difference 

between the School and the Content level is clear, sometimes the Discipline level and 

the other two can overlap. Then we searched the interviews for the didactical 

techniques used by the teachers, and possible explanations/justifications of these 

techniques (interpreted as technologies). We confronted the teachers’ declarations with 

the material collected, and also analysed this material (in particular the solutions of the 

exercises) to identify mathematical and didactical praxeologies at the Content level.  

RESULTS  

Firstly we present our results concerning the School and the Discipline levels; then we 

give one example at the Content level. Analysing our data, we observed ten types of 

didactical tasks that were shared by at least two of our three interviewees; five for each 

of these two levels (Table 2).  

School 

level 

Ensure that 

students 

complete 

personal work 

(Tcpw) 
 

Ensure 

that 

students 

work 

during the 

tutorial 

(Twt) 

Ensure that 

students work 

autonomously 

during the 

tutorial (Tawt) 

Ensure that 

students take 

responsibility 

for their 

learning (Trl) 

Assess students 

(Ta) 

Discipline 

level (in 

maths) 

Foster students’ 

interest and 

engagement 

(Tie) 

Teach 

basic 

maths 

tools 

(Tbmt) 

Teach 

reasoning, 

justification and 

proof (Trjp) 

Foster 

students’ 

ability to 

tackle a new 

problem (Ttnp) 

Restore 

students’ self-

confidence (Tsc) 

(not for TM) 

Table 2. - Didactical types of tasks shared by the teachers at the School and Discipline 

level. In italics: types of tasks potentially specific for non-specialists.  

For the sake of brevity, we develop in what follows examples of praxeologies 

potentially specific for non-specialist students.  

Example of a didactical praxeology at the School level 

The didactical type of task "Ensure that students complete personal work" (Tcpw) was 

present in the three interviews but the techniques were different for the three teachers.  

TC aims to make her students work after the classroom session by distributing a 

booklet containing many exercises for one chapter (collectively designed with other 

chemistry colleagues). Solutions are provided online via the institutional web 

environment and an online quiz - which mark counts for the global assessment - has to 

be filled by all the students. She also sends a reminder 2 days before the quiz is due. 

Before moving on to a new chapter, she spends 30 minutes during the tutorial to check 

that the work on the exercises has been done. Moreover in the final assessment all the 
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skills are evaluated. She explains that since the booklet has many exercises, and the 

assessment covers all topics, at least some students will need to do the exercises as 

homework since they do not have enough time during the tutorial. Another technique 

used by TC for performing Tcpw is the organisation of group work during the tutorial. 

She explains indeed that students pursue the group work after the tutorial and that helps 

them to achieve their personal work. 

For TM, the techniques for Tcpw aim more to foster the students’ preparation for the 

tutorials. He asks the students to partly read the course in advance in the handout he 

has edited for them. If he finds on the Internet valuable videos about the contents to be 

taught, he posts them via the institutional web environment. Before the tutorial 

sessions, he emails every week or every two weeks the list of exercises to prepare. At 

the end of a chapter, he provides some solutions of the exercises (hand notes or 

software computations) via the institutional web environment. The techniques used are 

often justified by TM by the will to save time during the class. The videos also allow 

him to provide a visualisation of some mathematical phenomena. 

TP declares in his interview that he thinks that the students do not work out of the 

tutorial sessions. Nevertheless the students have exercises sheets; the work during the 

tutorial concerns only a part of these sheets; a complete correction is provided and can 

support students’ personal work. We consider this as a technique for this type of task, 

and note at the same time that TP does not trust this technique.  

Examples of didactical praxeologies at the Discipline level 

To foster students’ interest and engagement (Tie), TP chooses contextualised exercises 

(referring to physics, but also to day life contexts). TP justifies this choice by 

explaining that it is likely to foster students’ engagement, but also that students are 

used to contextualised exercises at secondary school. Another technique used by TP 

for the didactical task Tie is to explain to students that they will need these mathematical 

tools. Some mathematical exercises are inserted in TC’s booklet for chemistry. In her 

interview she declares that she observed during the first semester that starting with 

these exercises was a mistake. For the second semester she plans to begin the lesson 

with chemistry exercises that motivate the mathematical exercises that will follow: this 

is a new technique that she will use for Tie. TM does not make the connection with 

other disciplines and declares “I would think that we are not really here to foster 

interest… We are here to make them learn things.” Nevertheless, he declares that he 

uses videos that he appreciates to foster students’ engagement; we consider this as a 

technique for Tie. 

To restore students’ self-confidence (Tsc), the technique used by TC is based on the 

exercise booklet. It contains many exercises, classified by difficulty level. Students can 

start with a more difficult exercise but go back to easier exercises if they fail. She 

justifies the use of this booklet by explaining that students are not confident in their 

abilities, depending on the options they took in high school (this concerns both 

mathematics and chemistry, the students are biology majors). TP aims to restore the 
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self-confidence of his students by filling in their gaps: he attempts to restore their 

confidence by making them feel comfortable with the basic tools of calculation. He 

also wants the students to regain confidence in their reasoning, and urges them to check 

each step of this reasoning to be sure of its correctness. MP did not mention in his 

interview the need to restore its students’ self-confidence.  

Concerning the type of tasks "Teach basic maths tools" (Tbmt), in the booklet proposed 

by TC, some "boxes" are entitled “Mathematics reminder”. They concern for example 

2x2 linear systems, vectors or unit conversions: concepts taught at secondary school. 

Nevertheless the properties presented and the perspective on the concept is sometimes 

unfamiliar for the students, we discuss this with an example at the Content level. These 

“reminders” are sometimes followed by mathematics exercises; they were written by 

another chemistry teacher. This teacher had a long experience of teaching chemistry to 

selected students preparing to enter engineering schools, and TC trusts his experience 

concerning the students’ needs in mathematics. TM considers that teaching basic 

mathematics tools is necessary but does not teach them himself since his engineering 

school dedicates one week at the beginning of the school year to an autonomous work 

of students on these basic mathematical tools for students who have just obtained their 

Baccalaureate (end of secondary school national exam in France). The technique used 

by TP is to make the students practise many exercises to develop their procedural 

fluency with basic contents: developing, factoring or solving first-degree equations. TP 

says in his interview: “the most important is to practice, practice, practice to develop 

their fluency […]. It is important that they have the solutions, so that they can try, try, 

repeat exercises and check if their solution is correct.”  

Didactical and mathematical praxeologies at the Content level: norm of vectors 

In this section we focus on the didactical praxeology used by TC for teaching the 

mathematical praxeology associated with "compute the norm of the sum of two 

vectors" (Tnsv). This praxeology is needed in chemistry within the theme entitled 

"polarity of molecules", for computing a "dipole moment". The students’ booklet on 

this theme starts with a "mathematics reminder" about vectors. It includes in particular 

the general formula for the norm of a sum of two vectors, then it introduces the property 

presented in Figure 1. 

 

Figure 1. Extract of the "mathematics reminder" about vectors 

This property provides a technique for Tnsv, when the two vectors have the same norm. 

We note that this technique is not taught in mathematics courses, at university or at 

secondary school. The figure (see figure 1) next to it can be considered as a technology; 
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but there is no associated text. Further in the booklet, exercise 3 asks for a justification 

of the formula, in the case of two given vectors (forming a 106° angle). The 

justification expected is presented in the corrected booklet (figure 2). 

 

Figure 2. Justification expected for the formula of the norm of the sum 

This justification implicitly uses several mathematical properties of the triangle formed 

by 𝜇1⃗⃗⃗⃗ , 𝜇2⃗⃗⃗⃗  and 𝜇1⃗⃗⃗⃗ + 𝜇2⃗⃗⃗⃗ . The triangle is isosceles. Its perpendicular bisector is also its 

height (justification for the projection). Its vertex angle is 180°-106°, thus the basis 

angles are (180°-(180°-106°))/2=106°/2. The triangle formed by 𝜇1⃗⃗⃗⃗ , (𝜇1⃗⃗⃗⃗ + 𝜇2⃗⃗⃗⃗ )/2 and 

the height is right-angled (justification for the cosine formula). For this mathematical 

task in the chemistry course, the praxeology is not the praxeology that would be 

expected in the mathematics course. TC confirmed in the interview that the students 

have not been able to solve this exercise.  

We observe in this example several issues associated with the didactical praxeology 

for teaching Tnsv (which belongs to the praxeology at the discipline level Tbmt). Firstly, 

the "reminder" can in fact correspond to new knowledge. Here the property can be 

proven with secondary school knowledge, but it requires a complicated proof. 

Moreover students are not familiar with vector projections at secondary school. 

Second, for what TC identifies as a mathematical exercise, the kind of justification 

expected is very different from what would be expected in a mathematics course. 

DISCUSSION  

Are the didactical types of task (table 2) and the associated praxeologies specific for 

the target public of non-specialist students? In this section we discuss our results in 

order to answer this question. Our aim was not to compare the three teachers; 

nevertheless we also present some hypotheses about the differences between the 

didactical praxeologies they developed for the same types of tasks.  

At the School level, we observed five types of tasks shared by the three teachers for 

their (non-specialists) first year students. During the first year at university, whatever 

the subject taught, the teachers have to ensure that their students complete personal 

work (Tcpw) out-of-class; that they work -autonomously- during the tutorial (Twt or 

Tawt); that they take responsibility for their learning (Trl). The teachers also need to 

assess all the students (Ta). We hypothesised that the praxeology associated with (Tcpw) 

could be specific for non-specialists students, since these students probably dedicate 

only a limited amount of time to mathematics. TM asks to prepare exercises before the 
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tutorial. TC proposes a very elaborated booklet with many exercises whose solutions 

are available on the course’s platform. She also fosters group work. TP proposes long 

lists of technical exercises with their solutions. This technique does not directly 

concern the amount of personal work, but its nature: TP wants that the students practice 

to develop their procedural fluency. It is both a technique for Tcpw (Institution) and Tbmt 

(Discipline). Thus we do not claim that we identified at the School level didactical 

praxeologies specific for non-specialists. 

At the Discipline level, we also observed five didactical types of tasks shared by at 

least two teachers. In our analyses of the interviews, we did not find for the 

praxeologies associated with “Teach reasoning, justification and proof” and “Foster 

students’ ability to tackle a new problem” elements that could be specific for non-

specialists (the analyses are not presented here, due to space limitations). We contend 

that for the three other types of tasks, the praxeologies are specific.  

The type of tasks "Foster students’ interest and engagement" (Tie) is specific because 

many non-specialist students are not motivated by mathematics. Two of the teachers 

(TC and TP) used as a technique the proposition of mathematics exercises in the 

context of another discipline, and we consider this technique as specific. Interestingly, 

TM made no links with other disciplines and chose to propose videos that he 

appreciated - he also declared that raising students’ interest was not his role. This can 

be a consequence of his mathematical background (it is less natural for him to make 

links with other disciplines), but also of the type of engineering school and the role of 

mathematics in it. Indeed his students prepare for a competition; they are obliged to 

learn mathematics to succeed. The types of tasks "Teach basic maths tools" (Tbmt) and 

"Restore students’ self-confidence" (Tsc) are specific as some of these students only 

have a limited mathematics background. Some of them have difficulties in mathematics 

(in particular TP’s students who follow a remediation course); according to TP and TC, 

most of their students consider themselves as low-achievers in mathematics. As TC 

says: “they have prejudices about their level in maths […] they did not take the maths 

specialty in grade 12, so they feel suck at maths and they don’t like maths”. TM does 

not mention the Tsc type of task. This is linked with his teaching context: his students 

were high-achievers at secondary school and are self-confident.  

At the Content level, we observed that the mathematical praxeology for “Compute the 

norm of the sum of two vectors” (Tnsv) was different from what would be expected in 

a mathematics course. Thus the didactical praxeology for the types of tasks “Teach 

Tnsv” (belonging to “Teach basic mathematics tools”) is specific for non-specialists. 

The didactical technique used by TC (and her chemistry colleagues) is “present a brief 

summary of the mathematical properties needed and propose a few exercises”; the 

technology seems to include “the mathematical concepts and properties are not new 

for the students”. Nevertheless this raises an issue, since some of the properties are in 

fact new, and some of the concepts like projections of vectors are not familiar for the 

students. Sometimes mathematics teachers at the beginning of university are not aware 
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of what students precisely learned at secondary school; it is even more difficult for a 

chemistry teacher.  

CONCLUSION  

We observed in our analyses ten didactical types of tasks at the School or the Discipline 

level, shared by at least two of the three teachers we interviewed. Three of the didactical 

praxeologies at the Discipline level were specific for non-specialists students. At the 

Content level, we only presented one example of didactical praxeology, which was also 

specific. Drawing on previous works discussing mathematical praxeologies in courses 

for non-specialists (e.g., González-Martín, 2021), we hypothesise that most didactical 

praxeologies at this level are specific; indeed the mathematical and didactical 

praxeologies are co-determined (Bosch & Gascón, 2001). In order to validate this 

hypothesis, but also to improve our understanding of the didactic stakes in the teaching 

of mathematics to non-specialists, we plan to pursue our analyses with regard to the 

links between mathematical praxeologies and didactical praxeologies, to understand 

better the epistemological dimension of didactical praxeologies for non-specialists. 

The theoretical approach we have chosen in terms of didactical praxeologies at three 

different levels allowed us to analyse the practices described by the teachers and the 

teaching resources they designed. This first step was needed to examine the specificity 

of their practices. We contend that this praxeological approach of the teachers’ 

practices can contribute to our understanding of teaching at university level, for non-

specialists or for other students. We plan to continue our study with more interviews 

with teachers intervening in diverse courses for non-specialists,  and to observe their 

courses to confront these observations with the teachers’ declarations.   

The existence of specific didactical praxeologies for non-specialist students (developed 

by experienced teachers, in this study), suggest that novice teachers could benefit from 

a specific training. Research in mathematics education could contribute to formulating 

propositions for such a training.  

NOTES 

1. Didactic and Epistemology of Mathematics, interactions with Computer Science and Physics at Tertiary level, 

https://demips.math.cnrs.fr/recherches/pratiques-des-enseignants/ 
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Mathematics lectures play an important role in most engineering university courses. 

However, students often miss the reference to applications. Therefore, different 

application examples were integrated into a math lecture for first year engineering 

students. In our research we analyse a possible relationship between the students’ 

evaluation of these examples and their mathematical views by using correlations and 

regression analysis. Our data of 143 students suggest that the stronger the students’ 

applicationist view is the better the application examples are rated. If the student in 

addition views math as a toolbox, then the examples are evaluated more motivating. 

Keywords: Teaching and learning of mathematics for engineers, Teaching and 

learning of specific topics in university mathematics, Mathematical Applications, 

Mathematical views. 

INTRODUCTION 

Mathematics have an important value for engineering studies at universities (Alpers, 

2013).  However, mathematics and the engineering courses are not necessarily 

interlinked (Tang & Williams, 2019), and the students miss the relationship between 

these disciplines, especially in the first year of their study (Harris et al., 2015). This 

missing link leads to low motivation and interest (Rooch et al., 2014) and a high 

drop-out-rate (Heublein, 2014). One possibility to concatenate mathematics with 

applications is to integrate good applications into the course. 

What constitutes good applications from a students’ perspective might depend on 

different factors. One factor lies in the properties of the application task, such as 

authenticity and length (Wolf & Biehler, 2014). Other factors might be the teaching 

person who has a great influence on the development of learners (Hattie et al., 2009), 

the presenting person or the fit to the study program (Schmitz & Ostsieker, 2020). 

The students’ mathematical views might also influence what students see as good 

applications, since mathematical views are central to the learning of mathematics 

(Goldin et al., 2009). 

We focus on examples integrated into the lecture. In order to better understand when 

students appreciate an application example, we investigate more deeply: In what 

extent is there a relationship between students’ mathematical view and their 

evaluation of application examples? More knowledge about which factors are related 

to how well students find application examples allows for a more goal-oriented 

development of such examples. This might lead to more interest and motivation on 

the part of the students. 
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THEORETICAL BACKGROUND 

Applications in math courses 

Many different projects and concepts have been invented in order to place 

mathematical modelling into the engineering education. These projects and concepts 

range from short, less realistic tasks on only one sub-competency of modelling to 

authentic modelling projects which take place over a longer period of time (Greefrath 

et al., 2013, p. 23).  

Given the institutional constraints, in a highly frequented math course at the 

beginning of the engineering studies smaller application examples and tasks can be 

implemented and enrich the mathematical content. 

An application should treat extra-mathematical problems which are as real as possible 

so that a connection between mathematics and applications is created (Niss et al., 

2007). The most important feature of application tasks and examples is thus the 

authenticity of the real problem (Greefrath et al., 2013). For math lecturers (who are 

usually mathematicians) the construction of such applications is quite challenging. 

Wolf (2017) developed a concept for the design of “good” application-oriented tasks 

which fit into a usual first-year math course for engineering students, and a test 

instrument to measure the criteria of the concept that can be evaluated by students. 

In a lecture, rather examples are integrated. They differ from tasks in that learners do 

not have to solve the problems themselves. Assuming that the criteria for good tasks 

also apply to good examples, we expect that examples can also be constructed and 

evaluated according to the scales in Wolf (2017) or their equivalents regarding 

examples. We focus our research on “applicability” and “authenticity” as they are 

independent of the aspect of problem solving and can be directly transferred from 

tasks to examples. Additionally, we transfer the importance of “motivation” (also 

described in Wolf, 2017) to application examples and consider the property 

“motivational” as an indicator of a good example. 

Mathematical views 

The students' beliefs can be described by the construct of mathematical views. 

Grigutsch et al. (1998) developed a system of four dimensions (“process”, 

“application”, “schema”, “formalism”) to characterise a person’s beliefs regarding 

mathematics. This belief system has an additional structure: Correlation analyses in 

Grigutsch et al. (1998) show that the process and the application aspect correlate 

positively with each other, and the schema and the formalism aspect correlate 

positively with each other, but the process aspect correlates negatively with the 

schema and the formalism aspect. Therefore, the authors distinguish a static view of 

mathematics (schema and formalism) versus a dynamic view of mathematics (process 

and application). 

This belief system was transferred to engineering students by Rooch et al. (2014). 

The belief aspects they consider relevant in engineering studies are “process”, 
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“application”, and “toolbox” (without the formalism aspect). The process aspect 

describes mathematics as a creative field of discovery, ideas and trial, the application 

aspect describes mathematics as useful for everyday tasks and problems, and the 

toolbox aspect, which corresponds to the schema aspect in Grigutsch et al. (1998), 

contains the view that mathematics consists of tools like algorithms and formulas. We 

take our inspiration from Rooch et al. (2014) as they have successfully used the 

aspects to study students' estimation of real-world examples. 

Impact of mathematical views 

Beliefs have an important impact on learning processes: 

Individual attitudes towards mathematics … are an essential influencing factor for 

mathematical … learning processes. They describe … the context in which pupils see and 

do mathematics. They influence how students approach mathematical tasks and problems 

and how they learn mathematics. (Grigutsch & Törner, 1998, p. 3) 

The dynamic view of mathematics is often related to more motivation and interest 

(Köller, 2001) and better performance in mathematical tasks (Tossavainen et al., 

2021). Mischo and Maaß (2012) found out that utility beliefs of mathematics (and by 

lower values, beliefs that mathematics means applying rigid schemas) can predict the 

modelling competence in general. 

There is not much research on the impact of mathematical views to the evaluation of 

modelling resp. application tasks or examples. Maaß (2005) reveals that college 

students who have a static view of mathematics strictly disapprove modelling 

examples while the other students are partly positive or very positive about. We 

examine a possible relationship between students' mathematical views and their 

evaluation of application examples. 

RESEARCH QUESTIONS 

Four application examples were integrated in a math course for first-year engineering 

students. We investigate to what extend there is a relationship between students’ 

mathematical views (in the aspects “process”, “application”, “toolbox”, see Rooch et 

al., 2014) and their evaluation of application examples (regarding the criteria 

“authenticity”, “applicability” and “motivational”, see Wolf, 2017). 

First, for each of the four examples separately, we look at the relationship between an 

aspect of the mathematical view and a criterion of the evaluation of the example: 

(A) To what extend does a view aspect correlate with an evaluation criterion? 

Then we investigate how the mathematical view as a whole influences the evaluation 

of one example: 

(B) What predictors for the evaluation of the examples can be found in the 

mathematical view? 
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METHODOLOGY 

Design 

This quantitative study involved 143 engineering students (76 mechanical 

engineering, 28 energy and building services engineering, 37 renewable energy, 2 

other) at a university of applied sciences in Germany, who participated in a first-year 

math lecture in 2019.  

After explaining how to solve ordinary differential equations of first order, four 

application examples out of the engineering disciplines, named “Example C”, 

“Example W”, “Example A”, and “Example R”, were presented in the lecture. 

Instruments 

After the presentation of all four application examples the students answered a paper-

based survey questionnaire. 

The instrument to measure the students’ mathematical views consists of the three 

scales “process”, “application”, and “toolbox” taken from Rooch et al. (2014), to be 

rated on a five-point Likert scale (1 totally disagree – 5 totally agree). The 

Cronbach’s alpha values (0.49 for process, 0.66 for application, and 0.58 for toolbox) 

are similar to those in Rooch et al. (2014), one a bit worse, the others a bit better. 

To measure the evaluation of the application examples, suitable items from the three 

scales “motivational”, “applicability” and “authenticity” by Wolf (2017) were chosen 

and modified by replacing the word “task” by “example”. Respondents were given 

options using a six-point Likert scale ranging from 1 (totally disagree) to 6 (totally 

agree) to measure their agreement on the questionnaire statements. 

From Wolf’s scale “motivational” we took the five of the six items which fit to our 

setting. A sample item is “The reference to an application has aroused my interest.” 

The reliability coefficients (Cronbach’s alpha) had the acceptable values of 0.83 

(Example C), 0.83 (Example W), 0.85 (Example A), and 0.85 (Example R). 

All three items from Wolf are used for the scale “applicability”, one being “This 

example has improved my ability to work on tasks with an engineering context.” The 

reliabilities are also acceptable, with values of Cronbach’s alpha of 0.805 (C), 0.777 

(W), 0.826 (A), 0.830 (R). 

The criterion “authenticity” is checked with only one item (the second item from 

Wolf was skipped, since the reliability of the resulting scale was quite poor). The 

item is “The reference to application is authentic: a real engineering problem is 

solved with the help of mathematics.” 

The data were analysed in an explorative manner using the IBM SPSS Statistics 

software. The relationship between students' views and their evaluation of an 

example was calculated utilising the Pearson product-moment correlation technique. 

The multiple regression analysis (method forward) was performed to find out the best 

predictors of students’ views in their evaluation of an example. 
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RESULTS 

Preliminary analysis: mathematical views 

The results of the descriptive statistics indicate students’ views are based on mean 

scores ranging from 3.60 to 3.74 (Table 1). This indicates that the students’ views of 

mathematics include in quite equal measure all three aspects process, application and 

toolbox. The values of the standard deviations (Table 1) reveal that the group of 

students is quite heterogeneous concerning their mathematical view. 

 mean value standard deviation 

process 3.74 0.53 

application 3.64 0.69 

toolbox 3.60 0.58 

Table 1: Mean value and standard deviation of all view aspects. 

A correlation analysis shows that the dynamic aspects “process” and “application” 

correlate positively (see Table 2), but do not exhibit multicollinearity (which is 

important for the regression analysis later). No significant correlation exists between 

the static aspect (“toolbox”) and the dynamic aspects. 

 process application toolbox 

process 1 0.507** -0.043 

application 0.507** 1 -0.062 

toolbox -0.043 -0.062 1 

Table 2: Pearson’s correlation coefficient for the view aspects. **The correlation is 

significant at the 0.01 level (1-sided and 2-sided). 

The correlation patterns for the mathematical views reproduce the findings from the 

literature (Grigutsch et al., 1998). 

Preliminary analysis: evaluation of the application examples 

The descriptive analysis for the evaluation criteria reveals that all examples were 

evaluated as being very authentic, and seem to be rather motivating and applicable 

(Figure 1). Example C stands out due to a very good evaluation in all criteria, better 

than all other examples. 
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Figure 1: Mean values of the evaluation criteria for all application examples. 

Relations between the mathematical view and the evaluation of application 

examples (A) 

To determine whether there is any significant relationship between the mathematical 

view and the evaluation of an application example the pairwise correlations between 

particular view aspects and evaluation criteria for each of the four examples were 

tested using the Pearson's correlation analysis. 

The result is presented in Figure 2. A line between a view aspect and an evaluation 

criterion is drawn if there is a significant correlation. The emerging significant 

correlations are all positive (from 0.17 to 0.43). 

The illustration shows that the criteria “authenticity” and “applicability” are 

positively correlated with the application aspect in all examples. Furthermore, the 

criterion “authenticity” and “motivation” are positively correlated with the process 

aspect and toolbox aspect, respectively, in all examples except C. 

 

Figure 2: Significant correlations (p<0.01, 1- and 2-sided) between view aspects and 

evaluation criteria in each application example (all positive). 
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Mathematical view as predictor of evaluation criteria (B) 

A multiple regression analysis was performed to identify the best predictors in the 

mathematical view that influence students' evaluation of the application examples. 

The view aspects serve as independent variables, and the dependent variable in the 

analysis is a particular evaluation criterion of one example. 

The result of the analysis is similarly presented as before (see Figure 3). Each arrow 

leads from a significant predictor in the mathematical view to an evaluation criterion. 

The R-square value indicates that 5.1%-18.2% of the variance in one evaluation 

criterion is explained by the combination of view aspects. The quality of the model is 

weak to medium. 

 

Figure 3: Predictors in the mathematical view for each evaluation criteria (value for 

R-square) in each example. 

In every example, the aspect “application” is a significant predictor of all evaluation 

criteria, whereas the aspect “process” does not appear as a predictor. In example C, 

also the aspect “toolbox” does not appear as predictor. In contrast, in example R the 

toolbox aspect is a predictor for all evaluation criteria. In all examples except C the 

toolbox aspect is a predictor of the motivation criterion. 

DISCUSSION AND CONCLUSION 

In the present study, engineering students’ mathematical view and their evaluation of 

application examples are measured and a possible relationship between them is 

investigated. In the following we summarise the results of the research questions (A) 

and (B), discuss limitations of the study and give an outlook on further research 

possibilities. 

The correlation analysis (A) shows that students with a strong application aspect in 

their mathematical view tend to give good evaluations in almost all criteria in almost 

all application examples. In some examples, the aspects “toolbox” and “process” 

additionally correlate with some evaluation criteria. This result is only partly in 

accordance with the results by Maaß (2005) in the sample of college students since in 

her study the static aspect leads to disapproving application examples. One reason 
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could be that we do not investigate the role of the formalism aspect which is part of 

the static view in Maaß (2005), another one that the participants of our study were 

engineering students. 

The regression analysis (B) reveals that the aspect “application” predominantly 

occurs as a predictor of all evaluation criteria in all examples (as in the correlation 

analysis). This means, the more the application aspect is represented in the 

mathematical view, the better the evaluation of the example is, which similar to the 

results by Maaß (2005) in the sample of college students. The aspect “process” has no 

effect on any evaluation criterion in any example, in contrast to the positive 

correlations found in the correlation analysis. This occurrence could emerge from the 

fact that the bivariate correlations can be influenced by third variables. 

In summary, the study shows that students with a strong application aspect in their 

mathematical view rate application examples better. This result seems to coincide 

with the fact that the dynamic aspect resp. the utility belief of mathematics leads to 

higher motivation and interest resp. better modelling competence (Köller, 2001 resp. 

Mischo & Maaß, 2012). 

A limitation of the study concerns the generalization of the results, as the data came 

from only one university and from one lecture and one sample. Also, the model 

obtained by the multiple regression analysis is weak to medium. Other statistical 

methods should be tested. 

Concerning the test instrument for the mathematical view, the value of Cronbach’s 

alpha for the process-scale is better in Rooch et al. (2014) than in our sample, and all 

view aspects are more reliable in Grigutsch et al. (1998). A reason for this could be 

that not all items from Grigutsch et al. (1998) were used in Rooch et al. (2014) and in 

our study. Improving the scales and eventually adapting them to engineering students 

should be investigated. Remark also that that participants are self-reporting about 

their mathematical views, so there are possible biases in the results. 

To measure the evaluation of the application examples we used the scales by Wolf 

(2017) which are (to our knowledge) not evaluated in the sense that they have not 

been applied in a number of other studies. Here one could also try to improve the 

scales by changing items or adding other items. 

The findings in our study reveal that the emerging correlations and predictors are 

quite diverse among the four examples. The application examples were of diverse 

nature, for example concerning the length of the presentation, the portion of 

modelling and computing, time consumption in preparation and the presenting 

person. Moreover, the examples showed applications from different study programs. 

Results in Schmitz and Ostsieker (2020) indicate that the evaluation of application 

examples differs depending whether the application context is related to the 

engineering degree program. This suggests that the correlation- and regression-

pattern might depend on the application example. The role of the characteristics of 
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the examples as well as other influencing factors could be investigated more 

intensely. 
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Questioning the quantum world?  
A priori analysis of an SRP at the interface  

between mathematics and quantum mechanics 
Nathan Lombard1 
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This work is at the confluence of two groups of studies: on the one hand, research on 
didactic phenomena (and their consequences for teaching and learning) when 
mathematics is taught in an engineering or a physics class; on the other hand, 
research on conditions and constraints allowing to carry out the evolution from the 
prevalent didactic paradigm of visiting works to the novel paradigm of questioning 
the world, which are both brought out by the Anthropological Theory of the Didactic 
(ATD). In this dual context, we present in this paper the preliminary and a priori 
analyses of a Study and Research Path (SRP) set at the interface between 
mathematics and introductory quantum mechanics, in third year of bachelor’s degree, 
at the University of Montpellier. 
Keywords: Teachers’ and students’ practices at university level, Novel approaches to 
teaching, Teaching and learning of mathematics in other fields, Curricular and 
institutional issues concerning the teaching of mathematics at university level, 
anthropological theory of the didactic. 
INTRODUCTION 
In recent years, much work has been carried out on the teaching and learning of 
mathematics for engineers or on the role of physical modelling in mathematics 
curricula (see for instance Hausberger, Bosch & Chellougi, 2020, TWG2). However, 
the relative roles of mathematics and advanced physics are quite different: rather than 
seing mathematics merely as being used, both fields are then more on an equal 
footing (Lombard & Hausberger, to appear). In this work, we focus on the 
relationship between algebraic structures and theoretical physics, based on the 
example of Hilbert spaces in quantum mechanics. The study is carried out in the 
framework of the Anthropological Theory of the Didactic (ATD), which “aim (…) is 
the elucidation of human societies’ relation to “the didactic,” that is to say, to all the 
possible factors of learning. By adopting an anthropological point of view, it purports 
to embrace the didactic wherever it may show itself around us, paying special 
attention to the institutional constructions of knowledge and the conditions 
established to disseminate it.” (Chevallard & Bosch, 2020a, p. 53). 
Within the research program of the ATD falls the identification of “study paradigms”, 
and the “contribution (…) to the paradigm of questioning the world” (Chevallard & 
Bosch, 2020a, p. 59; see also the next section). The study and development of Study 
and Research Paths (SRP) plays a key role in this endeavour (Bosch, Barquero, 
Florensa & Ruiz-Munzon, 2020). In this context, we have undertaken to set up an 
SRP at the interface between mathematics and introductory quantum mechanics at the 

405



University of Montpellier. More specifically, this SRP is set in the context of 
quantum computing, and starts with the following generating question Q0: In what 
respect are quantum computers indeed quantum? It is designed for students that are 
in third year of bachelor’s degree (sixth semester). It consists of nine two- to three-
hour sessions, distributed into three lab sessions and six classroom sessions. In this 
paper we present the results of the first two phases of the implementation of an SRP: 
the preliminary and a priori analyses.  
Our work is thus in line with the past INDRUM conference “instructional proposals 
for university mathematics to move towards a change of paradigm, such as problem-
posing activities, interdisciplinary projects or study and research paths” (Hausberger 
et al., 2020, p. 167). In this context, it aims at addressing the following issues 
(Hausberger et al., p. 167-168):  

How to find a “good” generating question for an SRP? Can the design and 
implementation of SRPs help us to rethink the contents of the course? […] How to look 
at university mathematics curricula from an interdisciplinary approach? How can the 
perspective of mathematical modelling contribute to it?  

THEORETICAL FRAMEWORK AND METHODOLOGY 
SRPs as part of ATD  
In the paradigm of visiting works, also called paradigm of visiting monuments, works 
under study at school or university (theorems, formulae, methods) are “approached as 
(…) monument(s) stand(ing) on (their) own” (Chevallard 2015, p. 3). Notably,  the 
raison d’être of these pieces of knowledge is never specified. The paradigm of 
questioning the world, as its name indicates, focuses rather on questions. In this 
paradigm, one sees pieces of knowledge as answers to be considered only when 
judged relevant to solve given problems, hence highlighting their raison d’être. 
Study and Research Paths (Winsløw, Matheron & Mercier, 2013) constitute a 
contribution to the advent of this “oncoming counter paradigm” (Chevallard, 2015) in 
teaching institutions. “An SRP is an inquiry process which starts from an open-ended 
question and leads to a combination of investigation activities - to explore the 
question, and study processes - to obtain new information that will help in the 
research” (Bartolomé, Florensa, Bosch & Gascón, 2018). 
Throughout an SRP, students are looking for answers to intermediary questions in 
lectures, in (text)books, on the internet, etc. All these “social system pretending to 
inform (…) some group of people about the natural or social world” are media in the 
sense of ATD, and they can become components of the inquiry “milieu”, under the 
“dialectic of media and milieus” (Chevallard, 2006, p. 9). During the study of 
questions, the notion of systems and models (Barquero, Bosch & Gascón, 2019, p. 9) 
is also to play an important role, especially in the context of interface between 
disciplines we consider in this paper.  The dialectics of media and milieu and systems 
and models should be important theoretical tools to monitor our experimentation.  
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Research questions  
By means of this theoretical framework, we will now consider the following research 
issues: what are the conditions and constraints imposed on the implementation of an 
SRP at this level of studies, at the interface of mathematics and physics? What lies 
behind the choice of its generating question? How to avoid visiting works while 
maintaining research and teaching objectives?  
Methodology  
In order to prepare this module, we proceeded according to the Didactic Engineering  
methodology as it was applied to SRPs by Bartolomé et al. (2018): see fig. 1.  

Fig. 1: The Didactic Engineering methodology applied to the implementation of an 
SRP (Bartolomé et al., 2018, p. 5) 

First, we performed a preliminary analysis consisting in three parts:  
- the study of epistemological aspects underlying the project, based on the study of 

primary and secondary sources in history of quantum physics and mathematics 
- the institutional conditions of the SRP, based on interviews with professors at the 

University of Montpellier  
- the ecological context of the SRP, based on the same interviews as well as analyses  

of relevant course material 
Then, we carried out the a priori analysis which “includes the specific design of the 
SRP, including the selection of a generating question starting the study process, 
taking into consideration the conditions and constraints identified in the first 
phase.” (Bartolomé et al., 2018, p. 6).  
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PRELIMINARY ANALYSIS 
Epistemological aspects  
From a study of historical epistemology (in the sense of « Histories of epistemic 
things » (Feest and Sturm, 2011, p. 288)) dedicated to the interplay between quantum 
theory and functional analysis during their respective early developments 
(1900-1930), we could extract several aspects that seem particularly relevant for the 
design of this SRP. 
First, mathematics and physics exerted a mutual influence throughout the 
development of quantum mechanics. In particular, from 1925-1927, mathematicians 
could draw results from questionings arising from physics (Lacki, 2011). This 
culminated in von Neumann’s introduction of Hilbert spaces as an abstract structure 
encompassing the variety of theories of quantum mechanics known at that time. So, a 
physical context may be fruitful to introduce higher level mathematics via the 
dialectics of questions and answers.  
Then, models and formulations were abundant at the interface with successive 
attempts at unifications and simplifications, which the structuralist stance in 
mathematics finally helps to achieve (von Neumann, 1955, p. 28). We should thus 
expect the dialectics of objects and structures (Hausberger, 2017) will play a role.  
Finally, interviews we performed with professors of physics and mathematical 
physics at the University of Montpellier lead us to consider such phenomena still 
occur in their day-to-day activity. More precisely, though there seems to exist a vivid 
practice at the interface between mathematics and physics when considering 
“scholarly knowledge”, this does not seem to be the case anymore regarding “taught 
knowledge”, showing a lack in the “didactic transposition” at the interface 
(Chevallard & Bosch, 2020b). This is one of the issues this SRP attempts to address.  
Quantum computing appeared to be a subject that could put at play the 
aforementioned epistemological aspects. In addition, as the setting of an SRP should 
“be regarded – by the students, by their teachers (…) – as crucial to a better 
understanding and mastery of their lived world” (Chevallard, 2006, p. 7-8), quantum 
computing seemed to fit all the more. Lastly, specific institutional conditions in 
Montpellier would facilitate the implementation of an SRP on this topic. 
Institutional conditions   
Indeed, in 2019, the technology company IBM initiated a partnership with the 
University of Montpellier, in which several members of both the mathematics and 
physics departments are involved. This is why, in the first place, quantum computing 
emerged as a potentially workable setting for the upcoming SRP. However, it was yet 
to be found how to include such a project into the sequence of teaching units (TU) 
taught in this university. In Montpellier, physics and mathematics curricula are quite 
detached (see fig. 2). The bachelor (Licence) lasts three years (L1-L3), and it is 
divided into six semesters (S1-S6). Some TU taken by physics students are 
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nevertheless taught by mathematicians: we filled them in blue. Lastly, our 
experimentation takes place during the sixth semester (S6), as a mixed TU (see 
below). It is shown in purple in the figure.  
Several constraints weighted on the institutional implementation of the SRP, as it was 
to develop at the interface between mathematics and quantum mechanics. Firstly,   
physics students take their first quantum mechanics class at the fifth semester (S5, 
Mécanique analytique et quantique). Then, during the sixth semester, on the one 
hand, mathematics students have to take a “common knowledge” class (Culture 
générale), whereas, on the other hand, physicists take a TU devoted to doing an 
experimental research project supervised by a professor (Projet tuteuré). So, we 
could set up the SRP as a mixed teaching unit registered with both math and physics 
departments. It is the only such TU at this level of studies at the University of 
Montpellier. This way we could project nine two- to three-hour time-slots.   

Fig. 2: Overview of some TU from the “General Mathematics” and “Fundamental 
Physics” programs that are taken by students participating in the experimentation 

With this organisation came further conditions and constraints, mainly from the 
physics department. For instance, evaluation should include a peer-reviewing process 
among students taking this TU. This was actually a favorable condition. Indeed, 
defining the recipients of the answer to be given to the generating question is a 
crucial step. So, we extended the physics instructions to all students:  to write a report 
and make a presentation their third-year colleagues could read and understand. 
Ecological context  
Physics students has already had a quantum mechanics course during the first 
semester, whereas students from mathematics never did (at least at the University of 
Montpellier). The content of this quantum mechanics course corresponded to parts of 

Algèbre et Analyse 1

10 ECTS HLMA101

Analyse 2

7,5 ECTS HLMA202

Algèbre Linéaire 2

7,5 ECTS HLMA201

Algèbre linéaire

et Analyse 2

7,5 ECTS HLMA203

Analyse 3

7,5 ECTS HLMA302

Algèbre Linéaire 3

7,5 ECTS HLMA301

Mathématiques

pour la physique 1

5 ECTS HLPH315

Analyse 4

7,5 ECTS HLMA402

Géométrie euclidienne

et algèbre bilinéaire

7,5 ECTS HLMA401

Mathématiques

pour la physique 2

2,5 ECTS HLPH411

Mesure, intégration,

Fourier

8 ECTS HAX503X

Calcul différentiel et

équations différentielles

6 ECTS HAX502X

Outils mathématiques S5

6 ECTS HAP501P

Mécanique

analytique

et quantique

7 ECTS HAP503P

Topologie des

espaces métriques

7 ECTS HAX601X

Culture générale

2 ECTS HA2G13X

Mécanique quantique

5 ECTS HAP604P

Projet tuteuré

4 ECTS HAP606P

S1

S2

S3

S4

S5

S6

L1

L2

L3

Mathématiques

générales Physique

fondamentale

SRP

409



the first two chapters of Quantum Mechanics, vol. 1 by Cohen-Tannoudji, Diu & 
Laloe (1991) which is often used in introductory quantum mechanics courses in 
France. We could analyse its content in a study which provides additional inputs into 
the preliminary analysis (Lombard et Hausberger, to appear).   
For instance, a tension exists between the abstractness of the Hilbert space formalism 
and the necessity for students to develop operative skills in order to study actual 
physical systems or models. In particular, the raison d’être of some elements of the 
formalism is never specified (why an infinite number of dimensions? why Hilbert 
spaces and not Banach spaces or even pre-Hilbertian spaces, which are studied in 
second year by math students?). Of course, this is consistent with the fact this course 
provides an example of the paradigm of visiting works. By shifting towards the 
paradigm of questioning the world, this is another aspect this SRP wishes to address. 
This tension particularly transpires when it comes to the passage from finite- to 
infinite-dimensional Hilbert spaces, as was actually acknowledged by a professor we 
interviewed. As a matter of fact, the course we studied began with the infinite-
dimensional case, even though the students never encountered them, especially to 
solve eigenvalue problems as is customary in quantum mechanics. In this SRP we 
chose to go the other way, starting with what students may already be familiar with 
and going from finite- to infinite-dimensional models (for such a treatment in the 
common paradigm of study, see for instance Le Bellac (2013)).  
A PRIORI ANALYSIS  
Resources and assessment 
In light of the previous considerations we undertook the a priori analysis of an SRP at 
the interface between mathematics and quantum mechanics, with quantum computing 
as its background. It would include both classroom sessions (six) and computing 
sessions (three), the latter being taught by an IBM representative already working 
with the University of Montpellier (denoted by Pqc). Besides, to enforce the 
conveyance of mathematics and physics content, we chose to let one professor from 
each field (P𝜑 and Pµ for physics and mathematics, respectively) teach once during 
the SRP. Finally, in order to comply with the constraints imposed on this TU by each 
department, we decided students would work in groups of three, by curriculum. So, 
the set of students may be denoted by X = {g3µ1, g3µ2, g3𝜑1, g3𝜑2} (where g3µ and g3𝜑 
are math and physics trios, respectively) and the team of teachers by Y = {Pqc, P𝜑, 
Pµ}. So, we end up considering the didactic system S(X,Y,Q0) (Chevallard 2019, p. 
72), where Q0 is our generating question (see next section). 
Before addressing the choice of the generating question, we can complete the 
answers to the following questions in our meta-SRP: “Q2) Human and physical 
resources” and “Q3) Student assessment” (Bartolomé et al., 2018, p. 6-7, and fig. 1 
here), which otherwise almost fully ensue from our preliminary analyses. First, we 
planned on collecting question-answer maps per group in order to monitor the 
evolution of students’ questioning, actually letting students draft them themselves. 
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Then, complying with the institutional constraints coming from physics, we opted for 
a final answer in the form of a written report and an oral presentation. This implied, 
in particular, to let a significant part of the investigation on the “other 
stage” (Chevallard, 1998, p. 17). This is a questionable choice, as our research would 
gain in monitoring as closely as possible students’ questioning. On the other hand, it 
enforces the customisation of the final answer A♥ produced by students, making it 
indeed close to their hearts (Chevallard, 2019, p. 100). 
Generating question  
We may now answer the “Q1) The SRP structure” block of the meta-SRP. The most 
critical point here is our objectives are always two-fold, as this SRP is at the same 
time a course and a research experiment (see also Markulin, Bosch, Florensa & 
Montañola, 2022, p. 3). For instance, regarding Hilbert spaces, we wish to put two 
phenomena at play: on the one hand, in relation to the paradigm shift we investigate, 
we wish to reinstall the raison d’être of their use in quantum mechanics; on the other 
hand, in the context of a PhD devoted to the didactics of algebraic structures, we wish 
to see them play a unifying  and simplifying role. Actually, our epistemological 
analyses lead to the conclusion we could meet both these targets at once, provided the 
use of the structures comes as an answer to the generating question or to a question in 
the process.  
As was already mentioned, the passage from the finite- to the infinite-dimensional 
settings is a crucial step in quantum mechanics, and on in which the Hilbert space 
structure plays an important role. The latter structure is indeed the good framework 
where the practice acquired in low dimension can the most easily be transposed to 
infinite dimension. Though it is common in introductory quantum mechanics to cover 
several situations where both finite and infinite-dimensional frameworks play a role, 
even though the peculiarities of the infinite-dimensional case are often hidden — and 
with it the necessity of a more general, hence abstract, framework (see Lombard & 
Hausberger, to appear). This is particularly so when it comes to quantisation 
(eigenvalue problems), as show for instance most treatments of the infinite quantum 
well, the simplest realistic model of a quantum computer. That is, quantisation in this 
case can only be accounted for on the base of truly quantum mathematics.  
Actually, the context of quantum computing puts at play numerous models to 
describe the machine, from two-level systems to anharmonic oscillators. Each time, 
the question of quantisation is crucial, as quantum bits are quantised states spanning 
two levels (usually marked |0〉 and |1〉). So, working on models of quantum 
computers surely brings about many epistemological aspects our analyses have 
highlighted so far. Consequently, we put forward the following generating question 
Q0: In what respect are quantum computers indeed quantum? As it stands, the 
questioning is however quite open, so we chose to add three questions, as is for 
instance done in Barquero (2009, p. 198):  
Q0a: What are quantum bits and how can you calculate with them?  

411



Q0b: What phenomena allow quantum computers to operate?  
Q0c: What characteristics of quantum systems are shared by quantum computers? 
All that being said, a pitfall consists in wishing students go through certain questions 
for the sake of our research (for instance), thus leading us back to the 
“monumentalist” paradigm we wished to quit (on this point, see Chevallard, 2006, p. 
8). Consequently, given this setting, we can only hope students will opt for a 
mathematically-leaning answer to our generating question.  
Media and models  
The choice of media gives us further latitude though, especially regarding how open 
the SRP will be. Indeed, in the case students actually enrich their milieu with them, 
media could channel the questioning towards given works, be they visited or not. So,  
media both increase the numbers of models of quantum computers under study and 
decrease the openness of the generating question, in order to balance its scope.  
During lab sessions, students will manipulate the software Qiskit. During class 
sessions, book excerpts or videos will enunciate facts about physical or mathematical 
models of quantum computers (such as the Block sphere, abstract two-level systems 
or quantum wells). In addition, the professors taking part in the experiment should 
play an important role in the media environment (see fig. 3). Lastly, we plan on 
producing tailor-made pieces of media, for instance to encourage the process of 
questioning about the links between the various models so introduced. 

Fig. 3: Practicable sequence of sessions and prefiguration of media and models at play 
throughout the SRP 
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CONCLUSION 
In this article, we have given a concrete instance of the implementation of both the  
preliminary and a priori analyses of an SRP set up at the interface between 
mathematics and quantum mechanics. We have shown by way of example that 
careful studies of the institutional and epistemological contexts are in order. Lastly, 
we have described the rationale underlying our choice of the generating question, 
which is a crucial step in the design of an SRP.  
The module we set up is “a subject totally organised as an SRP” (Bosch et al., 2020), 
which means in particular that no course adopting the paradigm of visiting works 
supports it. As a consequence, it seems necessary to find a balance between leaving  
the students’ questioning totally open (which amounts to leave aside tailored planning 
of learning as well as research goals) and closing it so much that the generating 
question Q0 “becomes a mere decorative and opportunistic artefact” (Barquero, 2009, 
p. 93). So, we have arranged the conditions for a cohabitation of the two main 
paradigms. Indeed, as put Chevallard (2011, p. 40), the development of the paradigm 
of questioning the world “does not cancel the paradigm of visiting pieces of 
knowledge (le paradigme de la visite des savoirs), but rather places it otherwise, at 
both epistemological and didactical levels”. Organising this space needs careful 
preparation. 
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Statistics is a discipline that allows implementing novel teaching proposals based on 
inquiry. Students’ reasoning in the statistical context can be encouraged by 
implementing project-based learning in statistics courses. Statistical processes often 
involve other disciplines apart from statistics itself. We present an analysis of the 
staging of cross-disciplinary characteristics of an inquiry-based project in statistics 
for the degree in Business Administration. Three moments of cross-disciplinary 
collaboration are described and analysed from both the viewpoint of teachers and 
students. Broadening the perspective beyond the domain of statistics provides us with 
new insights regarding student engagement, challenges related to project organisation 
and management, and a venue for cross-disciplinary dialogue. 

Keywords: cross-disciplinarity, statistics for business, study and research path, 
teaching and learning of mathematics in other fields, novel approaches to teaching. 

INTRODUCTION 

Traditionally, statistics has been taught in a lot of different university degrees and has 
recently gained more prominence in numerous professional areas. The importance of 
information technologies is growing (Nolan & Temple Lang, 2010), and so are the 
proposals for training students to gain computational and statistical competencies. As 
a consequence of the technological development in the past decades, a large number of 
statistics educators have embraced pedagogical novelties in their teaching. Project-
based learning (PBL) (Batanero et al., 2013) in particular has been promoted as a 
design tool for nurturing reasoning in a statistical context (Wild & Pfannkuch, 1999). 
PBL is widely present in the literature on statistics teaching (Markulin et al., 2021a), 
and is commonly described from the perspective of the area of statistics and more 
general pedagogy. 

The numerous implementations of project-based proposals present different 
characteristics depending on the way statistical knowledge and professional activity 
are conceived in each institution. Several designs of so-called study and research paths 
(SRPs), framed within the Anthropological Theory of the Didactic (ATD), have been 
implemented in statistics, in other disciplines, and in cross-disciplinary contexts at the 
university level (e.g., Barquero et al., 2021). The main aim of SRPs is to support the 
development of student knowledge in an area of study by posing meaningful and 
challenging generating questions to students (Jessen, 2014). According to Barquero et 
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al. (2007), it is important for the generating question to be “of real interest to the 
students (“alive”)” (op. cit., p. 2052).  

Considering the recent developments both in business and in statistics, a subsequent 
question is: What and how to teach Business Administration students? In other words, 
the organisational goal of PBL and SRPs needs to be adapted to the topic and 
complexity of the degree in which those tools are implemented to be in line with its 
specificities. In the following sections, we present the ATD as the framework to 
analyse the modelling aspects of the proposals. We describe the implementation of 
SRPs in a statistics course for a degree in Business Administration and explore some 
issues regarding cross-disciplinary collaboration when designing and implementing an 
SRP, and how it is perceived by the students. 

THEORETICAL FRAMEWORK 

Within the field of mathematical modelling, a dominant approach to its teaching and 
learning is modelling when addressing a real-world problem, transposing it to the realm 
of mathematics, and addressing the mathematical problem before moving it back to the 
real world validating the result found in the process (Niss & Blum, 2020). However, 
this approach might not capture important aspects of the real modelling activity, as it 
takes place in the workplace (Frejd & Bergsten, 2016). Some of these aspects were 
analysed in a study by Serrano et al. (2010). The authors argued that the SRP 
implemented on the sales forecast of a fashion brand shows the intertwinement of the 
extra-mathematical and mathematical (or statistics) domains when fitting real data and 
real-world problems in one-variable functions. 

Initially, SRPs were proposed by Chevallard (2004) as a way to design the cross-
disciplinary projects introduced into French secondary schools (Winsløw et al., 2013). 
An SRP is initiated by posing a generating question Q0 to students, who consider it real 
(Barquero et al., 2007), and worth pursuing, though they cannot answer the question 
immediately (Jessen, 2017). To answer the question, they need to engage in the 
processes of study and research. The study process is characterised as the study of new 
knowledge, which the students decompose. This means they need to understand what 
it is made of, how it can be used, etc. During the research process, the students 
reconstruct the new knowledge (in combination with existing knowledge) into partial 
answers to the generating question (Jessen, 2017; Winsløw et al., 2013). Furthermore, 
we can see this as a process where students pose derived questions Q’ to the generating 
question, which they construct answers to through study and research processes. Thus, 
the generating power of Q0 can be considered as the degree to which it invites students 
to pose such derived questions. Winsløw et al. (2013) depict this dynamic through a 
question-answer map presented in Figure 1.  

When working with SRPs, the intertwinement of the domains involved in a modelling 
activity is reflected in going back and forth between questions and answers, between 
study and research. Moreover, we see this interconnection in cross-disciplinary SRPs, 
when an answer in one knowledge domain leads to a question in others. This can be 
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seen in the SRPs analysed by Jessen (2014) on mathematics and biology, where 
answers in biology turned into questions regarding differential equations in 
mathematics. 

 
Figure 1: An example of a question-answer map (Winsløw et al., 2013, p. 271). 

CONTEXT OF THE STUDY 

We analyse the organisation of three SRP implementations in a statistics course in the 
second year of a bachelor’s degree in Business Administration. Each of the 
implementations, during academic years 2019/20, 2020/21 and 2021/22 had its 
peculiarities concerning the topic of the project, the scope of the data to be gathered 
and analysed by the students, and the logistics of the implementation modality due to 
the COVID19 restrictions. However, the characteristics common to all the 
implementations were the collaboration with researchers in marketing, the existence of 
a “client” that was the facilitator of the project topic, and students organised in teams 
of 4-5 members acting as consultants for the client. More about the topics and the SRP 
implementations can be found in Markulin et al. (2021b, 2022a, 2022b). 

RESEARCH QUESTION AND METHODOLOGY 

Our work contributes to broadening the scope of SRPs in the domain of statistics in a 
Business Administration school by analysing constraints and conditions seen from the 
perspective of students on cross-disciplinary projects. The SRPs presented are 
implemented in a statistics course, although they could be implemented in other 
disciplines, encouraging different perspectives from which a certain project can be 
conceived. In this respect, we formulate our research question (RQ):  

RQ: How can cross-disciplinary collaboration foster the management of a project in a 
statistics course in a Business Administration degree? 

We will consider the issue from the macro-didactic perspective by analysing the 
collaboration of statistics lecturers and students, researchers in marketing, and external 
clients that are not usually involved in the education system. The approach we take is 
a qualitative analysis based on post-project interviews with the students. We comment 
on the experience of the project implementation, and finally, contrast it with the 
statistics students’ reflections on the cross-disciplinary characteristics of the SRPs. 

The post-project communication with the students is organised as semi-structured 
interviews, designed by a statistics teacher that also assumes a position as a researcher 
in didactics, together with five or six students. The students who participate in the 
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interviews represent the students’ working teams that participated moderately or 
actively in the project (according to the teacher’s perspective and the students’ final 
grades in the statistics course). The interviews are approximately 30-40 minutes long 
and structured according to the hypotheses on the SRP development put forward by the 
teacher-researcher in didactics. As shown below, the interviews are structured in such 
a way that broader problematic issues than simply the research question of the SRP 
addressed in this paper are analysed. The hypotheses (H) behind the interview script 
consider the: 

H1. Generating question and project aim. The project comes from an external client 
who also presents the topic to the students. The generating question is a problem to be 
solved by student teams and is presented to an assessment jury at the end of the project 
to add realism to the project. An issue to discuss is the pertinence of the generating 
question, its driving force throughout the inquiry, and the extent to which the final 
answer presented by the students provides valuable information to the client. 

H2. Project survey and data collection. The design of the project survey that students 
use for data gathering, the understanding of its components and its use to provide 
meaningful data to be analysed takes place in the interaction between statistics, 
marketing and the client’s needs and possibilities. The interest in discussing its 
components is threefold: describing the students’ involvement in the design part of the 
survey; the adoption of its raison d’être that fosters the arborescence of the derived 
questions to be statistically analysed; the insight into the challenges that students 
encounter when collecting data and the solutions they propose or implement to 
overcome the obstacles in such a “rudimentary” activity of collecting raw data and 
cleansing it before the statistical analysis. This is not usually part of a project students 
would expect in a statistics course but is essential for the profession of statistics. 

H3. Integration of the SRP in the statistics course. The SRP is part of the statistics 
course, but the course is organised for the SRP to be its central activity. The classes 
preceding the project are organised in bi-weekly (14 days long) case studies or topic-
related exercises that prepare the ground for the SRP to be implemented. The main 
issue of this section is the students’ perspective on the integration of the SRP into the 
structure of the course. The connection between the bi-weekly studies and the project 
can be appreciated by recognising the importance of the provided software tools and 
knowledge for the project work, inquiry strategies developed before or during the 
project, cleansing the data, raising questions and synthesising results. 

H4. SRP organisation and management. The SRP implementation during the statistics 
course, its development in student teams, the submission of the students’ intermediate 
analyses reports, and the students’ presentation of the final results as a poster or a slide 
show in front of the entire class are the organisational characteristics that are the most 
closely connected to pedagogical and school interventions.  

A more detailed description of the interview design and the hypotheses supporting the 
script are described in Markulin et al. (2021b, 2022a). 
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Even though the different SRPs were implemented in the classroom under the guidance 
of the statistics teachers only, they were prepared thanks to the cross-disciplinary 
collaboration mentioned earlier. After analysing the students’ interviews and 
identifying indications related to cross-disciplinary issues, especially concerning the 
first two hypotheses mentioned above, we present three moments in which 
collaboration is key:  

1) agreement with the client,  
2) design of the survey for data analysis,  
3) understanding and exploiting the survey. 

SRP EXPERIENCE AND DISCUSSION 

The first moment: agreement with the client 

Once a client willing to collaborate on the project is found, chronologically, the first 
step is to explore the potential of the problem’s generating question. Figure 2 is an 
example of a statistics teacher’s a priori test of a potential topic for the third SRP 
implementation. It can either be developed visually in a question-answer map (we tend 
to include only the questions in this kind of map, while the answers remain implied), 
or elaborated as a list of topics that can be derived from the initial generating question. 

Figure 2: A priori question-answer map for the third SRP implementation 

The generating question is Q0: “What are the consumer habits and preferences of young 
people in Spain about sustainability, digitalisation, and leisure time?” The derived 
questions focus on sustainability issues (Q1), experiences with digital services (Q2), 
and leisure-time habits (Q3). We will not go into detail about the map components in 
Figure 2, since it is not the focus of this paper, but the full text of the questions can be 
found at https://rb.gy/uzez4y. We will consider the moments based on collaboration. 
The first one is the final agreement with the client. It is worthy of note that, even at this 
early stage, the statistics teacher tends to leave the boundaries of the discipline to 
embrace the context of the potential data (something the students will eventually do as 
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well once they start inquiring about the matter). The planning of the project 
development and its main focuses take place at the same time as the agreement with 
the client. Then, some of the SRPs trajectories proposed by the teacher are discarded, 
while new ones gain importance. This teacher-client communication is a pre-test of the 
communication that the client will later have with the different student teams. This 
interaction leads to improvements in the a priori analysis and adjustments are made to 
the teaching design, hence changing the focus of the data analysis at a later stage of the 
project. Moreover, this makes the situation more akin to genuine business practices. 

The topic of the first SRP was vegetarian and vegan diets. Students found it interesting 
but were not very familiar with it. An illustrative example of this distance from the 
topic is the statement of one of the students: 

Student A: The topic is actually really good and interesting and the things we could see 
were really interesting, but it affects just a small group of people. 

The second implementation concerned an SRP on a less restricted population, but it 
was locally oriented and about an initiative, the students did not know well – a 
cooperative supermarket looking for its optimal first location in Barcelona. The 
statement of one of the students reveals this fact: 

Student B: I think it was an interesting topic, different from what is normally dealt with in 
some projects by better-known brands or companies… I think it's a way that helped us to 
do a bit of market research, which, in the short term, will be something that we will have 
to do. 

The third implementation was a collaboration with the marketing department of an 
international company about the attitude of young people in Spain towards 
sustainability. Thanks to the experiences from previous years, the interaction between 
the client and the students were given more importance in this implementation. Apart 
from the client presenting the project topic and ideas, an additional online meeting 
session with the client was scheduled. During that session, each student team met with 
the client. The students abandoned their role of “students” and adopted a more 
professional attitude. This was observed especially in those student teams that 
abandoned some of their initial problem proposals and redirected their inquiry 
adjusting it to the client’s needs.  

Student C: At the meeting with the client, we presented our team’s ideas on which to focus 
our analyses during the project. However, she told us to pursue certain ideas we presented, 
but also to discard some of them. We realised that not everything we proposed was 
interesting to her. We continued the analysis based on what the client suggested. 

In the implementations where such interaction between students and the client during 
the project development was not possible to organise, the students sometimes tended 
to support what they considered to be the teacher’s proposal at the expense of what was 
relevant to the client. 
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The second moment: design of the survey for data analysis 

The second stage that requires collaboration outside the area of statistics is the design 
of a survey that will be used to gather the data for the project. It is a delicate moment 
since its production will directly affect the students’ work and potentially create 
extreme actions, as we will show in the discussion on the impact of the collaboration 
of the third moment. Here, the statistics teacher teams up with researchers in marketing 
at the same business school. This collaboration is beneficial to both sides: the statistics 
teacher ensures the data to be gathered using the survey will suffice for the project’s 
goal; the researchers in marketing get involved in a study in their area of interest and 
possibly enlarge their contribution to marketing research literature based on the ideas 
and results obtained from the Statistics project.  

In the SRP implementations presented in this paper, most of the survey design 
responsibility was assumed by the researchers in marketing. They engaged in the 
survey design in teams. The teams differ slightly every year but mostly consist of one 
experienced researcher and two young researchers (PhD candidates at the business 
school where the Statistics course and SRPs took place). In the first SRP 
implementation, the survey was completely done by the marketing experts, since they 
were the initial “client”. In the second implementation, the survey was designed in 
collaboration with researchers in marketing, the client, and the statistics teachers. In 
the third implementation, the survey was the final product of the collaboration between 
everyone involved in the project: researchers in marketing, the client, statistics 
teachers, and the students. 

However, in the second implementation, when there was a chance to engage more with 
the client who posed the generating problem, the students hesitated to take part in the 
survey design. The following statement of one of the students shows that designing the 
survey might cause a feeling of uncertainty. 

Student D: If you had asked me to do it [design the survey] at the beginning or in the middle 
of the course, maybe I would have posed questions that at the end would be of little use for 
my analysis. 

It seems the students lack knowledge, or confidence, to master the task of developing 
a survey to be statistically exploited. It is a challenge to statistically model a problem 
from the marketing domain. Collaboration with the researchers in marketing is, 
therefore, necessary and supportive for both students and statistics teachers. 

The third moment: understanding and exploiting the survey 

Students are the ultimate “miners” of the project survey. They are supposed to collect 
the data, clean them, and analyse them. Those actions are very common in 
contemporary business environments, in data science laboratories, and even in 
numerous professions remotely relying on statistics. However, most of the PBL 
literature focuses on competencies in data analysis and does not question the origin of 
the data and the cleansing process (Markulin, 2021a). In the SRPs here presented, the 

421



  

data origin appears to have stimulated even some lower achieving students to engage 
in the project, as student E states:  

Student E: …for the first time I think we have been able to work and contribute to a project 
that has not only been an ordinary task, but a real case…we realised that our work could 
provide something to the client. 

According to the students’ comments from the first two SRP implementations, the 
external origin of the survey caused certain detachment, even for high achieving 
students, such as Student F. Some radically stated that it would have been more useful 
if they could have used their own surveys (Student G), which might also be a sign of 
difficulties in recognising the relevance of the data coming from an external survey. 

Student F: I think the survey was super long. That's why I suppose we couldn't analyse 
everything. 

Student G: If we could start from the beginning and ask the questions that we want to 
answer from our data, it would have been clearer and more realistic. 

Nonetheless, the process of cleansing and analysing the data eventually allowed the 
students to become familiar with the survey blocks and to start appreciating the design 
they were asked to follow. Student A describes this progressive process as follows: 

Student A: For example, when we got the answers and we started analysing the data, we 
saw that the survey was even clearer than we thought because there were correlations 
[between the answers to different questions in the survey]. 

It appears that the inclusion of external clients and survey facilitators represents both a 
productive condition and a challenging constraint for the students. In any case, this 
kind of organisation is the closest to a business environment that the teachers could 
have organised in a university setting under given conditions. 

CONCLUSIONS 

As shown in the previous section, the three phases involving the design and 
implementation of the SRP (agreement with the client, survey design and survey 
exploitation) lead to different levels of cross-disciplinary collaboration. Firstly, the 
existence of an external client generates two significant interactions, one between 
statistics teachers and the client in the first steps of the SRP, but also between the client 
and statistics students. As stressed earlier, the existence of a real client fostered the 
engagement of the teams. This phenomenon is already described in terms of 
adidacticity of the SRP by Barquero et al. (2021). It concerns observations on how the 
existence of an external client can favour the conditions under which the development 
of a final answer becomes the central activity during an SRP (Bosch et al., 2023). 
Consequently, there is a shift of the main purpose of the activity from the academic 
aspects such as course evaluation towards the production of reports for the clients.  

Secondly, the interaction between marketing researchers and statistics teachers helps 
overcome the so-called thematic confinement (Barbé, Bosch, Espinoza & Gascón, 
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2005), that often exists in school institutions. However, this cross-disciplinary 
collaboration is still limited: marketing researchers that are also teachers in the same 
institution do not incorporate the survey design in their teaching activity. This reveals 
a clear restriction at the pedagogical level: the SRP is only implemented in one course. 
We think that an open issue of this research is related to the analysis of the restrictions 
hindering these cross-course collaborations to explore the ecological viability of cross-
disciplinary SRPs. 

Finally, the existence of different actors involved in the SRP design and 
implementation is an important challenge. The interactions between students, 
researchers, clients, and teachers need to be organised during the a priori and in vivo 
analysis of the SRP. This is often a new activity for lecturers that might find 
institutional tools to enable collaboration.  
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In this exploratory study, we investigate the potentiality of comparing mathematics 

and physics, from generic characterizations to interdisciplinary tasks and textbook 

analysis, as opportunities to foster secondary mathematics preservice teachers’ 

awareness of the epistemic core of such disciplines. We designed and implemented a 

teaching sequence with Italian master students with a mathematical background, 

relying on a framework developed within a project about interdisciplinarity in 

preservice teacher education (IDENTITIES), and carried out three case studies 

analyzing data collected. We discuss the impact on students’ conceptions and the 

development of learning processes at the boundary that our teaching sequence might 

have, as well as further reflections on how to make our activities more effective. 

Keywords: Teaching and learning of mathematics in other fields, prospective 

teachers’ education, rational behavior, learning potential, boundary crossing. 

INTRODUCTION 

The historical development of mathematics often reveals deep dialogues at the 

boundary with other scientific disciplines, particularly physics; stiffening the 

boundaries might lead to artificial and stereotyped views (see, for example, Boero et 

al., 2013; Branchetti et al., 2019), often accompanied by a characterization of the 

disciplines based, at least, on comparative definitions (Erduran & Dagher, 2014). 

Such an approach to the “disciplinarization” of knowledge not only hides the 

complexity of these dialogues but does not even mirror disciplinary authenticity, 

reachable by analyzing the scientific discourse, for example in articles or original 

texts (Branchetti et al., 2019). In previous works, it has been shown how a virtuous 

circle in preservice teacher education can be established: an interdisciplinary 

approach could help in understanding better the involved disciplines, while 

disciplinary knowledge could help in dealing with new problems not organized in a 

discipline yet (Satanassi et al., under review; Branchetti et al., 2019). Moreover, in 

Akkerman and Bakker (2011) it is stressed that while moving close to boundaries that 

separate/put in contact members of two different communities (in this case, 

disciplinary communities) there is a learning potential about the background of both 

communities, but whose fruitful activation depends on many contextual factors and is 

not trivial. Therefore, we address the following research problem: what processes 

might secondary mathematics preservice teachers enact when moving close to the 

boundary between mathematics and physics? Some activities to face and delve into 

this interdisciplinary exchange have been already explored (see Branchetti et al., 
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2019; Pollani et al., 2022). Among them, a teaching sequence about parabola, 

projectiles motion, and proof has been designed and implemented in different 

national and international contexts of secondary preservice teachers, to investigate 

whether and how learning potentials at the boundary might be exploited to make 

them develop an awareness of their view of mathematics and of the relationship 

between mathematics and physics. In this exploratory study, we qualitatively analyze 

the processes at the boundary between mathematics and physics that occurred in one 

of the national implementations, where the population consisted of preservice 

teachers with bachelor’s in mathematics. 

THEORETICAL FRAMEWORK 

To explore our problem, we rely on a framework built on the notion of boundary 

crossing mechanism (Akkerman & Bakker, 2011), the Family Resemblance 

Approach (FRA) to the Nature of Science (Erduran & Dagher, 2014), and the 

rational behavior (Boero et al., 2013). Akkerman and Bakker highlight how in 

general the notion of boundary is ubiquitous and represents a dialogical phenomenon 

between communities, rather than a barrier. The authors then characterize four 

boundary crossing mechanisms: identification, occurring when a deep uncertainty of 

the line between disciplines leads first to question the core identity of intersections 

and then to renewed perspectives about disciplines; coordination, taking place if the 

cooperation between disciplines is required to keep the flow of work and the use of 

common tools; reflection, which happens through explaining and understanding the 

differences between disciplines, and thus enriching their identities; and 

transformation, which leads to a profound change, and even to new and in-between 

disciplines. We will use the terms disciplinary or interdisciplinary learning potential 

considering the increasing awareness respectively of disciplines, conveyed by 

identification and reflection, or of their interplay, conveyed by coordination and 

transformation. In designing our teaching sequence, to go beyond the stereotyped 

views of scientific disciplines, we referred to a characterization of disciplines 

developed within the FRA (Erduran & Dagher, 2014). According to the authors, the 

epistemic core of scientific disciplines is articulated in four networked categories, 

rather than disconnected fragments: aims and values (like objectivity, consistency, 

rationality, etc.), practices (like observation, argumentation, modeling, etc.), methods 

(like to generate reliable evidence and construct theories, laws, and models, etc.), and 

knowledge (like Euclidean geometry theory, atomic models, etc.). To identify the 

features of disciplinary and interdisciplinary discourses starting from the choices 

made in concrete examples, we also referred to the rational behavior (Boero et al., 

2013; for textbooks and interdisciplinary contexts see Pollani et al., 2022), consisting 

of three interrelated dimensions: the communicative one for text presentation choices; 

the epistemic one for the choices related to identification and expounding of used 

facts; and the teleological one for pursued goals and strategies. 

In this paper, the research question is: can any learning potential at the boundary of 

mathematics and physics as disciplines be actualized by our teaching sequence? In 
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particular: what boundary crossing mechanisms might preservice teachers activate 

while characterizing mathematics and physics in different tasks? Whether and how do 

they become aware of their personal view about the epistemic core of the disciplines 

and able to question it? To address it, we analyze reports of 3 preservice teachers 

collected during the implementation of the teaching sequence carried with 25 master 

students in mathematics attending a mathematics education course, held at the 

University of Milan by LB. 

In the following, we resume the teaching sequence of five two-hour lessons. In the 

first one, we brainstormed What characterizes mathematics as a discipline? What are 

common aspects and the main differences with physics? Then LB held the lecture 

“the FRA and the epistemic core of disciplines”, followed by a questionnaire about 

the topic of the lesson, and the task Deliver a written personal report on the 

characterization of mathematics as a discipline, also in comparison with physics, 

considering what emerged in the classroom, but also stressing your point of view. We 

asked as homework: “Read this excerpt of a discussion between students about the 

task Which curve is represented in the following images? (see Fig. 1) Gianni argues 

that the trajectory of the first image certainly represents a parabola, while we cannot 

say anything for sure about the others, but Francesca is not convinced: she says that 

we do not have enough information to establish that the first is a parabola, while on 

the others it is certain. Amina intervenes by saying that unknowing what context the 

images are placed in, we can never conclude. Do you agree with one of the three? 

Which aspects of each position can be interesting, and which are questionable? How 

would you enter the debate and make it evolve to take a position?” 

 

Figure 1: Images proposed to students to discuss curves and trajectories. 

In the following 3 lessons, after an initial discussion about the tasks and the 

homework using FRA tools, three lectures were held: “The parabolic motion and the 

birth of physics as a discipline” (by Olivia Levrini, physicist), “Parabola in the 

history of mathematics and physics” (by LB), and “Habermas’ dimensions of 

rationality” (by LP). In the fifth lesson, LP presented the analysis of an Italian 

physics textbook excerpt on the motion of projectiles using rationality, and then the 

task Analyze in small groups with the lens of rationality the first part of the 

paragraph about horizontal initial speed. Deliver a text explaining in detail your 

427



  

group analysis. Collective discussions were audio recorded, and the homework and 

two reports were collected. The first report led us to understand, at least partially, 

what were the students’ points of view, so we could triangulate their answers in the 

second report, about textbook analysis. To help preservice teachers to catalyze and 

organize their conceptions, they were provided with the lenses of FRA and 

rationality, which we posit act as scaffolding factors. We hypothesized that the FRA 

could encourage them to characterize disciplines in terms of resemblances or 

differences, rather than definitions. Moreover, we conjecture that asking them to 

analyze a simulated debate and to detect in the first person the rationality in textbooks 

could bind and switch on their aims and values of disciplines, going beyond generic 

and stereotyped sentences, like “mathematics is the science of numbers” and “physics 

is the science of phenomena”. In our analysis, we rely on the explicit information to 

search for boundary mechanisms, referring: to identification with differentiating 

phrases like “mathematics/physics is/is not”; to reflection with those like “from a 

physical point of view it is relevant”, showing more awareness of a different relative 

disciplinary point of view; to coordination when opportunities for using mathematics 

to solve a physical problem are pointed out. The transformation is not considered 

relevant in this case. We identify how they are matched with aspects of the epistemic 

core and rational choices stressed as personally relevant. Referring to the FRA, we 

deepen our coding by searching if preservice teachers undertake a definitory or more 

blurred characterization of disciplines, if they show awareness of and in their 

processes, and if they refer to stereotyped views, meaning that they refer to generic 

and external terms or praxes. 

DATA ANALYSIS 

S1 

FRA report 

The first words I would use straight away to 

characterize mathematics are: rigor, logic, abstraction, 

truth, and utility. 

Identification of rather stereotyped aims 

and values of mathematics by listing 

single nouns. 

Trying to describe a ‘mathematical’ process: we start 

from a real or invented problem, we try to identify the 

variables that influence the problem and isolate them, 

[…] then we try to make the problem itself the most 

general and abstract as possible, […] finally we look 

for the limits revealed to us about the problem itself. 

Non-definitory identification of 

stereotyped epistemic aspects of 

mathematics, again as a list; the repeated 

verb “to try” and the shift from “process” 

to “we” might show awareness. 

Mathematics is the universal language to explain 

nature (quoting Galileo), it aims to respond to various 

practical problems, simplify the life of man, look for 

an order or a rule where there seems to be none, and 

explain what seems to be outside our control. 

Definitory and stereotyped identification 

of mathematics, referring to a list of aims 

and methods. 
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Looking at the first words with which I characterized 

mathematics it is obvious that they also belong to 

other disciplines, such as physics. 

The action of “looking at the first words” 

and recognizing resemblances with other 

disciplines shows an aware process of 

comparison of the epistemic cores. 

Throughout history, mathematics and physics have 

interacted for a long time, […] geniuses have 

contributed to both, precisely because so close. 

Historical generic coordination is pointed 

out, based on the “closeness” of the 

disciplines, without declining it 

epistemically. 

Some of the main differences between mathematics 

and physics are that the former chose to be 

independent of reality, while the second has a 

continuous comparison and denial or verification with 

reality as appropriate. 

Reflection, explaining some of the main 

differences in their willing choices, in one 

case with stereotyped aims, in the other 

with stereotyped practices. 

However much the sciences need language 

mathematical and depend on it, mathematics has the 

same dependence on the sciences, since if it were not 

such a useful and versatile language, if it were not able 

to speak with and for the sciences, the mathematics 

would see its raison d’être disappear. 

Instrumental stereotyped coordination and 

mutual need based on aims of utility and 

versatility of mathematical as a language, 

emphasized with “such a” utterance, and 

on its ontological status. 

Homework 

The first image is a parabola (or perhaps a branch of a 

hyperbola?), and the second (probably) represents a 

parabola along the initial line ABC and then becomes 

a vertical line. The third has various parabolas, of 

different sizes and openings. The fourth again begins 

as a parabola and then assumes the course of what 

appears to be a horizontal line. The fifth consists of a 

branch of a parabola and then of an oblique line. 

In her first statement a doubt is insinuated, 

that later becomes the possibility to state 

for a curve to be a parabola with a grade 

of uncertainty/probability, which seems to 

start to blur the initial “to be”. All the 

statements are rather definitory and 

absolute, without much explanation. 

I can’t completely agree with any of the three, 

however how much Gianni and Francesca have 

positions that I partly share. Amina’s position is the 

one with which the more I disagree, as context doesn’t 

matter, it could certainly help us have more elements, 

but don’t depend on it. Gianni is too rigid in excluding 

the parabola for the other images, it also takes a 

certain degree of adaptation/approximation. Francesca, 

on the other hand, approximates a little too much. 

The first utterance reveals an aware 

attempt of identification of mathematics’ 

aims and values. She justifies why she 

disagrees with definitory claims of the 

absolute truth of mathematics, and she 

considers truth independent from the 

context. She consciously identifies a new 

value (“a certain degree of adaptation”), 

but she does not state explicitly a standard 

for its acceptability. 

Table 1: On the left are the original excerpts by S1, and on the right is our analysis. 
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In the questionnaire, she declared she had never reflected on this topic before. She 

was impressed by the choice to characterize and not define, and the composition of 

the epistemic core. What most impressed her is the inclusion of aims and values, 

which are terms used to describe a “real and alive person”. She stressed that she 

appreciated that this framework does not only refer to concrete everyday actions but 

to less visible values, the essence of actions, which counts most. She complained that 

practices and methods are not easy to distinguish, and knowledge is too static, and 

does not consider that disciplines are knowledge in evolution (time-dynamicity), not 

an object that can be divided into fixed pieces (space dynamicity). In her textbook 

analysis, she referred to what the text does visually “put in evidence” (e.g., “it puts in 

evidence the paths”, “[it could have shown] visually what it tells only by words”), as 

traces of communicative rationality and a value to be pursued. However, she focused 

more on “lack of rationality”, up to questioning the text directly: for example, about 

the teleological dimension she criticized the statement “let us isolate t [the time 

variable]” with “why must t be isolated? […] it looks like a magic trick […] Why not 

write that you want to prove what is the motion path […] instead of leaving the 

reader unaware of reasonings behind the undertaken calculations?”, where we can 

point out an identification mechanism and almost a defense of mathematics 

epistemology from being “a magic trick”; or, for example, about epistemic and 

teleological dimensions she pointed out how the “reasonable hypothesis” and the 

proof are not mentioned as such, implicitly referring to the hypothetical-deductive 

system, an aspect of epistemic core of mathematics. 

S2 

FRA report 

One of the first things that in my opinion characterizes 

mathematics, and which distinguishes it clearly from all 

other sciences, is the fact that it is not necessarily a 

pragmatic knowledge […] mathematics also makes sense to 

exist by itself, free from all its innumerable applications. 

Conscious identification of a type of 

knowledge reached by mathematics, 

justified by its ontological status. 

The use of “not necessarily” avoids 

an overall definitory approach, 

unlike “clearly” could have made 

think. 

Other characteristic that I would associate with mathematics 

is consistency, which is not exactness, but the fact that 

everything is consistent within a well-defined and defined 

axiomatic system. 

Non-definitory and first-person 

conscious identification of and 

reflection on a value and its related 

knowledge structure. 

Another characteristic that unites it to knowledge 

traditionally considered ‘humanistic’ is the fact that it is 

‘argumentative’. 

Recognizing the resemblance of 

practice between mathematics and 

“humanistic knowledge”. 

The figure of the mathematician, for me, is that of a person 

who studies the mathematical world, which does not always 

coincide with the real one, although it may be its model; 

Aware first-person reflection using 

rhetoric negation on the generic 

example of “the figure of the 
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interest in this mathematical world, however, would exist 

even without the link with reality, feeding on the sole desire 

to investigate the nature of abstract objects. […] 

mathematics is more akin to philosophy than to other purely 

scientific knowledge such as chemistry, biology, and others 

mathematician”, re-affirming the 

ontological status of mathematics 

and recognizing resemblances with 

philosophy. 

Both mathematics and physics provide some of what Jürgen 

Habermas calls the dimensions of rational behavior. 

Resemblance using the tool of 

rationality between mathematics and 

physics. 

Homework 

The group agreed with Amina’s statement, without having 

information on the context, on the reference system, it is not 

possible to have certain information. The statements of 

Gianni and Francesca are not motivated, to make the debate 

evolve it could be observed that in the first image there is no 

additional information concerning the graph represented, 

while in the other images there is information that 

accompanies the graph. Amina’s position seemed to us the 

most reasonable, it underlines and highlights the importance 

of contextualizing each representation. 

Conscious identification that the 

context and the information one can 

gain from it carries a certain degree 

of (un)certainty, and that 

contextualizing and motivating 

statements is necessary and help to 

increase their reasonability. The 

statements are formulated in 

general, without referring to a 

specific discipline. 

Table 2: On the left are the original excerpts by S2, and on the right is our analysis. 

In the questionnaire, she declared she had already reflected on the epistemology of 

mathematics, through personal readings and in a university course. She was 

impressed by the external rings concerning the institutional and social dimension of 

science: she considered important not only to be immersed in a discipline but to 

understand also how society sees scientific disciplines from the outside. In her 

physics textbook analysis, she started evaluating the coherence of choices with the 

authors’ explicit aims (she says, “as authors promised”), and some generic visual 

criteria like “shortness, lightness, slenderness, clarity of images”. All along the 

paragraph she stressed mainly the lack of rationality and explanations/motivations, 

with long and detailed arguments based on previous knowledge and considering 

possible student’s point of view. She seems aware of the undertaken evaluating 

process (she often said, “[here] I point out/do not point out”), but not of her 

disciplinary point of view: indeed, she said, for example “It would have been more 

rational [first to have a general case and then particular cases because] they would 

have been reunited under a general theory”, where she opposed a deductive approach 

as “more rational” to an inductive one. Furthermore, even if she also identified 

strengths, she did not motivate them in terms of the epistemic core of either physics 

or mathematics; for example, she said, “from this choice, it is easy for students to 

mistake of thinking that some physical laws are valid only in a specific case and not 

in others” and “without this concept to have been ever defined”. 
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S3 

FRA report 

Contrary to what is seen in advanced university courses 

in mathematics, in high school I always saw the latter as a 

subject completely different from any other, being then 

almost essentially practical. […] Mathematics is, on the 

other hand, exercises on exercises, a small theoretical 

introduction, and then again exercises on exercises. 

Personally, I think I did 20% of theory and 80% of 

exercises in the whole period of high school. 

First a personal generic differentiation 

between mathematics and physics 

without traces of resemblances 

(“completely different”), based on a 

type of knowledge. Then a definitory 

identification based on stereotyped 

scholastic practices and his scholastic 

experience. Disciplines looked only as 

school subjects. 

The similarity with a subject such as physics is almost 

evident: formulas and problems. However, physics on its 

part sees a more historical approach than mathematics. 

[…] Unlike mathematics, however, the theoretical part of 

the subject appears much more present in physics (always 

in secondary school). The concept of proof was often 

associated, by any high school student who had not 

privately explored mathematics, with the physical realm. 

The structure of the verifications was perhaps the 

accomplice of this: many times, requests for proofs in 

physics appeared, seldom in mathematics. 

Resemblance with physics rather 

stereotyped, based on scholastic 

knowledge and practices. Blurred 

attempts of reflection on differentiation 

based on epistemic aspects like 

knowledge and practice, but with 

disciplines looked only as school 

subjects. 

I can summarize one last huge difference between 

mathematics and other subjects in the following sentence: 

the exception proves the rule, except in mathematics. 

Hyperbolical and stereotyped 

differentiating identification of 

different methods between mathematics 

and other subjects. 

 

Homework 

Reading the proposed discussion, we are more likely to 

agree with Amina, noting how important the context in 

which these images are placed is for us too, to feel 

confident in affirming whether or not they are parabolas. 

Aware identification of the need of the 

context to reassure and “feel confident” 

in definitory classifying objects, 

referred to personal reasoning and not a 

specific discipline. 

In class, we had thought of ‘excluding’ those that in our 

opinion were not parabolas (or not necessarily at least) by 

intervening on the drawings both manually and with 

GeoGebra […] For the fourth slide [I thought] to trace 

function profiles with GeoGebra that resemble that of the 

parabola. 

Classification of curves is blurred (“not 

necessarily”, “resemble”). 

Contextualizing can convince students 

about the “truth” behind the drawings: 

implicit identification of values and 

features of mathematical knowledge. 
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Table 3: On the left are the original excerpts by S3, and on the right is our analysis. 

In the questionnaire, he declared he had never reflected on the topic before. He was 

impressed by the epistemic core of the disciplines, which considered something that 

students should learn from the very beginning because what appears simple and basic 

could be not so solid. He did not understand well the difference between 

characterizing and defining sciences, referring explicitly to the example of the 

mathematical definition of continuous functions, where defining is characterizing and 

vice versa. In his textbook analysis, he deemed each of the rational dimensions 

separately, starting with quantitative utterances about how much each rational 

dimension is in the excerpt. Through qualifying adjectives, he referred to generic and 

stereotyped values or practices, such as “explanations are simple and immediate”, 

also with negative and comparative forms, like “choices do not seem unusual” and 

“to be more precise, it would have been more correct to write […] (domain, 

limitedness and compactness change)”, even if the comparison (mathematical) term 

remains implicit. He also pointed out that “the setting is well-represented” and “even 

if the thesis is missed”, which refers, again implicitly, to the mathematical practice of 

building a hypothetical deductive system. 

DISCUSSION AND CONCLUSIONS 

We observed three different cases during the same teaching sequence in the same 

context: S1 seemed to develop more personal reflections about mathematics and 

interdisciplinarity, S2 seemed to reinforce some views of mathematics but did not 

elaborate on her previous knowledge, while S3 seemed to refer only to school 

practices and not to deepen into epistemic issues. During our sequence, the FRA 

report fostered mainly an identification mechanism, as could have been expected 

from the questions, leading to characterize mathematics and physics as disciplines, 

but also as school subjects, as in the case of S3. This process did not always involve 

all the aspects of the epistemic core, was not always non-definitory and aware, and 

often led to explaining more differences, rather than resemblances. The homework, 

asking them to take a stand and being formulated in an interdisciplinary way, led to 

more aware observations, and made new epistemic aspects being mentioned, 

sometimes not so consistently with their declared view of the disciplines. Only in the 

case of S1 did our sequence seem to trigger a learning process at the boundary, 

blurring general and external sentences into more personal and contingent with the 

materials, supported both by the FRA and rationality. What we find particularly 

interesting is the fact that during the physics textbook analysis they seemed to use 

mathematical values to look at the presentation, up to questioning it openly, as in the 

case of S1. All of them seemed unconscious that they were referring implicitly to 

personal mathematical standards, which they assumed and defended as absolute and 

correct also analyzing a physics textbook. In conclusion, we provide preliminary 

answers to our question: from our analysis, it seems to emerge that some students 

grasped important epistemic aspects that we identified as learning potentials, but this 

did not work for all the students (see S3). The task of characterizing might foster 
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itself mainly identification, and more rarely reflection and coordination. However, 

only in the case of S1, it seemed to occur a learning process at the boundary, 

triggered using both the FRA and rationality: indeed, S1 (critically) analyzed the 

textbook by questioning it openly, showing a more personal approach than the initial 

one, even if partially implicit and unaware. The overall weak awareness of the 

disciplinary point of view could be due to the homogeneity of the population’s 

bachelors. To discuss this hypothesis, data from two other contexts, one national 

(Bologna, physics education course) and one international (summer school of the 

European project IDENTITIES, https://identitiesproject.eu), where the population 

was composed of secondary prospective teachers with a bachelor in mathematics or 

physics, are being analyzed, but we conjecture that this heterogeneous context could 

have led them to develop more “disciplinary awareness” and deeper reflections. 

These data might suggest a need for further reflections concerning a characterization 

of rationality in terms of disciplines. We will carry out further studies to check how 

these results are significant and generalizable, and how we can improve our teaching 

sequence to make it effective for most preservice teachers. 
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Many engineering students find university mathematics courses challenging and tend 

to adopt an instrumental approach to their studies. One of the difficulties pertains to 

students’ inability to relate new material to their existing knowledge and skills. We 

employ anthropological theory of the didactic and the construct of the concept image 

for the analysis of two institutional praxeologies in Calculus and Differential 

Equations indicating potential conflict factors in students’ understanding of the 

concept of an exact differential equation. 
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INTRODUCTION  

Engineering plays a significant role in the modern society; the demand for engineers 

with better interdisciplinary and specialist skills is continuously increasing (Kent & 

Nossum, 2003). Future engineers need a wide spectrum of mathematical competencies 

and should comfortably use mathematics as a medium for communicating and 

developing ideas and concepts – “we need engineers who are at ease with it 

[mathematics] and who can take advantage of new ideas and use them appropriately 

even if they are expressed using advanced mathematics” (Blockley & Woodman 2002, 

p. 15). However, educational research acknowledges difficulties with students’ 

conceptual understanding of mathematical disciplines which are often viewed as 

obstacles on the way to the engineering degree (Ditcher, 2001; Harris et al., 2015). 

University courses on differential equations (DEs) are included in most engineering 

programmes, but related educational research is scarce, with “fewer than two dozen 

empirical studies published in top journals [in mathematics education]”, which is quite 

surprising “given the centrality of differential equations (DEs) in the undergraduate 

curriculum, as well as the move away from a “cookbook” course to one that emphasizes 

modelling, qualitative, graphical and numerical methods of analysis” (Rasmussen & 

Wawro, 2017, p. 555). Exact differential equations (EDEs) is a classical topic; it is 

present in all traditional DEs courses and connects to many important concepts and 

methods in mathematics and physics including, for instance, integration of first-order 

linear DEs with variable coefficients, integrating factors, and first integrals. 

Rezvanifard et al. (2022) discussed difficulties with the learning of EDEs and a positive 

impact of a puzzle-based learning on students’ conceptual understanding of this topic.  
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Recently, anthropological theory of the didactic (ATD) was employed by González-

Martín and Hernandes-Gomes (2018, 2019) to analyse differences in mathematics and 

engineering courses. Hochmuth and Peters (2021) combined ATD with Weber’s 

construct of ideal type to address variations in institutional praxeologies and individual 

student work in mathematics and engineering discourses. In this paper, we combine 

ATD (Chevallard, 2019) with the constructs of concept definition and concept image 

(Tall & Vinner, 1981) to explore potential conflict factors in the learning and teaching 

of EDEs. In contrast with the previous research on engineering education employing 

ATD, both institutional praxeologies in our case are within mathematics domain. 

THEORETICAL FRAMEWORK / METHODOLOGY   

The anthropological theory of the didactic  

ATD furnishes an epistemological framework to describe mathematical knowledge as 

a human activity. A didactic system 𝑆(𝑋, 𝑌, 𝑘) includes a class of students 𝑋, a team of 

teachers 𝑌, and a piece of knowledge 𝑘 from a body of knowledge 𝐾 (a discipline 𝐷), 

in our case, mathematics. The theory of didactic transposition raises “the question of 

the precise nature of the piece of knowledge 𝑘 which is the “didactic stake” – the thing 

to be taught and learned – in 𝑆(𝑋, 𝑌, 𝑘)” (Chevallard, 2019, p. 72). Importantly, this 

theory views knowledge as “a changing reality, which adapts to its institutional habitat 

where it occupies a more or less narrow niche” (Chevallard, 2007, p. 132). 

ATD “hinges on an essential and founding notion: that of praxeology” posing that “all 

“knowledge” can be modelled in terms of praxeologies” (Chevallard et al., 2016, pp. 

2615-6) used as building blocks for didactic systems. A praxeology consists of a task 

𝑇, a technique 𝜏 (tau), a technology 𝜃 (theta), and a theory 𝛩 (big theta). In ATD, the 

task 𝑇 is performed using the technique 𝜏. The technology 𝜃  is “a way of explaining 

and justifying or even of “designing” the aforesaid technique 𝜏.” The theory 𝛩 “should 

explain, justify, or generate whatever part of technology 𝜃 may sound unobvious or 

missing” (Chevallard & Sensevy, 2014, p. 40). A praxeology is construed as the union 

of two “blocks,” the praxis part 𝛱 = [𝑇/𝜏] and the logos part Λ=[Ξ/θ]. Notably, “it is 

the theoretical block that makes it possible to preserve the activity as a practice and 

communicate it to others, so that they, too, can participate in it” (Hardy, 2009, p. 344). 

Didactic systems live in institutions understood as “any created reality of which people 

can be members” (Chevallard & Bosch, 2019, p. xxxi). For example, “a class, with its 

students and teachers, is an institution” (Chevallard & Sensevy, 2014, p. 2615). 

Institutional approaches significantly impact student inducting into mathematical 

practices (Hardy, 2009; Winsløw et al., 2014). Furthermore,  

It often happens that an object O lives permanently in an institution J and remains lengthily 

ignored by another institution I not unconnected with J, while being simultaneously 

unknown to the overwhelming majority of the persons subjected to I. … Consequently, for 

many teachers “the notion that inhabits “my” institution is exactly what this notion is, so 

that I can ignore all other institutions’ definitions of it.” (Chevallard, 2019, pp. 82-83) 
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To tackle this problem, it is important to compare the description of praxeologies for 

the same object adopted by different institutions.  

An institutional reference model of praxeologies involving a mathematical notion can be 

built to describe the practices and knowledge that an institution aims for students to develop 

– with interconnections between subjects, themes, sectors and domains related to the notion 

in question. (Winslow et al., 2014, p. 103) 

Concept definition and concept image  

One of the learning difficulties acknowledged by ATD stems from “a universal belief 

that any notion has a unique definition, independent of the institution that uses it” 

(Chevallard, 2019, p. 82). Introducing the constructs of concept definition and concept 

image, Tall and Vinner (1981) also recognised that this expectation is not justified.  

Compared with other fields of human endeavor, mathematics is usually regarded as a 

subject of great precision in which concepts can be defined accurately to provide a firm 

foundation for the mathematical theory. The psychological realities are somewhat 

different. Many concepts we meet in mathematics have been encountered in some form or 

other before they are formally defined and a complex cognitive structure exists in the mind 

of every individual, yielding variety of personal mental images when a concept is evoked. 

(p. 151).  

The concept definition is usually regarded as a description of the mathematical notion 

accepted by the professional community, and this is what mathematics teachers strive 

to teach to students. However, “for each individual a concept definition generates its 

own concept image” (Tall & Vinner, 1981, pp.152-153) understood as “the total 

cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes.” The concept image “is built up over 

the years through experiences of all kinds, changing as the individual meets new stimuli 

and matures.” Distinct parts of the concept image, termed evoked concept images, can 

be activated at particular times, including images that may appear conflicting – “if 

“conflicting” parts of the concept image are called at the same time then a sense of 

confusion, or conflict may appear.” In this case, a potential conflict factor is defined as 

“a part of the concept image or concept definition which may conflict with another part 

of the concept image or concept definition” (Tall & Vinner, 1981, pp.152-153). “The 

pre-eminence of the concept image is clear when it is time to act or to solve a concrete 

problem” (Gascón, 2003, p. 47); it often replaces the concept definition. 

In general, it is postulated that in informal learning of concepts (which is the most 

common), the concept image is utilised instead of the concept definition and also when the 

concept definition has been constructed (parting from the terms of the definitions, if these 

have already been introduced), this will tend to stay inactive in the mind of the person and 

may even be forgotten. (Gascón, 2003, p. 47) 

The construct of concept image complements ATD in our analysis. ATD acknowledges 

possibilities for different institutional praxeologies built for the same mathematical 
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concept and the concept image framework supports the evolution of concepts within 

institutions that creates potential conflict factors. Combining ATD with the concept 

image paradigm, we address “the challenge of empowering students with autonomy 

and insight into the raisons d’être and rationales of such [mathematical] work” 

(Winslow et al., 2014, p. 100). Focusing on praxeologies rooted in two mathematical 

institutions, a Calculus (C) class, and a Differential Equations (DE) class, we analyse 

two approaches to the concept of an EDE.  

The research question addressed in this paper is: What similarities and distinctions 

characterising C- and DE- praxeologies create potential conflict factors?  

TWO INSTITUTIONAL VIEWS OF EXACT DIFFERENTIAL EQUATIONS 

Multiple mathematical organisations in the engineering curriculum 

We explore mathematical organisations MO1 and MO2 in two courses, Mathematics 

2, and Mathematics for Mechatronics. Mathematics 2 is taught to first-year engineering 

students and is based on the text by Adams and Essex (2018). The module includes, 

among other topics, functions of several variables, vector calculus, and line integrals 

of vector fields. Mathematics for Mechatronics uses the textbook by Boyce and 

DiPrima (2013) and is taught in the first semester of a master’s program. The course 

focuses on the methods for the solution and analysis of DEs, stability, and applications. 

Vignette MO1 Conservative vector fields in Calculus (Adams & Essex, 2018, pp. 874-

880). A vector field �⃗�(𝑥, 𝑦) in two dimensions defined by  

 �⃗�(𝑥, 𝑦) = 𝐹1(𝑥, 𝑦)𝑖 + 𝐹2(𝑥, 𝑦)𝑗 = ∇𝜑(𝑥, 𝑦) =
𝜕𝜑

𝜕𝑥
𝑖 +

𝜕𝜑

𝜕𝑦
𝑗  

is called conservative, and the function 𝜑(𝑥, 𝑦) is called a (scalar) potential of �⃗�.  

The equation 𝐹1(𝑥, 𝑦)𝑑𝑥 + 𝐹2(𝑥, 𝑦)𝑑𝑦 = 0 is called an exact differential equation if 

its left-hand side is the differential of a scalar function 𝜑(𝑥, 𝑦).   

A necessary condition for a conservative vector field. If �⃗�(𝑥, 𝑦) = 𝐹1(𝑥, 𝑦)𝑖 +
𝐹2(𝑥, 𝑦)𝑗  is a conservative vector field in a domain 𝐷 of the 𝑥𝑦-plane, then 

𝜕

𝜕𝑦
𝐹1(𝑥, 𝑦) =

𝜕

𝜕𝑥
𝐹2(𝑥, 𝑦)   in 𝐷. 

If 𝜑(𝑥, 𝑦)  is a potential function for a conservative field �⃗�(𝑥, 𝑦), the level curves 

𝜑(𝑥, 𝑦) = 𝐶 of  𝜑(𝑥, 𝑦)  are called equipotential curves of �⃗�(𝑥, 𝑦).  

Example 1 (Adams and Essex, 2018, p. 877). Show that the vector field �⃗�(𝑥, 𝑦) =
𝑥𝑖 − 𝑦𝑗  is conservative, find a potential function and describe the equipotential curves. 

Solution Since 
𝜕

𝜕𝑦
𝐹1(𝑥, 𝑦) = 0 =

𝜕

𝜕𝑥
𝐹2(𝑥, 𝑦) in 𝑅2, �⃗� is conservative. For any 

potential function 𝜑(𝑥, 𝑦), one should have 
𝜕𝜑

𝜕𝑥
= 𝐹1(𝑥, 𝑦) = 𝑥  and 

𝜕𝜑

𝜕𝑦
= 𝐹2(𝑥, 𝑦) =
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−𝑦.  Integrating  
𝜕𝜑

𝜕𝑥
= 𝐹1(𝑥, 𝑦) = 𝑥  with respect to 𝑥, we obtain 𝜑(𝑥, 𝑦) = ∫ 𝑥𝑑𝑥 =

1

2
𝑥2 + 𝐶1(𝑦),  where the “constant” of integration can depend on the variable 𝑦. Using 

𝜕𝜑

𝜕𝑦
= 𝐹2(𝑥, 𝑦) = −𝑦,   taking the derivative 

𝜕𝜑

𝜕𝑦
=

𝜕

𝜕𝑦
(

1

2
𝑥2 + 𝐶1(𝑦)) = 𝐶′1(𝑦) and 

equating it to −𝑦, we deduce that 𝐶1(𝑦) = −
1

2
𝑦2 + 𝐶2 . Therefore, for any constant 𝐶2,

𝜑(𝑥, 𝑦) =
𝑥2−𝑦2

2
+ 𝐶2  is a potential function for a vector field �⃗�(𝑥, 𝑦). Equipotential 

curves defined by  𝑥2 − 𝑦2 = 𝐶 represent a family of rectangular hyperbolas.  

Remark 1 A necessary condition is not formulated as a theorem and no proof is 

provided. However, restrictions on the topology of the domain are mentioned warning 

that a vector field may not be conservative in a domain that has holes (Adams & Essex, 

2018, p. 879). The following example is provided as an illustration of this possibility.  

Example 2 (Adams and Essex, 2018, p. 879-880). Verify that a vector field �⃗�(𝑥, 𝑦)  

defined for (𝑥, 𝑦) ≠ (0,0) by �⃗�(𝑥, 𝑦) = (
−𝑦

𝑥2+𝑦2) 𝑖 + (
𝑥

𝑥2+𝑦2) 𝑗  is not conservative on 

the whole real plane including the origin. 

Vignette MO2 EDE in Differential Equations (Boyce & DiPrima, 2013, pp. 95-100). 

Given a DE 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ = 0,  suppose that we can identify a function ᴪ(𝑥, 𝑦), 

such that 
𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 𝑀(𝑥, 𝑦),   

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = 𝑁(𝑥, 𝑦),   and such that ᴪ(𝑥, 𝑦) = 𝑐  

defines 𝑦 = 𝜑(𝑥) implicitly as a differentiable function of 𝑥. Then  

𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ =
𝜕ᴪ

𝜕𝑥
+

𝜕ᴪ

𝜕𝑦

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
ᴪ[𝑥, 𝜑(𝑥)], 

and the DE assumes the form 
𝑑

𝑑𝑥
ᴪ[𝑥, 𝜑(𝑥)] = 0. In this case, the DE 𝑀(𝑥, 𝑦) +

𝑁(𝑥, 𝑦)𝑦′ = 0 is said to be an exact differential equation. Solutions are given 

implicitly by the equation ᴪ(𝑥, 𝑦) = 𝑐,   where 𝑐 is an arbitrary constant.  

Example 3 (Boyce & DiPrima, 2013, pp. 95). Solve the DE 2𝑥 + 𝑦2 + 2𝑥𝑦𝑦′ = 0. 

Solution One can guess that the function ᴪ(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦2 has the property that 

𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 2𝑥 + 𝑦2 = 𝑀(𝑥, 𝑦),    

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = 2𝑥𝑦 = 𝑁(𝑥, 𝑦), 

and the given DE can be written as 

𝜕ᴪ

𝜕𝑥
+

𝜕ᴪ

𝜕𝑦

𝑑𝑦

𝑑𝑥
= 0,     or    

𝑑

𝑑𝑥
ᴪ(𝑥, 𝑦) =

𝑑

𝑑𝑥
ᴪ(𝑥2 + 𝑥𝑦2) = 0. 

Thus, solutions to this equation are defined implicitly by ᴪ(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦2 = 𝑐.    

Theorem 1 (Boyce & DiPrima, 2013, p. 96). Let the functions 𝑀, 𝑁, 𝑀𝑦 and 𝑁𝑥  where 

subscripts denote partial derivatives, be continuous in the rectangular region 𝑅:  𝛼 <
𝑥 < 𝛽, 𝛾 < 𝑦 < 𝛿. Then the equation 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ = 0 is an exact differential 
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equation in 𝑅 if and only if 𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦) at each point of 𝑅. That is, there exists 

a function ᴪ satisfying the equations ᴪ𝑥(𝑥, 𝑦) = 𝑀(𝑥, 𝑦), ᴪ𝑦(𝑥, 𝑦) = 𝑁(𝑥, 𝑦), if and 

only if 𝑀 and 𝑁 satisfy the equation 𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦). 

Remark 2 The necessity part of the proof (Boyce & DiPrima, 2013, pp. 96-98) is 

constructive; it provides a method for finding the function ᴪ(𝑥, 𝑦).  A footnote to the 

theorem explains that the region may not necessarily be rectangular, but should be 

simply connected (that is, with no holes in its interior).  

Example 4 (Boyce & DiPrima, 2013, pp. 98). Solve the DE (𝑦cos𝑥 + 2𝑥𝑒𝑥) +
(sin𝑥 + 𝑥2𝑒𝑦 − 1)𝑦′ = 0. 

Solution Observe that 𝑀𝑦(𝑥, 𝑦) = cos𝑥 + 2𝑥𝑒𝑦 = 𝑁𝑥(𝑥, 𝑦), so the given equation is 

exact, and there should exist a function ᴪ(𝑥, 𝑦) such that  

𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 𝑦cos𝑥 + 2𝑥𝑒𝑥 = 𝑀(𝑥, 𝑦),

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = sin𝑥 + 𝑥2𝑒𝑦 − 1 = 𝑁(𝑥, 𝑦). 

Integrating the first equation, one has  ᴪ(𝑥, 𝑦) = 𝑦sin𝑥 + 𝑥2𝑒𝑦 + ℎ(𝑦). 
Differentiation of the latter equation yields sin𝑥 + 𝑥2𝑒𝑦 + ℎ′(𝑦) = sin𝑥 + 𝑥2𝑒𝑦 − 1,     
or ℎ′(𝑦) = −1, ℎ(𝑦) = −𝑦. Then  ᴪ(𝑥, 𝑦) = 𝑦sin𝑥 + 𝑥2𝑒𝑦 − 𝑦, and solutions are 

defined implicitly by the equation 𝑦sin𝑥 + 𝑥2𝑒𝑦 − 𝑦 = 𝑐. 

Praxeological analysis  

Vignette MO1 Goal: Calculate the potential of a conservative vector field.  

Raison d’être: demonstrate independence of a line integral of a conservative vector 

field on a path and use it for finding the potential and describing equipotential curves.  

Steps in the concept definition for EDE in MO1.  

1) Using the gradient of a scalar field, define a conservative vector field and its 

potential. 

2) Using the differential of a scalar field, define an EDE in the 3D-space. 

3) Provide necessary conditions for a conservative vector in 2D and 3D-spaces.  

4) Define solutions of an EDE as equipotential curves. 

5) Use the procedure of partial integration to find the potential. 

6) Write the answer in the form of equipotential curves. 

Vignette MO2 Goal: Develop an integration method for solving an EDE.  

Raison d’être: use the total derivative for developing the integrating factor technique 

for solving first-order linear DEs and obtaining first integrals.  

Steps in the concept definition for EDE in MO2.  

1) Solve an EDE in Example 3 by rewriting its left-hand side as a total derivative.  

2) Define solutions implicitly by an algebraic equation 𝜓(𝑥, 𝑦) = 𝑐 and interpret 

the level curves of 𝜓(𝑥, 𝑦) = as integral curves of the given DE. 
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3) Consider the general case of EDEs and give the formal definition.  

4) Formulate necessary and sufficient condition for a DE to be exact (Theorem 1).  

5) Prove Theorem 1. 

6) Use the constructive procedure in the necessity part of Theorem 1 to develop a 

solution guideline. 

7) Solve an EDE in Example 4 using the procedure developed in step 6) obtaining 

solutions defined implicitly by an algebraic equation. 

Both the object, an EDE, and the technique (solution method) are similar in MO1 and 

MO2, but the concept definitions differ. We argue that the concept images for EDE 

induced by two mathematical organisations are even more distinct. This signals 

possible conflict situations when students do not see important connections between 

mathematical notions and ideas. Note that the praxis parts in both mathematical 

organisations are well defined,  𝛱1 = [𝑇1/𝜏1, 𝜏2]  and 𝛱2 = [𝑇2/𝜏3, 𝜏2]. Partial 

integration technique 𝜏2 is exactly the same in both praxeologies, with minor variations 

in explanations. The technologies 𝜃1, 𝜃2 and 𝜃3 used in the two logos blocks for MO1 

and MO2 justify the same mathematical procedure differently. This is due to the fact 

that MO1 only postulates a necessary condition for conservative vector fields without 

proving it and the solution method is introduced in Example 1, whereas Theorem 1 in 

MO2 furnishes both the exactness test and the justification for the solution method 

through a constructive proof.  Finally, we observe that both logos blocks are incomplete 

and the theory 𝛩 is missing in logos parts, 𝛬1 = [∅/𝜃1, 𝜃2]  and 𝛬2 = [∅/𝜃3]. 
Therefore, the search for the theory takes us beyond these two mathematical 

organisations. Two theoretical results that can be used to fill in the gaps follow. 

Theorem 3 (vector fields; Protter & Morrey, 2012, p. 478). Suppose that �⃗� is a 

continuously differentiable vector field with curl �⃗� = 0⃗⃗ in some rectangular 

parallelepiped 𝐷 in space. Then there exists a continuously differentiable scalar field 𝑓 

in 𝐷 such that ∇𝑓 = �⃗�.  Any two such fields differ by a constant. 

Theorem 4 (mixed partials; Young, 1908-09, pp. 163-164). Suppose 𝑓(𝑥, 𝑦) is defined 

in a neighborhood of a point (𝑎, 𝑏). Suppose the partial derivatives 𝑓𝑥, 𝑓𝑦 are defined 

in a neighborhood of (𝑎, 𝑏) and are differentiable at (𝑎, 𝑏). Then(𝑓𝑥)𝑦(𝑎, 𝑏) =

(𝑓𝑦)𝑥(𝑎, 𝑏), sometimes stated as 𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏). 

An elegant example due to Peano illustrates that Theorem 4 does not provide a 

sufficient condition (cf. Example 2).  

Example 5 (Apostol, 1965, p. 358). Second-order mixed partial derivatives of the 

function 𝑓(𝑥, 𝑦) = {
𝑥𝑦(𝑥2−𝑦2)

𝑥2+𝑦2
, (𝑥, 𝑦) ≠ (0,0),

0, (𝑥, 𝑦) = (0,0),
 are distinct, that is, 𝑓𝑦𝑥(0,0) = 1,

𝑓𝑥𝑦(0,0) = −1. 

We summarise our praxeological analysis in the following table. 
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 Task, 𝑇 Technique, 𝜏 Technology, 𝜃 Theory, 𝛩 

MO1 Find a poten-

tial of a con-

servative 

vector field 

𝑇1. 

Test for con-

servative vector 

fields 𝜏1.  

Partial integra-

tion 𝜏2. 

Necessary condition 𝜃1 

for conservative fields 

without proof. 

Partial integration proce-

dure 𝜃2 introduced in Ex-

ample 1. 

Theorem 3 

MO2 Solve an ex-

act DE 𝑇2. 
Exactness test 𝜏3.  

Partial integra-

tion 𝜏2. 

The exactness test and 

partial integration proce-

dure 𝜃3  in a constructive 

proof of Theorem 1. 

Theorem 4 

Table 1: Praxeologies associated with mathematical organisations MO1 and MO2 

CONCLUSIONS 

Both praxeologies serve their goals but praxeological analysis reveals two main 

reasons generating conflicting parts of the concept image. Firstly, the technique of 

partial integration 𝜏2 in both mathematical organisations is the same, but technologies 

𝜃1 and 𝜃2 justify the same solution method differently. Secondly, since the theory 𝜃 is 

missing in both mathematical organisations, the technology lacks justification. It is 

known that incomplete logos part makes the preservation and communication of the 

practice difficult (Hardy, 2009). Our list of potential conflict factors in the definition 

of an EDE in MO1 and MO2 includes four contrasting items. 

1) Defining an EDE, a DE-praxeology uses a derivative form under a default 

assumption that 𝑦 = 𝑦(𝑥). A C-praxeology uses a more flexible differential form 

where any of two variables can be viewed as independent. 

2) Solution of an EDE in a DE-praxeology is viewed as an implicitly defined function 

describing all solutions (integral curves). A C-praxeology defines them as equipotential 

surfaces or curves.  

3) An EDE is considered in a rectangular domain in a DE-praxeology, but it is 

mentioned that the region has to be simply connected. A C-praxeology emphasises that 

the existence of a potential for a vector field depends both on the topology of the 

domain of the field and on the structure of the components of the field itself. 

4) A DE-praxeology does not consider extensions to higher dimensions at all. A C-

praxeology allows an easy extension of the notion an EDE and the formulation of an 

exactness test to a 3D case (thanks to differential form used for a DE).  

These potential conflict factors induced by two institutional praxeologies may lead to 

significant variations in the construction and evolution of students’ own concept 

images for an EDE. Gascón (2003) pointed out that students often use the concept 

image instead of the concept definition; the latter tends to stay inactive and may be 
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even forgotten. It is likely that students’ individual concept images of an EDE formed 

in a Calculus course will refer to one or more of the following: (i) conservative vector 

fields, potentials, and equipotential curves and surfaces, (ii) equal roles played by both 

variables and easy extension to higher dimensions, (iii) topological restrictions on the 

domain and components of a vector field. When students meet an EDE once again in 

an MS course on DEs, they may not recognise it because of quite significant differences 

in the two logos blocks 𝛬1 = [∅/𝜃1, 𝜃2]  and 𝛬2 = [∅/𝜃3].  

The increasing demands for advanced mathematical thinking of engineering graduates 

require both the high-quality teaching and agreement between mathematics disciplines 

in the study curricula. This paper exposes hidden conflict factors in learning differential 

equations pointing toward the need for the harmonisation of mathematics courses in 

engineering programmes. We hope that our contribution will stimulate further interest 

of mathematicians and mathematics education researchers to this important issue.  
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Mathematics students’ self-reported learning experiences in a 
challenge-based course 
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In this paper, we report on a study of 'students' learning experiences' in the context of 
challenge-based education in a higher education mathematics course. Using a case 
study approach, we investigated (1) how students perceive the role of the existing 
resources to help them solve their challenges during a one-week challenge-based 
course; and (2) how students experienced their learning in terms of mathematics and 
professional skills. Results point to (1) the crucial importance of human resources (e.g. 
problem owner) for such learning environments to link the mathematics to an authentic 
situation and develop the skills of an ‘applied mathematician in the real world’, and 
(2) a deeper understanding of appropriate methodological tools and their use for 
researching the concept of ‘student learning experiences’ in mathematics education.  
Keywords: University engineering education, challenge-based education, innovative 
course, resources, students’ learning experiences. 
INTRODUCTION AND BACKGROUND 
There are concerns in society, business, and industry that presently university 
engineering education does not sufficiently prepare students for the challenges of this 
century (e.g., societal problems, global warming, and sustainability), as indicated by 
the National Academy of Engineering (2018). In this context, an increasing number of 
universities are developing and implementing educational approaches that move from 
traditional teacher-centered teaching and learning processes to student-centered 
approaches (van Uum & Pepin, 2022). This shift, in turn, is related to forms of 
engineering education that become more relevant by contributing to the solution of 
societal problems through collaboration between industry and universities. One of 
these approaches is Challenge-based Education (CBE), which seeks to promote in 
students both the acquisition and production of disciplinary knowledge and the 
development of professional competencies (e.g., problem resolution, design capacity, 
ethical awareness, and multidisciplinary collaborative work). In this paper, we use the 
term CBE to include both learning and teaching processes. In CBE, students develop 
their knowledge and competences by collaboration on the solution of real-life problems 
derived from ‘grand challenges’ in society, often in a multidisciplinary setting. 
However, there are still several challenges in implementing CBE at the higher 
education level (Gallagher & Savage, 2020), in particular for fundamental disciplines 
such as mathematics and physics. In the case of mathematics, research is needed to 
understand what and how students can learn in line with a CBE approach and how they 
can be supported in their learning. Thus, we set out to understand students learning 
experiences in CBE, that is, to investigate the needs and benefits of this approach from 
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the students’ perspective. For this, we carried out a case study in a Dutch university of 
technology with the aim to develop a deeper understanding of students' perceived 
learning experiences in an innovative master's course in mathematics: the modelling 
week. We are interested, in this paper, in (1) students' use and integration of resources 
when facing real-world problems and working with problem-owners from business and 
industry; (2) how students perceive their learning in such CBE environments. On the 
use of resources, we draw on the Instrumental Approach (Rabardel & Bourmaud, 2003; 
Trouche, 2004) to analyse students' learning through their interaction with different 
resources (Gueudet & Pepin, 2018; Pepin & Kock, 2019), particularly “when the 
curriculum changes from a teacher-centred to a student-centred one” (Pepin & Kock, 
2021, p. 325). We ask the following research questions: 
RQ1: How did students perceive the role of existing resources to help them solve their 
challenge during a one-week challenge-based mathematics course? 
RQ2: How did students experience their learning in terms of mathematics and 
professional skills? 
THEORETICAL FRAMEWORK 
Challenge-based Education 
In the transition to student-centred education, different approaches have been 
developed under the umbrella of inquiry-based education (Martin et al., 2007). One of 
these is CBE. Malmqvist et al. (2015) define learning experiences in CBE (by them 
termed challenge-based learning) as:  

A challenge-based learning experience is a learning experience where the learning takes 
places through the identification, analysis and design of a solution to a sociotechnical 
problem. The learning experience is typically multidisciplinary, takes place in an 
international context and aims to find a collaboratively developed solution, which is 
environmentally, socially and economically sustainable. (p. 87)  

These authors add that problems in the context of CBE involve a greater challenge and 
complexity than those structured, for example, in problem-based learning. Challenges 
in CBE are linked to social challenges and often involve large open-ended problems 
(e.g., global warming), in which students have to define their distinctive challenge that 
they want to solve; this means that students experience greater uncertainty. Moreover, 
CBE challenges are inherently multidisciplinary. However, no agreed upon definition 
of CBE exists (Gallagher & Savage, 2020). Rather, a CBE learning environment may 
be compared to a range of criteria that it fulfills to a greater or lesser extent. The 
characteristics of a particular learning environment should then be considered 
holistically when determining whether it may be described as CBE (van den Beemt et 
al., 2022). For this reason also monodisciplinary courses or couses in a non-
international context could, depending on their other characteristics, still be considered 
as CBE.      
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CBE is claimed to be motivating for students, because of the real-world character and 
the relevance of the challenges. Through CBE, it is said, students acquire and develop 
disciplinary knowledge, transversal competences while interacting and collaborating 
with multi-stakeholders (Gallagher & Savage, 2020; Membrillo-Hernández et al., 
2019). Two relevant aspects of CBE are the definition of the problem, and the design 
and implementation of prototype solutions.  
Additionally, we also consider it necessary to extend the definition of CBL-experience 
given by Malmqvist et al. (2015) by first pointing out what is meant by 'learning 
experience' and considering the different ways in which students are affected (e.g., 
depending on the communication with academic supervisors and other students) and 
what feelings they expressed (e.g., frustration, liking, interest in the activity) during the 
solution of a problem in the context of CBE. Thus, to consider the different facets of 
and agents in student learning experiences, we propose a first conceptualisation of 
'mathematics students' learning experience' as the conjunction of two processes: A 
process of being affected and getting knowledge or skills (e.g., from tutors) from doing, 
seeing, or feeling things depending on learning goals; and a process of developing and 
applying knowledge or skills through the use of resources and different forms of 
collaboration.  
The lens of resources 
This study draws on the Instrumental Approach (Rabardel & Bourmaud, 2003; 
Trouche, 2004), to address the question of student learning experiences and 
development of competencies in CBE when they use different types of resources while 
solving problems. For engineering students in applied mathematics, we assume that the 
development of competencies is related to students' strategies when orchestrating and 
integrating different types of resources. This integration involves two processes: (1) 
instrumentation, where the affordances of resources influence student practice and 
knowledge; and (2) instrumentalization, where students adapt the resources to their 
own needs. In this way, this study draws on the categories of resources as outlined by 
Pepin and Kock (2021): curriculum resources (e.g., textbooks, teacher curricular 
guidelines, worksheets), social and cultural resources (e.g., conversations with tutors, 
peers, and friends), cognitive resources (e.g., concepts and techniques), and general 
resources (e.g., software, internet, and other digital resources).  
THE STUDY 
A case study approach (Cohen et al., 2007) has been used for this study, where the unit 
of analysis is the case of the modelling week in the mathematics department.  
The context: University and modelling week 
The study took place at a Dutch technical university that offers different educational 
programs in science, core engineering studies and social engineering studies. As part 
of its educational vision towards 2030, this university is in the process of shifting 
towards a student-centred education following the CBE approach as one of its main 
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educational strategies. Through this strategy, the institution seeks for the future 
engineers to have a deep understanding of their discipline and to be able to work 
collaboratively in real world complex situations in multidisciplinary settings. 
The study participants took part in a ‘modelling week’ for first year master’s students, 
which is part of a compulsory course in the Applied Mathematics Master's program. 
The ‘modelling week’ allowed students to work for a week on problems designed by 
stakeholders from outside the university (problem owners hereafter); these came from 
regional businesses and industry. The whole course consisted of three moments: (1) 
Kick-off, where information about the course was given by the problem owners and 
the creation of different teams (by the course leaders and university tutors) was carried 
out according to the areas of interest of each student; (2) Lego workshop, where 
students got to know each other and team dynamics were performed; and (3) Modelling 
week, where during one week (Monday to Friday) students worked in teams to find a 
feasible and effective solution to the problem, guided by university supervisors and 
problem owners. The modelling week ended with the presentation of the results of each 
team. Eight teams of 5-7 students each participated in the course and four of them 
agreed to participate in our research.  
Data collection 
Data were collected through non-participant observation of students working together 
and with their tutors (problem owner, mathematics tutor) during their meetings. These 
resulted in fieldnotes from these meetings and photos (e.g. of student writings). In 
addition, the following data collection strategies were used (Table 1):  

Participants Instrument 
Students Exit Cards, interviews, drawings, and surveys 
Tutors Interviews  
Problem owners Interviews 

Table 1: Instruments for data collection from participants of modelling week 

The exit cards were filled out by the students at three different data points (Monday, 
Wednesday, and Friday), and consisted of five questions to be answered by students: 
(Q1) Select the smiley that best describes your overall feeling about your work today 
and explain why you selected this smiley; (Q2) describe the most interesting things you 
learned today; (Q3) describe the activity you liked best today, and explain why; (Q4) 
describe the most important hurdle/difficulty you came across today for your progress, 
and explain why; (Q5) On the axes provided, sketch how you feel you have progressed 
towards your goal so far and use a few words to explain what you have drawn. The 
interviews were conducted at the end of the week, based on students' drawings of their 
resource system (Schematic Representation of Resource system-SRRS; Pepin et al., 
2017). The SRRSs are a schematic representation of how students used and integrated 
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different resources throughout the week. During the interview, each student was asked 
to explain his or her drawing. 
Analysis strategy 
To carry out the analysis of results, and in accordance with the objectives of this article, 
we focused on the analysis of the students' learning experience through exit cards, and 
students interviews in combination with SRRSs. The interviews (with problem owners 
and tutors), observation notes and surveys were backgrounded and not considered for 
the analysis reported on in this paper. For data analysis, we drew on Grounded Theory 
(Walker & Myrick, 2006) as it allowed us to organize and categorise the data collected 
into themes that in turn supported the descriptions and analyses, and fed the theoretical 
approaches used. Thus, we established two main categories of analysis with 
subcategories in each category: (1) Kinds of resources and support for: identifying the 
problem, guidance, and making choices. (2) Student perceptions of their learning 
experiences (including difficulties experienced): applying mathematics in the real 
world, and social skills. Through these categories we identified both the process of 
being affected and the process of developing and applying knowledge or skills; both 
processes in relation to the different resources mentioned by the students. To identify 
resources, we qualitatively analysed the sentences with words referring to resources 
(material, concepts, actors) to determine the beliefs, ideas, or motives guiding students' 
activity, as well as the contexts and situations in which they are used. 
DISCUSSION OF RESULTS 
Here we report results from a team of students (S1-7) involved in the problem entitled 
‘stochastic durations in taxi route planning’ (referring to a non-deterministic process 
of transportation service). In making taxi transfers more efficient for elderly and 
disabled people, the students addressed the problem of "how do stochastic boarding 
times affect the quality of the realization of the planning compared to the constructed 
(deterministic) planning?" 
For answering RQ1, we analyzed the interviews/SRRSs and exit cards (see Table 2). 
Due to space limitations, we present the SRRSs of two students: S2 and S7. 

 
Fig 1: Schematic Representation of Resource system-SRRS from S2 
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S2 represents his/her experience in the modelling week divided into four phases. This 
diagram allows us to identify more precisely the resources that S2 used and 
incorporated in each phase. It can be seen how the problem owner appeared important 
for the identification of the problem and giving “inputs”; the supervisor was also 
relevant for giving “feedback”. Other resources available to the student were: the use 
of "knowledge from previous courses", "google", “ideas from group". 

 
Fig 2: Schematic Representation of Resource system-SRRS from S7 

S7 represents his/her experience in a continuous manner and specifies the different 
activities the group carried out. Two relevant resources that S7 perceived that helped 
them solve the problem were the problem owner and the supervisor through their 
feedback, which allowed the transition through the different stages. Other resources 
used were: “pyhton”, “data set”, “internet”. 
The SRRSs are complemented with information from the exit cards in relation to the 
first category of analysis. The number in parentheses corresponds to the question 
number on the exit card and the day it was filled out (M-Monday, W-Wednesday, F-
Friday). 

 Identifying the problem Guidance Making choices 
S1 We discussed the problem 

with our group in an 
organized manner (Q1.M) 

The problem owner saying our 
results were valuable for their 
company and that they will use 
them (Q3.F) 

brainstorming the 
problem and hearing 
everyone’s ideas 
(Q3.M) 

S2  Discussing them with the 
problem owner and then 
changing our model according 
to the feedback (Q1.W) 

Discussing with the 
problem owner and 
making sometimes 
difficult choices in 
modelling (Q2.W) 
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S3 I feel like we have got the 

problem clear, and know 
what we have to do (Q5.M) 

  

S5  Meeting with problem owner, a 
lot of insight (Q3.W) 

 

S6  Our meeting with the problem 
owner we got a lot of new 
insights, as well as meaningful 
feedback (Q3.W) 

 

S7 We were well organized 
and made concrete plans to 
tackle the project (Q1.M) 

  

Table 2: Exit card responses for "Kinds of resources and support" category 

Table 2 shows that for four students (S1, S2, S5 and S6) in this group the role of the 
problem owner was essential as a guide. To identify the problem, group discussion was 
important (S1, S3 and S7). For decision making, the brainstorming (S1) amongst the 
group and discussions with the problem owner (S2) appeared crucial. 
From the interviews/SRRSs and exit cards (Table 2), we can summarize the role of the 
available resources in the following way: (1) The importance of the problem owner: as 
guide through the process; answering questions related to the problem; assessing the 
solution and presentation. (2) The role of the tutor: giving tips with the 
mathematics/modelling, also in terms of resource availability and giving feedback on 
what they have done. (3) Importance of other social resources (e.g. group discussions) 
and general resources (e.g. google, python, internet).  
For answering RQ2, we analyzed the exit cards (see Table 3) in relation to the second 
category of analysis.  

 Applying mathematics in real world  Social/professional skills 
S1 In terms of mathematics: what a simulated 

annealing algorithm is (Q2.M) 
I did not really learn anything new. We 
just applied our knowledge. So you could 
say we gained more experience in 
applying theory to real life (Q2.W) 

S2 How to present your results in a way that 
they are most interesting and 
understandable for the project owner 
(Q2.F) 

making a plan of work together. Also 
including all team members, also the ones 
that are less active (Q4.M) 

S3 I got a better idea of what mathematicians 
do in the real world and industry (Q2.M) 

the skill of reading/understanding other 
people’s code (Q2.W) 

S4 To understand the meaning of the question 
and how to convert a question from reality 
problem into a math question (Q4.M) 

how to extract the effective information 
from the questions (Q2.M) 
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S5 Starting coding. There were many places 

to start and deciding where is something 
difficult (Q4.M) 

Not being to critical of your own work 
(Q4.F) 

S6 The most difficult obstacle is to write the 
program (Q4.M) 

to get the final results ready for our 
presentation (Q4.F) 

S7 How we should interpret some part of the 
data (Q4.W) 

new ways of comparing the results and 
new distributions and additions we could 
add to our code (Q2.W) 

Table 3: Exit card responses for “Student perception of their learning” category 

The learning that students perceived they acquired came from Q2 of the exit cards (see 
Table 3). Here we observed learning related to mathematics, for example, "a simulated 
annealing algorithm" (S1) or "coding" (S5); as well as professional skills, for example, 
"to get the final results ready for our presentation" (S6). The difficulties perceived by 
the students come from Q4 of the exit cards. Among the difficulties we note: “How we 
should interpret some part of the data” (S7), “to write the program” (S6) or “how to 
convert a question from reality problem into a math question” (S4). From the exit cards 
(Table 3), we can summarise the student perception of their learning experiences under 
two important points: (1) Some students pointed out aspects related to mathematics 
(e.g., a simulated annealing algorithm). However, it was striking that others said that 
they did not learn anything new in terms of mathematics. Vergnaud (2009) points out 
that the mathematical competencies that students acquire and develop are not restricted 
to linguistic and symbolic expressions (predicative form of knowledge) but are also 
required to consider actions in the physical and social world (operational form of 
knowledge). (2) About professional skills: they said that this was the main outcome, 
that they worked like ‘real engineers’ with authentic problems, and in a pressurised 
situation. 
CONCLUSIONS 
In terms of theory, we developed insights into students' learning experiences in relation 
to their own perceptions of what they learned and with which resources they learned. 
This, in turn, allowed us to approach a better understanding of the notion of "students' 
learning experiences" at the conjunction of two processes.  
Coming back to our proposal to (re)conceptualize 'the mathematics students' learning 
experience':  referring to RQ1, the results show the importance of considering a process 
in which students are affected by the PO and the tutor; at the same time, referring to 
RQ2, results show the second process in which students develop and apply both 
knowledge and skills to face their challenge. As we can observe, these two processes 
are in turn closely related to the use of resources, where two processes are involved: 
instrumentation and instrumentalization. 
In terms of methodology, (1) we made a link between different methodological tools 
(SRRSs and exit cards) for grasping students’ reflection on their development 
(operationalisation of the mathematics in an authentic situation), and the resources that 
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they need for such development; (2) we found the usefulness of exit cards (as new tool) 
and SRRSs as “deepening tools” for receiving richer data; and SRRSs in combination 
with interviews as useful tools for examining integration of resources.  
Finally, the results have implications for practice and are useful for course designers: 
e.g., choice of problem/project; support of students by tutor and problem owner; 
alignment of support by problem owner and tutor.  
At the curricular level and in the context of the transition to a student-centered approach 
through the CBE approach, from the results we observe that this transition is not only 
moving away from traditional teaching, but it also entails a reflection on the new roles 
expected by tutors and the impact of their interaction with students. Thus, it is 
important to continue with research that accounts for: (1) how tutors and POs help, 
guide, and establish the balance between not leaving students completely alone and not 
solving problems for them; and (2) how this interaction is perceived by the students 
themselves through the use of resources. 
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RESEARCH TOPIC  

Numerical analysis or numerical mathematics is a branch of applied mathematics that 

deals, among other things, with the mathematical analysis of algorithms or numerical 

methods that can be used to approximate certain quantities, such as solving partial 

differential equations (Funken & Urban, 2018). Since the goals and tasks of numerical 

analysis can vary widely among numerical analysis researchers depending on the 

research direction, the given characterization should not be taken as an exact definition, 

but rather as a possible description of numerical analysis.  

Although numerical analysis content is part of many mathematics and teaching training 

courses and students take numerical analysis courses in various study programs, there 

is no research that addresses the description and analysis of the competencies that 

students should acquire in numerical analysis courses from the teacher’s perspective 

(Burr, in press). Existing works mostly refer to how numerical analysis content can be 

implemented in school or how numerical methods can be taught in engineering courses 

(Bishop, 2013; Titz, 2018). To identify and describe the desired competencies of 

students when working on problems in numerical analysis courses and to develop 

appropriate teaching, learning and assessment methods from them, it seems interesting 

to investigate what actions and practices are observed among numerical analysis 

researchers and compare them with those of students. Based on Burr (in press), the aim 

of this poster is to present preliminary results from a qualitative research approach that 

reconstruct these actions and practices of numerical analysis researchers using expert 

interviews and qualitative content analysis.  

RESEARCH QUESTIONS & METHODOLOGY 

This poster aims to answer the following research questions:  

1. What actions and practices can be identified among researchers in numerical 

analysis?  

2. What similarities and differences can be identified between the actions and 

practices of numerical analysis researchers and the intended and subject-specific 

actions and practices of students in numerical analysis courses?  

A total of 17 expert interviews were conducted to answer these two research questions. 

The results of these interviews are currently being evaluated using qualitative content 
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analysis according to Glaeser and Laudel (2010). As mentioned at the outset, the 

understanding of the goals and tasks of numerical analysis can vary widely among 

numerical analysis researchers depending on their own research direction. For this 

reason, the research direction played an important role in the selection of the experts. 

For example, experts who deal with the numerical solution of partial differential 

equations in their research were interviewed. However, researchers were also 

interviewed, who work in a very practice-oriented manner and deal with topics from 

scientific computing and high-performance computing, among others.  

PRELIMINARY RESULTS 

Preliminary results of the expert interviews show that a wide range of specific actions 

and practices can be found in numerical analysis research, including both mathematical 

and computer science aspects. Among other things, numerical analysis researchers not 

only develop special algorithms adapted to the underlying problem, but also deal with 

the mathematical analysis of the respective algorithms. Implementing these algorithms 

on computers and validating and verifying the results of these algorithms are also part 

of the actions and practices of numerical analysis researchers. Comparing the actions 

and practices of numerical analysis researchers with the intended and subject-specific 

actions and practices of students in numerical analysis courses already shows many 

similarities, but also significant differences. Thus, students are also expected to 

implement algorithms on computers, but further development of algorithms seems to 

play a role only in numerical analysis research so far.  
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INTRODUCTION 

According to Kwon (2020), differential equations (DE) are ubiquitous in applied 

mathematics and constitute an important component of the mathematics curricula of 

most universities. Rowland and Jovanoski (2004) mention in a study that in the 

teaching and learning of differential equations they suggest that, for students, the 

connections between a differential equation, its solution and what each of them can 

represent physically are not significant. In this research, we focused on simple 

harmonic motion, and more specifically on the analysis of the physical concepts 

involved, such as magnitude, time, velocity, acceleration, and energy, to model this 

phenomenon using a second-order differential equation and thus obtain a new meaning 

for this mathematical object. 

THEORETICAL FRAME 

Posner et al. (1982), characterize conceptual change as the modification of students' 

previous ideas so that they are replaced by those concepts accepted by the scientific 

community. The CUVIMA methodological model (Cuevas et al., 2017) is applied in 

our work for the organization of didactic activities that promote the understanding of 

simple harmonic motion and is composed of four frameworks, which are: 1) Reality 

framework in Physics, 2) Modelling framework in the device, 3) Conceptual analysis 

framework in Physics, and 4) Mathematical, conceptual analysis framework. 

The objective of this research work is to contribute to find ways to promote the concept 

of differential equation in engineering students, through the modelling and 

interpretation of simple harmonic motion. How do engineering students re-signify the 

concept of differential equation through modelling simple harmonic motion? 

METHODOLOGY 

Phase 1.- Preparation and design 

A pre-test was designed in order to collect previous ideas about simple harmonic 

motion, for this activity we used the Google Forms platform. 

The context used to introduce mechanical vibrations consists of the movement of a 

spring in a bicycle that has a linear spring incorporated in its structure to dampen the 

movement. The main objective of this didactic activity is that the student is able to 
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characterize the linearity property of the force applied to a spring that obeys Hooke's 

Law. 

Phase 2.- Teaching experience 

The research was carried out with two engineering students from a public university in 

Mexico. The activity was carried out in a single session which lasted 80 minutes. 

RESULTS 

In this paper, we present the results of a student with the pseudonym Andy, who was 

randomly selected from the sample. In the "Simple Harmonic Motion (SHM) Pre-test" 

activity, Andy answered all seven multiple-choice questions correctly. Andy's answer 

shows that he has knowledge about (SHM) and describes that one of its features is 

periodicity. Activity 1 consists of 12 multiple choice questions and two open questions, 

and the last exercise is to build a graph. Andy correctly answers all 11 multiple-choice 

questions. In particular, his answers to questions 1, 2, and 3 show that he manages to 

interact and interpret the simulated situation in the applet. Question 6 prompted Andy 

to explore the Activity 1 applet with more care and time. His answer shows that he can 

identify that a change in the value of the elastic constant, k, implies that the force 

applied to the spring will have a different magnitude, resulting in an increase or 

decrease in the length of the spring. Spring, that is to say, stretches or compresses with 

more or less difficulty. 

DISCUSSION AND CONCLUSIONS 

The activity was applied remotely, due to public health conditions and confinement. 

However, the results of the investigation are positive, since it shows us that Andy 

managed without difficulty to characterize the linearity property of the force applied to 

a spring that obeys Hooke's Law. This indicates that Andy has correct previous ideas 

about simple harmonic motion, and that activity 1 promoted in ratifying such ideas. In 

addition, the results obtained allow us to see that Andy can continue without objections 

with the rest of the activities to complete the investigation. 
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MATH IS SCARY 
Math is scary. For life science students, math is even scarier (Bishop & Eley, 2001). 
Students’ failure in mathematics is usually attributed to their negative attitudes towards 
the subject (Goldin et al., 2016), or to the rupture of the self-regulation cycle of 
engagement, reflection, and anticipation (Schunk & Zimmerman, 1998). What is even 
worse, is that students “after taking Calculus showed a reduction in positive attitude 
about mathematics” (Rickard & Mills, 2018) and that “[b]etween the start and the end 
of the students’ college calculus class, their confidence and enjoyment of mathematics 
dropped sharply, with confidence falling by half a standard deviation and enjoyment 
of mathematics by a third” (Bressoud, 2015). 
I have been teaching for six years the Calculus class in the “Natural Sciences” 
programme, a BSc degree in Italian universities which, integrating life & earth 
sciences, focuses on the correlation between organisms, substrate, environment. Its 
students are often amongst the weakest STEM students with respect to mathematics 
competences that should have been acquired in high school (Rizzo, 2020). 
What to do? Bressoud (2015) shows that ambitious teaching, i.e., active learning 
approaches, can be a solution. 
WHAT IS GOING ON? 
Pandemic at-distance teaching (Fall term 2020) brought the creation of short ad-hoc 
videos on all the theoretical contents in the syllabus. This made possible to devote most 
class time to active teaching, thanks to the capability of at-distance software to 
effectively implement rapid quizzes and the subdivision of students in small groups. 
The Fall term 2021 was, in Milan, back in presence—but with the possibility for 
students to attend at-distance. The availability of the videos created for the previous 
term allowed a flipped approach, with most 2-hours slots devoted to a cycle of 
formative assessment (45’) and to an explorative group activity (60’) where students 
were called to apply the assigned concepts to the solution of a problem relevant to 
Natural scientists. E.g., using vector sums to compute the position of a dolphin given 
daily movements as detected with a GPS device; or using derivatives to study the 
weight of a nesting penguin and his chances of survival before the return of his 
companion. 

 
1 This work was supported by the “National Group for Algebraic and Geometric Structures, and their Applications” 
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THE THEORETICAL FRAMEWORKS 
Classes were designed using the formative assessment cycle theory (Black & Wiliam, 
2009) and Engeström’s (1999) Activity Theory. Specific examples of the design will 
be shown in the poster. 
THE RESEARCH QUESTION 
Do we have an effective active learning approach? What does effective mean, in this 
context? It has been shown (Rizzo, 2020), that the chance of success—defined as 
passing the exam within the Academic Year—is closely related to the score in the 
national standardised entrance tests; for effective we will henceforth mean not dropping 
out, passing the exam, and later passing Statistics. 
We do not yet have a quantitative answer to the first question, since students are still 
sitting exams. Although data will be definitive only in February 2023, partial results 
suggest a positive answer; moreover, we already have some quantitative results: 

— Students have been observed talking about the problems outside of the 
classroom, on their way to the cafeteria. 

— Students have reacted negatively to the news of the episodical traditional face-
to-face lecture: “We want news about Pingu!” was notably a student’s reaction. 

— Attendance to lectures decreased to 40% rather than 25-30% at the end of term. 
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INTRODUCTION 
I present some preliminary results from a project where mathematics is specially 
adapted to one particular engineering programme with the aim of making mathematics 
an active thinking tool when working with engineering problems, and improving the 
students’ perceived relevance of mathematics for their study programme. The project 
is based on a contextual learning approach.  
Several models for teaching mathematics to engineering students can be found, from 
mathematics as a general foundation subject to mathematics as an integrated part of the 
students’ engineering specialisation. The first model may lead to students having 
difficulties to apply mathematics when needed in engineering courses (Carvalho & 
Oliveira, 2018), whereas the second model provides better opportunities for showing 
the relevance of mathematics for the engineering specialisation, but this model is 
expensive to implement. 
MATHEMATICS AS A THINKING TOOL 
At the Norwegian University of Science and Technology mathematics has traditionally 
been provided almost identically to all five-year Master of Technology (MT) 
programmes, without links to specific engineering fields. Mathematics as a Thinking 
Tool is a pilot project aiming at strengthening the connection between mathematics and 
the engineering fields, thereby hoping to increase the students’ perceived relevance of 
mathematics, as well as making mathematics an active thinking tool in their work with 
engineering problems. There is evidence to show that many engineering programmes 
do not exploit the potential of mathematics in the early phases (e.g., González-Martín 
& Hernandes Gomes, 2017), and the project aims to change this situation by making 
mathematics and engineering courses mutually support each other. A basis for the 
project can be found in the Conceive, Design, Implement, Operate (CDIO) Initiative, 
which emphasises both conceptual understanding and contextual learning (Crawley et 
al., 2014). Examples of activities in the project are presented in Bolstad et al. (2022). I 
will present some answers to the question whether the students’ perceived relevance of 
and motivation for mathematics differ for students within the project compared to those 
not in the project.  
So far, the project has included two cohorts of the MT programme Electronics Systems 
Design and Innovation (Elsys) but from 2022 it will be expanded to two other 
programmes. A survey was distributed in the spring of 2022 to the first-year, second 
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semester, Elsys students (n = 45) and in identical form to all the other first-year MT 
students (n = 494). The number of responses corresponds to a response rate of between 
30 and 40%. Below are some of the questions asked in the survey, with answers (%) in 
brackets. Boldface numbers are for students from Elsys: 

How would you characterise your motivation for mathematics now compared to when you 
started your studies? (larger 22/31, about the same 44/44, smaller 34/25) 

I have seen why mathematics will be important for me later in my studies (completely 
agree 34/82, partly agree 38/18, partly disagree 21/0, completely disagree 7/0) 

In my work with other courses (i.e., not mathematics courses) I have seen the importance 
of learning mathematics (completely agree 37/85, partly agree 44/13, partly disagree 14/0, 
completely disagree 5/0) 

I don’t think the mathematics I have learned in very relevant for my study programme. 
(completely agree 5/2, partly agree 25/2, partly disagree 44/18, completely disagree 26/78) 

So far, in my work with other courses (i.e., not mathematics courses), I have managed with 
the mathematics I learned at school (completely agree 28/7, partly agree 32/11, partly 
disagree 24/49, completely disagree 16/33) 

The numbers indicate that the perceived relevance of mathematics is larger for students 
within the project than for the others. However, the motivation for learning 
mathematics seems to develop in a similar way in the two groups. The survey will be 
repeated in 2023 for all first-year students. Then it will be possible to compare the 
answers from the two new programmes with the results from 2022, when these 
programmes were not part of the project. 
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TWO MEANINGS 
In mathematics education research, the teaching profession occupies a place of pride, 
both as an important partner, as an object of study, and as a consumer of the ideas and 
results that researchers produce. Historically, the development and inclusion of 
mathematics education positions at universities are inseparable from the professional 
education of teachers. The ever-increasing importance and challenges of mathematics 
in schools have also led to considerable scholarly and political attention to conditions 
for improving the pre- and in-service education of mathematics teachers. While 
secondary school teacher education has been university based in most Western 
countries for centuries, this is increasingly the case even for primary schools. Indeed, 
mathematics education researchers frequently exercise their teaching duties in 
university-based teacher education, usually giving specialised courses on mathematics 
education for future teachers. Considering that such courses are a specific form of 
university mathematics education, we have the first meaning of the title of this TWG. 
On the other hand, university mathematics education as a field of practice is usually 
construed as the teaching of post-secondary mathematics at the university level, 
especially within general areas like algebra and analysis. In general, undergraduate 
mathematics courses are often shared by a large variety of study programmes and, in 
many institutions, future teachers take such basic mathematics along with students 
aiming for other professions. It is thus difficult or impossible to draw exact boundaries 
between university mathematics education and mathematics teacher education, and 
several contributions to this TWG focus explicitly on the connections between general 
(or “pure”) mathematics teaching at university, and the specific needs and courses of 
school mathematics teachers. This is the second meaning of the title of this TWG. 
A third meaning arises from considering the profession of teaching mathematics at the 
university. The challenges of students with university mathematics have 
unquestionably led to an increasing interest in the practices and preparation of their 
teachers, and this (partly hypothetical) meaning of the title of our TWG is also 
represented by one contribution to the group. 
MATHEMATICS EDUCATION COURSES AT THE UNIVERSITY 
As suggested by Csapodi’s poster on a recent reform of Hungarian mathematics teacher 
education, many countries and institutions distinguish sharply between courses on 
“mathematics” and courses on “teaching”. When this is the case, the latter can be more 
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or less specialised on “mathematics teaching”, and the specialised variants usually refer 
to mathematics education research as a scholarly base.  
Barquero and Bosch present and discuss the idea of a study and research path in 
teacher education (SRP-TE), motivated by professional questions of a didactical 
nature, like “how to teach randomness and statistics in primary school”. In an 
experimental setting within primary school teacher education at the University of 
Barcelona, the students first carry out a mathematical activity, which has been designed 
by the authors with inspiration from the classical bottle situation (Brousseau, 
Brousseau, & Warfield, 2001). They then analyse their work from a mathematical and 
didactics perspective and proceed to design a similar path for primary school pupils 
(with an eventual implementation in some cases. The authors reflect on the similarities 
and differences between the SRPs-TE and the study and research paths (SRPs) 
proposed to non-teachers university students (in engineering, science or administration 
degrees). They consider the possibility to extend some instructional strategies and 
resources designed for teacher education to non-teacher students, in particular those 
related to the analysis of the mathematical activities carried out. 
Hakamata, Otaki, Fukuda and Otani also experimented a study and research path based 
on the bottle situation, but now in secondary mathematics teacher education at Kochi 
University. The design and aim are different from the above study: to detect what 
mathematical praxeologies could be realised by the students, given that they had some 
university background in probability and statistics. The authors create a reference 
praxeological model of what they consider as relevant from this background to explore 
the bottle situation and analyse the students’ actual exploration in terms of this model. 
It turns out that students were able to mobilise some but not all of the anticipated 
elements of the model. The authors consider that students could have mobilised some 
of the missing elements with more explicit instruction from the teachers and that 
student errors in such an inquiry process may be important sources of learning.  
LINKS BETWEEN UNIVERSITY AND SCHOOL MATHEMATICS  
A majority of papers in this TWG consider, in one way or another, the links and gaps 
between university mathematics courses (or activities) that are not specific to future 
teachers and school mathematics or, more broadly, the activities of a school 
mathematics teacher. Most of the papers report on experiments to strengthen the links, 
while others seek to identify and explain the gaps. 
Goor, Pinto and Karsenty present some aspects of the M-Cubed project in Israel, 
designed to explore interactions between mathematics researchers (called 
“mathematicians”) and experienced secondary school teachers of mathematics, as they 
meet to discuss video-recorded lessons from secondary school. The mathematicians 
focus on the characteristics of the mathematical problem while the teachers concentrate 
more on aspects related to the observed interaction in the lesson at stake. The authors 
consider that such interactions can be fruitful experiences of boundary-crossing but 
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that facilitators or brokers are needed to overcome what might otherwise be 
discontinuities in the interaction. 
Pustelnik also investigated the perspectives of mathematicians (in the above sense), but 
this time concerning their activity as lecturers in mathematics courses for future 
secondary-level teachers. From interviews, it appears that some lecturers occasionally 
try to show how the contents they teach are related to school mathematics, but none 
have recent or specialised knowledge about the latter. In the German university where 
the lecturers teach, they give similar but separate lectures to “mathematics students”, 
and “teacher-students” (different undergraduate programmes in Germany), but the 
lecturers believe the contents delivered in each case should be essentially the same. 
Bübenbender-Kuklinski, Hochmuth and Liebendörfer examined, equally in the 
German context, the relevance for the teaching profession that mathematics teacher 
students attribute to mathematical domains which are mandatory in their undergraduate 
studies (such as calculus and linear algebra). They do so through a longitudinal 
quantitative study, which gives rise to interesting hypotheses, like students attributing 
less relevance to domains in which they feel insecure; however, supplementary 
qualitative data will be needed to confirm such causalities. 
Hochmuth and Peters investigated, on their side, the qualities of the mathematical 
knowledge that German teacher students take away from their undergraduate studies. 
More specifically, in a graduate course specifically designed for these students, they 
found that the participants were largely unable to mobilise basic results from 
undergraduate analysis and linear algebra to carry out a qualitative analysis of ordinary 
differential equations, and to engage such analysis in modelling problems arising in 
other disciplines. The authors notice that both tasks are indeed highly relevant to the 
curriculum they prepare to teach. 
The problems of connecting school mathematics and university mathematics are 
considered from an intervention perspective in three papers and one poster. Bauer and 
Müller-Hill propose a set of principles for designing tasks that could help teacher-
students in Germany to deepen and professionalize the mathematical knowledge learnt 
in undergraduate mathematics courses of linear algebra and analysis, particularly in 
relation to proof. These tasks are worked with by students in modules that run in 
parallel with the courses, bringing promising results. 
Huo and Winsløw also present a list of task design principles for students of a Danish 
university in a capstone mathematics course, which, unlike all university mathematics 
courses they have taken, is designed specifically with the needs of teachers in mind. 
The goal of the design is to produce tasks that can develop and assess students’ capacity 
to mobilise the mathematical knowledge studied at the university on secondary 
mathematics problems. Several examples of tasks are given and analysed according to 
the principles. 
Viirmann and Jacobsen present a course design carried out at a Swedish university to 
cover mathematical and didactical content jointly and concurrently. The teachers (and 
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authors) team teaches the course and personifies, through their research background in 
mathematics and mathematics education, the two strands of the course. The two 
teachers take turns to be the “main” teacher, and an example is given of how the other 
may inject comments and questions from his perspective is given, for instance, to 
highlight general perspectives from either university mathematics or didactics that 
apply to the topic at hand. The authors suggest that care should be taken in such a 
dialogue setting, not to lose the students. 
The poster by Delori and Wessel presents an idea for connecting preservice teachers’ 
knowledge of school algebra (like equation solving) and abstract algebra through 
design research, which at the time of writing was not yet carried out. The poster by 
Broley, Buteau and Müller outlines a sequence of modules, designed and tested at a 
Canadian university. One aim is to provide an experience of using coding to learn 
mathematics, which is particularly relevant to future teachers in times when new school 
curricula require pupils to get such an experience. Finally, the poster by Vinerean, 
Brandl and Liljekvist explain how preservice mathematics teacher’s work with 
“Interactive Mathematical Maps” can help them gain a vision of mathematics as being 
constructed by humans and related to important problems. 
EDUCATING UNIVERSITY MATHEMATICS TEACHERS 
There were no contributions in TWG5 reporting on preservice education for university 
teachers of mathematics, but Gómez-Chacón, Hochmuth and Peters report on a 
workshop for a mixture of early career and more experienced university mathematics 
teachers from Spain, carried out in the context of the European PLATINUM project. 
The aim was to initiate participants to an inquiry-based approach to mathematics 
teaching and learning and to develop their skills to design mathematical tasks to be 
used in such an approach, based on collegial reflection, and taking into account 
concrete constraints in the participants’ courses. The outcomes seem to confirm that 
task design could be an important and fruitful topic in in-service courses for university 
mathematics teachers, and (as to some extent demonstrated by previously outlined 
papers) a lever for implementing new results from university mathematics education 
research in practice. 
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Our research is centred on the design, implementation and analysis of inquiry-based 
teaching proposals based on study and research paths within the anthropological 
theory of the didactic. We briefly present a study and research path for teacher 
education (SRP-TE) designed and implemented in a mathematics education course for 
pre-service preschool and primary school teachers. After describing the main elements 
of the SRP-TE, we explain how it provides students with tools to question and analyse 
the mathematical knowledge involved in activities related to numeral systems, 
randomness, and modelling. We conclude with the possibility to extend the 
instructional strategies and resources designed for SRPs-TE to more general SRPs 
intended to teach mathematics outside the teacher's educational setting. 

Keywords: Teachers' and students' practices at the university level, study and research 
paths, teacher education, resources, anthropological theory of the didactic. 

 

STUDY AND RESEARCH PATHS AND TEACHER EDUCATION 

From the approach of the anthropological theory of the didactic (ATD), our education 
systems today are situated closer to the so-called pedagogical “paradigm of visiting 
works” (Chevallard, 2015). This paradigm is mainly characterised by the introduction 
of a set of knowledge works teachers present to the students for them to study and know 
– or visit – its main characteristics and usages. The counter-paradigm of “questioning 
the world” helps analyse the limitations of the visiting works paradigm and study its 
potential to evolve. The paradigm of questioning the world focuses teaching and 
learning processes on the research and study of open questions. The visiting of works 
does not disappear, but is subjected to another purpose: the study of questions. That is, 
knowledge works are important insofar as they help develop answers to the questions 
addressed: their value is not intrinsic, but functional.  

Several investigations within the ATD focus on studying the conditions that can 
facilitate the transition from the paradigm of visiting works to that of questioning the 
world, especially in the case of university education (Barquero et al., 2021). In this 
perspective, the proposal of study and research paths (SRPs) (Bosch, 2018) has been 
implemented in the past decades at different school levels. SRPs are instructional 
proposals specific to the paradigm of questioning the world that start with the approach 
of an open question not initially associated with a particular answer or piece of 
knowledge. Implementing SRPs requires creating new conditions in current 
educational systems, especially at the level of the didactic contract. Running them helps 
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observe the institutional constraints that emerge during their implementation and 
hinder their development. 

SRPs have also been proposed to support teacher education in what we call study and 
research paths for teacher education (SRP-TE). An SRP-TE also starts from a 
problematic question, in this case, related to the teaching profession. The initial 
proposal of (Ruiz-Olarría, 2015) starts by carrying out an SRP related to the teaching 
question addressed, and using the analysis of the SRP experienced as a tool for the 
design and eventual experimentation of an adapted SRP (Barquero et al., 2018). We 
consider SRPs-TE especially important to support collaborative work between 
researchers in didactics, educators, and teachers in the study of the conditions for the 
change of paradigm and the co-creation of instructional tools to design and implement 
new teaching proposals. 

Despite the ill-defined position of teacher education in the context of university 
teaching and research, it seems appropriate to approach SRPs and SRPs-TE from a 
common perspective. On the one side, SRPs-TE can be considered as a specific kind 
of SRPs for degrees in teacher education, not different in essence from SRPs 
implemented in Engineering, Economics, Medicine or Administrative degrees. At the 
same time, the specificities of SRPs-TE and the fact that they include the design and 
analysis of an SRP can shed new light on the study of the institutional conditions 
needed by the paradigm of questioning the world.  

In this paper, we start by presenting the specificities of the SRP-TE as a university 
training device. We then briefly introduce three cases of SRPs-TE that have been 
designed and implemented for pre-service primary school teachers at the University of 
Barcelona, and focus on the one concerning the teaching of inferential statistics in 
primary school. We are particularly interested in showing how, throughout the SRP-
TE, educators transpose (from research to teacher education) some epistemological and 
didactic tools that help teachers manage didactic processes. We conclude with the 
possibility to extend the instructional strategies and resources designed for SRPs-TE 
to more general SRPs outside the teacher’s educational setting. 

 

AN SRP-TE ABOUT RANDOMNESS 

Five modules structure the generic proposal of SRPs-TE as described in (Ruiz-Olarría, 
2015; see also Barquero et al., 2018). However, each case requires its own adaptations 
according to the conditions of the instructional practice: sometimes not developing all 
the modules or splitting some of them. They are defined as follows:  

Module 0: Introduction of an initial question Q0-TE, which is the starting point of 
the SRP-TE and which will progressively be addressed in all the modules. This 
initial generating question of TE is related to a teaching problem, and usually 
takes the form of How to teach a content ♥?  
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Module 1: Carrying out an SRP that appears as a possible answer to Q0-TE. It is 
experienced with participants assuming the role of students, and the educator 
guiding its implementation. 

Module 2: Analysing the SRP experienced from a didactic perspective. 

Module 3: Adapting the design of the SRP and implementing it in a given school 
setting; observing and collecting data for further analysis. 

Module 4: Analysing the SRP implementation and identifying its potential and 
limitations as a response to the initial question Q0-TE.  

Several SRPs-TE have been implemented for pre-school, primary, secondary and 
university teachers (Barquero et al., 2018). A common aspect of all these proposals is 
that they start by carrying out an SRP with pre-service teachers (module 1). In some 
cases, they are based on an SRP previously implemented with students; in other cases, 
the starting point is an SRP newly designed for the teacher education context.  

In the case of the SRP-TE we are considering, the initial question Q0-TE is related to the 
teaching and learning of inferential statistics in primary school. This SRP-TE has been 
implemented since academic year 2014/15 at the University of Barcelona in the last 
compulsory course of Didactics of Mathematics (first semester, 6 ECTS) with groups 
of about 50 pre-service teachers. The participants are fourth year students of the degree 
of primary school teacher education. They work in groups of 3-5 members during the 
whole course. This is not the only SRP-TE implemented in this same course or in 
previous courses. Table 1 summarises the SRPs-TE that have been implemented under 
similar conditions, including the generating question Q0-TE, the modules implemented, 
if the SRP-TE is based on a previously experimented SRP or not, and the approximate 
hours of work in the classroom. 

Table 1: SRPs-TE implemented in the Didactics of Mathematics course 

University 
year  

(over 4) 

Generating question 
Q0-TE 

Implemented 
modules 

Available SRP 
previously 

implemented 
Duration  

2 
 

How to teach the rationale 
and usefulness of positional 

numeral systems? 
0, 1, 2 

No 
(Sierra, 2006) 

30 hours 

4 
How to teach randomness 
and statistics in primary 

school? 
0, 1, 2 

What is hidden 
inside the bottle? 
(Brousseau et al., 
2002; Granell & 
Barquero, 2019) 

10 hours 

4 
How to teach mathematical 

modelling in primary 
school? 

All 
The cake box 
(Chappaz & 

Michon, 2003) 
40 hours 
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The first SRP-TE is based on the work of Sierra (2006) that proposes to approach 
additive, additive-multiplicative and positional numeral systems from the analysis of 
their properties to not only represent numbers or quantities, but also order them and 
operate with them. The last SRP-TE takes a situation regarding building boxes with 
paper based on Chappaz and Michon’s proposal as the initial question. The need to 
build boxes of different sizes to answer a baker’s demand motivates the consideration 
of empirical, geometrical, numerical, and algebraic models (Wozniak et al., in press). 
Its analysis leads to considering specific notions to describe modelling processes, and 
to recognise the role of experimental work in mathematics. 

The second SRP-TE is the one we are considering in more detail. Figure 1 summarises 
the content of its modules. 

 
Figure 1: Modules of the SRP-TE about randomness and statistics. 

 

In module 0, the following initial generating question Q0-TE is proposed: How to teach 
randomness and statistics in primary school? What activities can show the rationale 
and functionality of statistical knowledge? How to design and analyse them? The 
teachers are invited to search for available answers in the different accessible media 
(books, textbooks, curricula guidelines, etc.), which eventually include some 
instructional proposals coming from educational research about the teaching and 
learning of statistics in primary school. From this analysis, the teachers often conclude 
that most of the proposals are focused on introducing techniques for manipulating data 
for their graphical representation and the calculation of numerical statistics. There are 
not many activities that propose building an appropriate experimental milieu to deal 
with statistical variation.  
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In module 1, the teachers are asked to act as students, and experience a teaching project 
based on the proposal of an SRP entitled “What is hidden inside the bottle?”. This 
project comes from the activity designed by Brousseau et al. (2011) consisting of a 
long process of didactic engineering design, planned to be experienced during 26 
sessions with grade 5 students. In its adaptation for this SRP-TE, we only implemented 
three sessions of two hours with the prospective teachers as an introduction to this 
project. The situation is presented by some coloured balls hidden inside an opaque 
bottle with a small hole in the lid. The experiment consists in predicting how many 
balls of each colour there are in the bottle and of what colour. We know the total 
number of balls inside the bottle, but we do not have access to them. The only way to 
collect data is by shaking the bottle, and registering the colour of the ball appearing in 
the hole of the lid.  

The initial questions are “What is the number of balls of each colour inside the bottle? 
What hypotheses can we formulate about its content and colour distribution? How 
reliable are they?”. These same questions are presented in three different situations. 
The first one consists of having a bottle with 5 balls of two colours and no restriction 
with regard to data registration. In the second, each working team designs a bottle with 
5 balls and 2 colours,. They exchange bottles with another team, and they ask the 
questions to be answered by the team receiving their bottle. In the third case, the bottles 
have 25 balls of 4 different colours. When implementing this activity, the student 
teachers are asked to report about their work and to explicitly describe the tasks and 
questions they deal with, the kind of strategies they use, and the answers obtained. At 
the beginning of each session, we share these reports in a common forum to have 
information about all the questions addressed and the answers provided.  

Module 2 consists in the collective analysis of the implementation. The teachers are 
asked to change roles to become “mathematical analysts”. Some specific terms related 
to randomness and data analysis are agreed upon at this moment such as “event”, 
“sample”, “sampling universe”, “sample size”, “frequency”, “likely”, “unlikely”, 
“possible”, “impossible”, “hypothesis”, etc. The educator also introduces one of the 
main tools at this stage: the question-answer maps (Q-A maps) for the mathematical 
analysis of the process followed, consisting of a diagram of all the questions, answers 
and strategies appearing in the activity experienced and their connections (Figure 2). 

Later, Q-A maps become a key tool for the analysis of the student teachers’ own 
experience of the SRP, as well as reference models to analyse the students’ work 
experienced in primary school. The strategy the educator adopts here is to share with 
students some classroom experiences with a similar SRP as the one developed in 
primary school to contrast their analysis with real students’ work. To do this, the 
educator counts on the case of “The COSMOS project: ordering Hama Beads for the 
school” (Granell & Barquero, 2019), which was implemented in grades 4, 5 and 6 at 
Col·legi Sant Lluís, a primary school in Barcelona. The teacher is a former student of 
the University of Barcelona who continues to collaborate with the group of researchers-
educators. At this point, the pre-service teachers are introduced to the work the teacher 
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prepared in collaboration with our research team regarding the design of the project. It 
includes the following materials: the a priori designs of the SRP and the lesson plans 
guiding the implementation, the students’ answers to some activities, and video 
recordings of some parts of the sessions with grade 4 students. 

 

Figure 2: Example of a Q-A map proposed by a working team 

 

SRPs-TE AND THE PARADIGM OF QUESTIONING THE WORLD 

The general structure of an SRP-TE relies on several key features that are inherent to 
the paradigm of questioning the world. The first one is to start the SRP-TE with a 
professional teaching question Q0-TE the student teachers are asked to address together 
with the educators (who are, in this case, also researchers in didactics). The second one 
is that the final “product” is not supposed to be a previously known answer, as the 
questions addressed are open questions in mathematics education. Along with the 
modules of the SRP-TE, the aim is to initiate collaborative work between teachers and 
educators to search for already available answers for Q0-TE (in the form of teaching 
proposals), and to analyse them as potential teaching proposals. This collaboration 
leads to sharing, studying and building mathematical knowledge for teaching about the 
topic at stake concerning the initial and derived questions, which might include some 
“visits” of mathematics or didactics works.  

Despite the specificities of the teacher education context, some SRP-TE features are 
also important for other SRPs (without TE). Q0 might be an open question, of interest 
to the university context in which it should be posed and addressed. In the context of 
teacher education, as the profession behind is clear, searching initial generating 
questions legitimated by the profession does not seem difficult. On the contrary, what 
seems difficult to manage is their openness and the temporary and progressive 
character of the always partial and evolutive answers built. In other university contexts, 
the legitimacy and pertinence of possible Q0 is a crucial aspect to be discussed by 
researchers and teachers, as well as with students. What seems easier to manage is the 
openness of the initial questions and the convergency or delimitation towards the 
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answers produced. A strategy used on several occasions is to introduce an external 
demander Z, who is the person or group of people that comes up with the assignment 
(Barquero et al., 2021). Z can be also the recipient of the final answers, and the person 
or people responsible for evaluating and validating their pertinence. In the case of 
teacher education, the collaboration with an external validator Z could include agents 
from the teaching profession, or producers of teaching materials and resources.  

Moreover, the collaboration between students (pre-service teachers) and teachers 
(educators) is productive as far as they jointly advance in establishing some shared 
knowledge about Q0 and producing responses to Q0 (or its derived questions). This is 
another important aspect of SRPs that collides with the traditional contract of the 
paradigm of visiting works. In an SRP, the teacher does not know the answer to Q0 in 
advance. As Q0 is an open and sometimes ill-formulated question, an answer does not 
always exist: it is defined and built during the enquiry process.  

The other issue is how students and teachers can share, talk about, and refer to the 
knowledge they are constructing before getting the final answer to Q0. In this regard, 
an important feature of SRPs-TE is that the analysis of the SRP is explicitly included 
as part of the enquiry. Therefore, educators introduce epistemological and didactic 
tools as far as they enable teachers to tackle the questions raised and elaborate answers 
to them. The didactic knowledge provided to pre-service teachers is not presented 
beforehand – which is the common strategy in the paradigm of visiting works – but 
introduced “on-demand” and motivated by its utility to address teaching questions. An 
important aspect in this regard is that educators are not supposed to teach future 
teachers “what and how to teach”, but to help them in their search, construction, 
experimentation, analysis, assessment, etc. of different teaching proposals.  

Another characteristic of an SRP-TE is that its module 1 – “experiencing an SRP” – 
aims to create a rich empirical milieu shared by teachers and educators to collectively 
identify and analyse some of the school conditions and constraints affecting the 
didactic designs and teacher actions. The description of the SRP that has been carried 
out generates the necessity of new tools (outside the traditional content description) for 
the mathematical analysis of this open activity. To address this necessity, educators 
introduce Q-A maps as an epistemological tool to analyse the dynamics of knowledge 
production. Q-A maps are very well accepted by teachers who use them not only as an 
epistemological tool for the a posteriori analysis of study processes but also for their a 
priori analysis—when they design the lesson plans to anticipate and evaluate possible 
paths to be followed by students. They also employ them in the in vivo analysis—when 
they use them as a tool to analyse real-time study processes for primary school students.  

Finally, a specificity of SRPs-TE is that they include carrying out an SRP and its 
subsequent analysis. To distinguish between the two different paths, the strategy 
followed in the SRP-TE here presented consists of asking the participants to assume 
different roles during the instructional process. They start with the role of the “student” 
addressing an open question, then the role of the “analyst” of the study process that has 
just been followed, and finally the “teacher” role, including design and analysis 
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responsibilities. This role-playing appears to be a successful strategy to facilitate the 
identification of different types of “mathematical” and “didactic” analyses, and to 
approach Q0 from different angles, which can seem complementary but is necessary. 
These different perspectives on a single SRP, a more executive one and a more 
reflexive or analytical one, can also be extrapolated outside SRPs-TE. In an inquiry 
process of an initial question Q0, the first aim is to produce an answer to Q0. However, 
there is also a secondary more reflexive or “methodological” aim about the process 
followed, and the by-products that are worth preserving for further inquiries. 

 

CONCLUSIONS: LESSONS FROM SRPs-TE TO NOURISH UNIVERSITY 
SRPs 

As they are part of university education, teacher education degrees are faced with the 
same instructional problems as other degrees. Because researchers in didactics are 
usually involved in teacher education, they tend to consider these educational processes 
to be of a different nature. Being researchers, this was our spontaneous attitude in our 
research on SRPs, which were treated separately from SRPs-TE. At best, as mentioned 
before, some results of SRPs were introduced into SRPs-TE, like the use of Q-A-maps, 
and the exploitation of previously implemented SRPs within the SRP-TE process. 
What happens when we adopt the opposite perspective, and try to see which aspects of 
SRPs-TE can be passed on to SRPs? What can we learn from the teacher education 
experiences that could be useful—or at least worth trying—in other types of degrees?  

The role-play strategy used in SRPs-TE can be taken as an example. It is motivated by 
the need to differentiate between carrying out a study process (the experimented SRP) 
and its description and analysis. This helps introduce an in vivo analysis during the 
SRP where the educator (acting as a teacher) comments on the strategies followed by 
the student teachers and by the teacher’s own strategy. In other words, SRPs-TE 
facilitate a type of analysis of the study process that reveals to be useful for managing 
an SRP: we can easily talk about the work that is carried out, which helps control it and 
better understand what we are doing and where we want to go. Therefore, the 
possibility of translating this in vivo analysis to university SRPs can be considered with 
the aim of improving their management and outcomes. At the end of the SRP, when 
the final question has been produced, a kind of complementary report about the process 
followed to produce the answer could be introduced. This is a very common type of 
professional process related to the need for accountability, assessment, and quality 
control that is rarely transposed in the classroom.  

There is a more subtle issue related to the previous one. In SRPs-TE, the analysis of 
the SRP carried out is performed with didactic and knowledge resources that are 
sometimes elaborated for this purpose by research in mathematics education. A 
previously mentioned example are Q-A maps, but we can also think of less generic 
tools such as the description of data analysis or modelling processes, which require 
specific terms that are not always covered by the traditional mathematical terminology. 
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The institutionalisation of these tools that help describe and better understand (and 
control) the process followed is easier in the context of teacher education because the 
content at stake is not only “mathematics”, but also “didactics of mathematics”. It thus 
gives more flexibility to the educator to elaborate discourses about the mathematical 
activity “in process”, and also about the final answer produced. It is, however, more 
difficult to do so in another kind of degree when the teacher is supposed to teach 
“statistics” or “mathematical modelling” and not “a discourse about statistics” or “a 
discourse about modelling”. As if the difference between “mathematical” and “a 
discourse about mathematics” was so clear, or as if mathematics could be done without 
having a discourse about mathematics. In teacher education, it seems legitimate to 
teach Q-A maps and other epistemological resources elaborated by didacticians for the 
analysis of mathematical activities. It does not seem so legitimate in other kinds of 
degrees, although it is equally necessary. 

Approaching university SRPs from the perspective of SRPs-TE helps us think about 
new strategies to develop. It also reveals new constraints linked to the nature of the 
knowledge to be taught and the aim of the instructional process: how the knowledge or 
activity at stake is conceived by the educational institution, what legitimates a given 
instructional process, etc. It also questions the boundaries between didactics and 
mathematics. This is a boundary that does not exist in teacher education and that may 
hinder rather than clarify what is done and what can be done in university education. 

 

ADDITIONAL INFORMATION 

The research leading to these results received funding from the Spanish R&D Projects: 
RTI2018-101153-A-C22, RTI2018-101153-B-C21 and PID2021-126717NB-C31 
(MCIU/AEI/FEDER, UE). 

 

REFERENCES 

Barquero, B., & Bosch, M. (2015). Didactic Engineering as a research methodology: 
From fundamental situations to study and research paths. In A. Watson & M. Ohtani 
(Eds.), Task design in Mathematics Education (pp. 249-272). Springer. 
https://doi.org/10.1007/978-3-319-09629-2_8   

Barquero, B., Bosch, M., & Romo, A. (2018). Mathematical modelling in teacher 
education: Dealing with institutional constraints. ZDM Mathematics Education, 
50(3), 31-43. https://doi.org/10.1007/s11858-017-0907-z  

Barquero, B., Florensa, I., & Ruiz-Olarría, A. (2019). The education of school and 
university teachers within the paradigm of questioning the world. In M. Bosch et al. 
(Eds.), Working with the Anthropological Theory of the Didactic in Mathematics 
Education: A Comprehensive Casebook (Chapter 12). Routledge. 
https://doi.org/10.4324/9780429198168  

476



  

Barquero, B., Bosch, M., Florensa, I., & Ruiz-Munzón, N. (2021). Study and research 
paths in the frontier between paradigms. International Journal of Mathematical 
Education in Science and Technology, 53(5), 1213-1229.  
https://doi.org/10.1080/0020739X.2021.1988166 

Bosch, M. (2018). Study and Research Paths: a model for inquiry. In B. Sirakov, P. N. 
de Souza, & M. Viana (Eds.), International Congress of Mathematicians (Vol. 3, 
pp. 4001–4022). World Scientific Publishing Co. Pte. Ltd. 
https://doi.org/10.1142/9789813272880_0210  

Brousseau, G., Brousseau, N., & Warfield, V. (2001). An experiment on the teaching 
of statistics and probability. Journal of Mathematical Behavior, 20(3), 363-411. 
https://doi.org/10.1016/S0732-3123(02)00078-0  

Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: a case for an 
oncoming counter paradigm. In S.J. Cho (Ed.), The Proceedings of the 12th 
International Congress on Mathematical Education (pp. 173-187). Dordrecht, The 
Netherlands: Springer. https://doi.org/10.1007/978-3-319-12688-3 

Chappaz, J., & Michon, F. (2003). Il était une fois… La boîte du pâtissier. Grand N, 
72, 19-32. 

Granell, C., & Barquero, B. (2019). Experiència amb un recorregut d’estudi i 
investigació sobre la inferència estadística a l’educació primària. Què s’amaga dins 
l’ampolla? Noubiaix, 44, 54-69. 

Ruiz-Olarría, A. (2015). La formación matemático-didáctica del profesorado de 
secundaria. De las matemáticas por enseñar a las matemáticas para la enseñanza 
(PhD dissertation). Universidad Autónoma de Madrid. 
http://hdl.handle.net/10486/665889  

Sierra, T. A. (2006). Lo matemático en el diseño y análisis de organizaciones 
didácticas. Los sistemas de numeración y la medida de magnitudes (PhD 
dissertation). Universidad Complutense de Madrid. 
https://eprints.ucm.es/id/eprint/7373/  

 

477



 

 

 

Activity Theory as a Base for Course Design in Pre-Service Teacher 

Education: Design Principles and Their Application in Two Examples 

Thomas Bauer1 and Eva Müller-Hill² 

1Philipps-Universität Marburg, tbauer@mathematik.uni-marburg.de 

²Universität Rostock, eva.mueller-hill@uni-rostock.de 

Observations in practice show that pre-service teachers do not always experience and 

acquire mathematics subject knowledge and mathematics education knowledge in such 

a way that they are ready to effectively use this knowledge in their future careers when 

designing and implementing lessons. We develop an activity-theoretical framework 

that contributes to describing and explaining underlying discontinuity obstacles, and, 

as a developmental contribution, we use the framework to formulate and implement 

design principles for courses in pre-service teacher education aimed at counteracting 

discontinuity phenomena in the area of argumentation and proving. 

Keywords: Teachers’ and students’ practices at university level; Transition to, across 

and from university mathematics; Teaching and learning of logic, reasoning and proof; 

Activity theory. 

INTRODUCTION 

Discontinuities between school mathematics and university mathematics have been 

recognized as a problem at least since Felix Klein's time (Klein, 1908). The first 

transition (secondary-tertiary) has been the focus of considerable attention in recent 

years (see Gueudet, 2008, for an analysis of phenomena and causes). A number of 

projects try to mitigate this “first discontinuity” by helping students to establish 

connections between the two “worlds”, for instance by engaging them in interface tasks 

(Bauer & Partheil, 2009) that address the specific differences. The second critical 

transition, which occurs when pre-service teachers (PST) go back to school after 

graduation, has received less attention so far. The issue is whether students have 

acquired mathematical content knowledge and mathematics education knowledge in 

such a way that they can effectively use this knowledge in their future careers to design 

and implement lessons. Experience from practice, as well as from capstone courses as 

described by Winsløw & Grønbæk (2014), shows that one should not expect that this 

occurs automatically. In extreme cases, novice teachers may regard academic 

knowledge as unworkable in the “real world” of the classroom (Cavanagh and Prescott, 

2007). They are then susceptible to the “familiarity pitfall” (Feiman-Nemser and 

Buchmann, 1985, p. 56), i.e., they might identify teaching with classroom practices 

that they experienced as pupils themselves – just as already Felix Klein observed. 

The transition from university to school in particular means a transition from one 

mathematical practice to another, where PSTs experience discontinuous changes in 

various respects. Our hypothesis is that part of the problem of the second discontinuity 

is de facto based on a poorly mediated, possibly distorted experience of differences 

between core activities within different mathematical practices at school and at 
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university. In the present paper we focus on the core mathematical activities of proving 

and argumentation. The following two desiderata motivate our work. (1) Provide a 

theoretical framework that would allow to grasp (that is, observe, describe, and 

explain) the practical impressions of discontinuity effects regarding the second 

transition as possibly interconnected general phenomena. (2) Find starting points for 

developing suitable formats for PST training courses in order to effectively address the 

respective issues of teacher education.  

First, as a theoretical contribution, we develop an activity-theoretical framework that 

helps to analyze differences and commonalities between mathematical practices at 

school and university, and contributes to describing and explaining discontinuity 

obstacles. Second, as a developmental contribution, we use the framework to formulate 

design principles for courses in PST education and we will present two course designs 

where we have implemented these principles. Our concrete implementations show in 

particular that the three principles can be employed in a longitudinal setting (i.e., in a 

sequence of consecutive modules) as well as in a single module. 

ACTIVITY THEORY AS A GENERAL CONCEPTUAL FRAMEWORK ON 

CORE MATHEMATICAL ACTIVITIES AND DISCONTINUITY 

PHENOMENA  

In our approach, we build upon the work of Leontjew (1982) as developed further by 

Lompscher and Giest (see Bruder and Schmitt, 2016; Giest, 2008). Based on 

foundational work in the 1980s, a spectrum of activity-theoretical approaches emerged 

in the mathematics education literature, e.g. Engeström (2001), Jaworski et al. (2017), 

Cerulli et al. (2005). The approaches differ in particular in terms of the fields of activity 

they address. In our work, we consider argumentation and proving as a field of activity 

in school and university mathematics to study respective discontinuities between them. 

From the point of view of activity theory, human activities always have a “dual 

character”: Namely, on the one hand as activities in the context of a communal, 

collaborative practice, and on the other hand as individual action. 

Mathematical argumentation and proving as activities in collaborative practices 

In our application and adaptation, we first look at mathematical argumentation and 

proof as activities in the context of collaborative practices. We distinguish three 

structural components: Motive, object and ways and means of action. The interplay of 

these three components in terms of activity theory can be described – in a very compact 

form – as follows. The motive drives activities that are directed towards an object. The 

object thus becomes the object of the activity. The concrete goals that can be pursued 

in an activity, as a realization of the motive, depend on available and suitable ways and 

means of action. 

Along these three structural components, we can contrast two mathematical practices 

that are relevant for PSTs, university mathematical practice and school mathematical 
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practice, and identify characteristic differences that are often experienced by students 

as dominant, for example: 

● On the motive level, the deductive derivability of statements within globally 

ordered mathematical theories plays an important role in university 

mathematics, whereas school mathematics is more concerned with the 

verification of statements, which is conducted, if at all, with reference to locally 

ordered systems of statements. 

● On the level of objects, we find a variety of explicit objects of proving in 

university mathematics, and in contrast often only implicit, hidden objects of 

argumentation and proving in school mathematical practice. 

● On the level of modes and means of action, a difference between the two 

practices that is experienced as dominant can be identified with regard to the 

different roles of heuristic or generic arguments in the two practices. 

In line with our hypothesis stated in the introduction, PSTs who experience such 

differences as dominant might not be able to integrate the meaning that argumentation 

and proving have as core activities in these different mathematical practices into their 

individual activity in a coherent way. Hence, they might also struggle to stage these 

activities properly in class, thus going through a “second discontinuity” in a 

problematic way.  

Mathematical argumentation and proving as individual action 

In order to capture this issue fully from the point of view of activity theory, we have, 

in addition to the collaborative community perspective, to consider the activities of 

mathematical argumentation and proving also with respect to individual action. Under 

this perspective, the triad of constitutive elements is similar to activity in collaborative 

practice, with a level of motives, a level of objects, and a level of ways and means of 

action.  

We conceptualize the individual concretization of these three levels and their interplay 

in individual activity as follows (see Fig. 1): The objects that the individual has made 

their own and the available repertoire of ways and means of action form individual 

preconditions for action. These are at the same time preconditions for the individual to 

be able to consciously set concrete goals of action, and, accordingly, to be able to act 

on the object directed towards these goals. Such consciously set goals for action are 

influenced by superordinate motives for activity, which the individual, however, is not 

usually aware of at the stage of their concrete action. Rather, the goals mirror individual 

constructions of meaning in relation to the activity. 
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Fig. 1. Constitutive elements of individual action 

First results of explorative empirical investigations of PSTs’ lesson plannings and 

stagings, which we carried out on the basis of this activity theoretical framework 

(Bauer & Müller-Hill, 2022), indicate that there is indeed a need for action in PST 

educational practice: We exhibited phenomena and patterns in PSTs’ stagings that 

indicate that they apparently lack effective background motives and corresponding 

goals and constructions of meaning, appropriate ways of action and access to suitable 

objects, in order to stage argumentation and proving activities in a meaningful way in 

the mathematics lessons they plan and conduct. 

ACTIVITY THEORY AS A DESIGN BASE: DESIGN PRINCIPLES AND 

THEIR APPLICATION IN TWO COURSE DESIGNS 

We understand the empirical observations mentioned above as a variant of double 

discontinuity, namely as an impact of transition obstacles that emerge between three 

areas of action and experience: the mathematics lessons experienced at school, 

university mathematics and didactics, and PSTs’ own lesson stagings at school. 

Accordingly, our main idea in using activity theory as a design base is that the 

presented activity-theoretical considerations on constitutive elements of core 

mathematical activities, together with empirical results such as those reported above, 

form a basis for the development of design principles for PST courses. The application 

of such principles is intended to help to turn discontinuity experiences productively, 

and hence to mitigate second transition issues such as, e.g., the observed phenomena 

described in Bauer & Müller-Hill (2022). 
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Design Principles  

We suggest the following three design principles, each of which is formulated with 

reference to one of the constitutive elements of activity. A combined application of 

these principles is intended to counter the specific discontinuity issues that are revealed 

by the activity-theoretical explanations for the empirical phenomena mentioned in the 

previous section. 

Principle 1: Engage PSTs in getting to know, applying, and assessing a variety of 

appropriate objects and ways/means of action regarding core mathematical 

activities, both in the PSTs’ role as mathematically active individuals and as 

members of the collaborative mathematical practices of school and university. 

Principle 2: Engage PSTs in explicating, reflecting and relating motives and goals of 

core mathematical activities, with respect to individual activity and with respect to 

activity within the collaborative mathematical practices of school and university. 

Principle 3: Engage PSTs in explicating and reflecting content-related and didactical 

decisions within their own mathematical working processes as well as within their 

planning and implementation of mathematics lesson stagings, with the aim to 

support the development of appropriate and coherent individual constructions of 

meaning for core mathematical activities. 

We will now show how these three design principles can be brought to fruition in 

concrete course designs. 

ProPraxis – A Longitudinal Implementation of the Three Design Principles 

The design principles are in this case implemented in a series of consecutive modules 

(see Fig. 2). In these modules, proving, learning to prove, and teaching proof is 

addressed both on the object level and on the meta level. 

The subject-matter modules in the first three semesters (Linear Algebra and Analysis) 

serve as the starting point. They are related to Principle 1, as they engage students in 

getting to know a variety of appropriate objects as well as ways and means of action – 

both as mathematically active individuals (e.g. when solving homework problems) and 

as members of a collaborative practice of university mathematics (e.g. when they are 

exposed to the norms of the discipline through lectures and books). 

The subsequent mathematics education module ProfiWerk (the title is a German 

shorthand for “Professionalization Workshop”) then implements in its first part the 

Principles 1 and 2, as it engages students in applying and assessing a variety of 

appropriate objects and ways/means of action, as well as in explicating and reflecting 

motives and goals of core mathematical activities. For instance, when the Toulmin 

model (Toulmin, 1958) is used to analyze proofs from university mathematics courses 

as well as proof products by pupils, students assess appropriate objects and establish 

connections between school and university practices. Or, when they practice and reflect 

on generic proofs, they connect proving as experienced in subject-matter modules with 
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proving as an activity to be staged in the classroom. (See Bauer, Müller-Hill & Weber, 

2021a, for details on Part 1 of ProfiWerk.) 

 

Fig. 2: Components and sequential structure of the longitudinal implementation 

The second part of ProfiWerk focuses on problem solving as a core mathematical 

activity. Students solve problems and then analyze their problem solving process in 

terms of the heuristics strategies they used and in terms of the problem solving phases 

that occurred. They thus analyze and reflect on motives, objects, content-related 

decisions, goals, and ways and means of action in their working processes. So, in 

addition to Principles 1 and 2, Principle 3 is implemented here in a focused way. It is 

a decisive feature of the course that students work on problem tasks both at university 

level and at school level. Through explicit assignments they compare the respective 

problem solving processes, thus comparing and connecting the two practices. (See 

Bauer, Müller-Hill & Weber, 2021b, for details on Part 2 of ProfiWerk.) 

The final module or the sequence, PraxisLab, consists of a field experience and an 

accompanying seminar. Here students get the opportunity to observe lessons and to try 

out their own implementations, which they plan based on motives, goals, suitable 

objects, and ways and means of action developed in ProfiWerk. As this entails 

explicating and reflecting content-related and didactical decisions within their own 

working, planning and staging processes, Principle 3 is fully implemented in this 

module. 

ABEB – An Implementation of the Three Design Principles in a Single Module 

The seminar design of ABEB (ABEB is a German shorthand for “Argumentieren, 

Begründen, Erklären und Beweisen im Mathematikunterricht”, in English: 

“Argumentation, reasoning, explanation and proof in mathematics lessons”) is one 
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possible way to apply the design principles within a single PST seminar to initiate a 

productive turn of discontinuity issues. 

The seminar agenda falls into four parts (see Fig. 3): The first and the last part are 

conducted mainly asynchronously (the closing session is the only exception), and 

include, as an application of Principle 2, individual reflexive writing tasks as core 

elements: The guided explication and reflection of motives, goals, and subjective core 

ideas regarding argumentation and proof in mathematics class as well as in university 

mathematics are central topics of the initial writing assignments. At the end of the 

seminar, the PST participants have to do an overall reflection that asks about changes 

in the views that they had written down at the beginning of the seminar.  

 

Fig. 3: Components and structure of the single-module implementation 

These asynchronous parts also serve as the start and end points of accompanying 

individual portfolio work, which is one important form of learning during the whole 

seminar.  

The middle part of the seminar agenda consists of two live parts, where work in pairs, 

plenary work and small group work are the crucial forms of learning. In the 

introductory part, participant PSTs get to know and practice techniques for proof 

comprehension and proof construction, in accordance with Principle 1. Participants are 

also engaged in dialogical reflection on explicated motives and goals for argumentation 

and proving, continuing the application of Principle 2 in the asynchronous parts. In the 

main part of the seminar, in each session one PST tandem applies and assesses the 

techniques learned in the introductory part on a given object, which could be a proof 

or a theorem on advanced school level. The tandem prepares an interactive presentation 

on their results for their peer students. This exemplifies Principles 1 and also 3, because 

the PSTs need to explicate and reflect content-related and didactical decisions to 

prepare their presentations. 

A second component of each main part session consists of new input and collaborative 

activities on mathematical argumentation (e.g., the Toulmin model), mathematical 

reasoning (e.g., the interplay of abduction, deduction, and induction as in Müller-Hill, 

2019, as well as the phases of argumentation and proving according to Boero, 1999), 

and mathematical explanation (e.g., invariance criteria for explanatory patterns, ibid.). 

This main part can be seen as a combined realization of all three design principles: 

PSTs are engaged in conducting and analyzing their own argumentation and proving 

processes, in analyzing pupils’ work products and learning environments, and in 
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developing approaches for possible implementation of argumentation and proof in 

lesson stagings. 

RESULTS 

The theoretical framework on core mathematical activities and the design principles, 

which we developed on its basis, provided strong guidance in finding course designs 

that address the empirically detected discontinuity issues regarding motives, objects, 

and way/means of action in their complexity already in early design stages. Evaluations 

of the ProPraxis module sequence, which has been running continuously since 2016, 

have been used as guidelines for adjustments and incremental improvements, but they 

did not point out the need for a fundamental reorientation. The ABEB seminar, first 

implemented in 2021, has entered a second iteration in 2022 with only slight 

modifications. 

In our longitudinal concept (ProPraxis), the three design principles are implemented in 

a cumulative ascending manner: 1, 1+2, 1+2+(3), 1+2+3. In the ABEB seminar, we 

employ Principle 2 as a bracket in the sense of individual pre- and post-seminar 

engagement with motives, goals and personal core ideas on a meta level: 2, 1+2, 

1+2+3, 2. This raises both the individual starting level of the participants and the 

collective starting level of discourse in the group. The intent is to support the 

subsequent application of all three principles in their quick succession of cumulatively 

ascending combinations. 

In order to understand possible effects of the courses, we examined the reflections that 

the students wrote as part of their term papers. We briefly discuss two examples. Nadja 

(in the ProfiWerk seminar) states: 

Looking back now, I can say that my understanding developed over the course of the 

semester: Through various examples from everyday school mathematics, I was able to see 

that the concepts and explanations were often equivalent to or quite close to those of 

university mathematics, although at first glance one would not have thought so.  

Apparently, Nadja has made new connections on the level of objects – she now relates 

argumentation in school and university to each other.  

Timo states in his overall reflection of the ABEB seminar: 

In my initial reflection at the beginning of the seminar I stated that there seems to be a gap 

between university and school mathematics, which makes it only conditionally possible 

and useful to incorporate proofs into school lessons. [...] Especially with the help of the 

methods for understanding and constructing proofs, which were shown and practiced at the 

beginning of the seminar, are from my point of view well suited to include proving 

activities into math lessons in different ways at one point or another. [...] Motives like 

gaining knowledge and comprehensibility were not very important for me, because I was 

of the opinion that proofs would complicate the lessons in many places and hinder 

understanding. [...] Through the learned methods and procedures, through which proofs, 
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but also argumentation, justification and explanation phases can be integrated into the 

lessons, this point of view has changed. 

His writing indicates that Timo has developed new constructions of meaning regarding 

proof under the impression of experiencing ways and means of action that were 

previously unknown to him. Furthermore, he has revised and extended his 

understanding of the range of motives for argumentation and proving in mathematics 

lessons. 

CONCLUSION 

We have presented an activity-theoretical conceptual framework on core mathematical 

activities and have shown how the design principles that we developed within this 

framework can be brought to fruition in concrete course designs in order to address and 

productively turn specific discontinuity issues. The interplay of the constitutive 

elements of the theory is mirrored in their implementation. As a consequence, elements 

that might otherwise have remained implicit were brought to the surface – they were 

given substantial weight and were specifically explicated and worked on in explicit 

student activities. Accordingly, we found evidence of new, coherent constructions of 

meaning in the students’ reflections. 

The fact that activity theory could be used so effectively here for the purposes of design 

convincingly underscores, in our view, the universal nature of the mechanisms it 

captures. 
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Many mathematics teaching students are highly dissatisfied with their studies and some 

criticize a lack of relevance. Hernandez-Martinez and Vos (2018) conceptualize 

relevance as a connection between subject matter, its usefulness, and the learner. To 

explore what would make mathematics teaching students ascribe more relevance to 

their studies, the first author examined links between university mathematics contents, 

students’ perceptions of its usefulness and students’ characteristics (Büdenbender-

Kuklinski, 2021). In this paper, we focus on students’ relevance attributions to 

explicitly asked-for contents and students’ own ideas of relevant contents. Our results 

suggest that lacking relevance attributions might be linked to lacking criteria of 

relevance in university mathematics studies, to lacking recognition of connections 

between university mathematics and the later teaching profession and to students’ 

insecurities. Based on our results we formulate hypotheses to guide future research 

into mechanisms behind mathematics teaching students’ relevance attributions. 

Keywords: relevance attributions, mathematics teacher education, insecurity, 

beginning of university studies, value construct.  

DISSATISFACTION AND LACKING RELEVANCE 

It is internationally common that mathematics teaching students at the beginning of 

their studies take courses in advanced mathematics taught by mathematicians (Even, 

2011). There is evidence for students’ high dissatisfaction with these courses, linked to 

their feelings of being unprepared for mathematics at university (Goulding et al., 2003). 

Often, future mathematics teachers do not see links between the mathematics they learn 

at university and the content they will teach at school (Zazkis & Leikin, 2010).  

Mathematics teaching students’ high dissatisfaction is also a problem in Germany as it 

may lead to dropping out of university (Geisler, 2020) and dropout rates are as high as 

58% (Heublein et al., 2020). Student dropout frequently occurs at the beginning of 

university studies (Geisler, 2020) and mathematics teaching students particularly often 

consider dropping out of university (Blömeke, 2009). As some of the dissatisfied 

students criticize a lack of relevance (Scharlach, 1992), we explored students’ 

relevance attributions to better understand the high dropout rates. Such knowledge 

could help in improving the communication about study programs and optimization 

possibilities between students and university officials. It might, for example, hint at 

relevance attributions’ connections to contents’ transferability to school teaching or 

school mathematics. Current support measures assume that presenting references 

between school and university mathematics support higher relevance attributions by 

mathematics teaching students (e.g., Eichler & Isaev, 2016). 
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EVIDENCE FOR LACKING RELEVANCE ATTRIBUTIONS  

Several conceptualizations for relevance connect relevance to value constructs. For 

example, Vollstedt (2011) relates personal relevance to the concept of value and 

Neuhaus and Rach (2021) use the concepts of utility and relevance synonymously 

where utility is a value component according to Expectancy-Value Theory (Barron & 

Hulleman, 2015). Value describes a person-object relationship and while originally the 

Expectancy-Value theory focused on the value of achievement tasks (Wigfield, 1994), 

the object of value can be manifold, for example it could be mathematics contents 

ordered by topic area or complexity level. In this paper, we consider relevance as a 

value construct and explore what kinds of content beginning mathematics teaching 

students would ascribe such value to. 

Earlier findings concerning the dissatisfaction of mathematics majors suggest that 

students criticize a lack of applicability of the study contents. Mathematics teaching 

students seem even more dissatisfied with their studies than mathematics majors 

(Brown & Macrae, 2005). In Germany, in the first semesters, teaching students and 

major students attend mathematics lectures together. These introductory lectures 

mainly treat topics of linear algebra and calculus. Applicability for first-semester 

mathematics teaching students would mean a connection to school mathematics and 

knowledge about didactical approaches concerning school mathematics. Hence, higher 

relevance attributions might be connected to a recognition of contents’ applicability for 

school. As mathematics teaching students moreover criticize that the complexity in 

which contents are presented is too high (Göller, 2020), they furthermore might ascribe 

more relevance to contents that are rather basic than complex.  

MODELLING POSSIBLY RELEVANT CONTENT 

We model contents mathematics teaching students might find relevant based on a 

conceptualization introduced by leading German mathematical associations (DMV et 

al., 2008). It concerns study contents that should be mastered by mathematics teaching 

students by the end of their university studies. Of course, catalogues of contents are in 

themselves often controversial, but we chose this conceptualization as the authoring 

associations have an important standing in German educational policies. We focus on 

recommendations for the subject areas of arithmetics/ algebra, geometry, linear 

algebra, and calculus. The competencies in each subject area are subdivided into four 

different levels that differ "according to content expansion, conceptual elaboration and 

degree of abstraction and formalization" (own translation, DMV et al., 2008, p. 2). 

These complexity levels become more complex from Level 4 to Level 1 and each 

subsequent level assumes all competencies of previous levels. Level 4 includes the 

basic competencies of any teacher, regardless of the grade level they teach, and Level 1 

includes competencies that a teacher teaching at the upper secondary level should still 

possess. Except for linear algebra, where competencies are described for Levels 3 

through 1 only, competencies are described on all four levels for each subject area 

(DMV et al., 2008). Based on the lists for each subject area, we modelled potentially 

relevant content of the mathematics teaching degree program. This model of relevance 
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content on the one hand comprises the dimension of subject areas and on the other hand 

the dimension of complexity levels. There are four different subject areas whose 

contents’ relevance we researched. The contents were furthermore differentiated 

according to degree of abstraction and formalization. We illustrate the nature of the 

levels in the section “Methods” with example items. Based on this model, we explored 

how relevant students find contents that educational policies ascribe relevance to. 

Of course, this model only covers a selection of university mathematics content that 

experts deem relevant for mathematics teaching students and there might be other 

contents students themselves find relevant. To find out which contents students name 

as relevant spontaneously, we asked students to name contents they themselves find 

relevant. 

RESEARCH QUESTIONS 

Given mathematics teaching students’ dissatisfaction and criticism of lacking 

relevance, we constructed a model of possibly relevant study contents.  In the following 

empirical part, we first explore to what extent these contents do indeed seem important 

to students. We explored the relevance ascribed to contents of different subject areas 

and of different levels of complexity as suggested by the model.  

Research question 1: How important do mathematics teaching students consider 

contents of different subject areas to be? 

Research question 2: How important do mathematics teaching students consider 

contents of different complexity to be? 

In addition, we examined which topics are mentioned by students when asked to name 

relevant things in their studies. 

Research question 3: What topics do teaching students themselves identify as relevant 

in their mathematics studies? 

METHODS 

Sample and research design 

To answer the research questions, we conducted a longitudinal quantitative study with 

two paper-pencil surveys. In the first survey, 162 students participated, 78 of whom 

were female, and in the second questionnaire survey, again 162 students participated, 

91 of whom were female. The two groups were overlapping, 109 participants took part 

in both surveys. Participation was voluntary and anonymous. The first survey took 

place in the second week of lectures of the winter semester 2018/ 19 in a course for 

first semester mathematics teaching students and the second survey in the penultimate 

week of lectures of the same semester in the same course.  

Measurement instruments 

For research questions 1 and 2, we developed a measurement instrument based on our 

model of relevance content. We created items that asked students to rate the importance 

of the content of various subject areas of different complexity on 6-point Likert scales. 

490



  

These items’ wordings cover all four complexity levels for all subject areas but linear 

algebra where items cover levels 3 through 1. They are very close to the formulations 

in the underlying conceptualization (DMV et al., 2008). Table 1 provides exemplary 

items for all four complexity levels for the subject area of arithmetics/ algebra. To 

answer the third research question, we applied an open-ended question: “Are there any 

other study contents that are particularly relevant to you? If so, which ones?” 

 In my mathematics studies it is important to me that ... 

Level 4 
... I have a basic understanding of the aspect variety of natural 

numbers, fractions and rational numbers. 

Level 3 
... I can describe the limits of the rational numbers in the theoretical 

solution of the measurement problem. 

Level 2 ... I can explain the completeness of the real numbers using examples. 

Level 1 
... I master conceptual tools such as equivalence classes for the formal 

foundation of number ranges. 

Table 1: Exemplary items for the relevance contents 

Analysis 

We conducted a mean value analysis and pairwise, two-sided t-tests with a significance 

level of 5% to answer the first two research questions. To answer the third research 

question, the answers to the open-ended question were evaluated using qualitative 

content analysis (Mayring, 2015). Based on the question “Which topics are mentioned 

in the open item?”, we inductively formed categories. 

RESULTS 

Preliminary analysis 

Survey  
Arithmetics/  

algebra 
Geometry 

Linear 
algebra 

Calculus 

T1 
M (SD) 5.06 (0.74) 5.07 (0.77) 5.15 (0.76) 5.06 (0.73) 

N 102 68 100 105 

T2 
M (SD) 5.03 (0.75) 4.78 (0.88) 4.89 (0.90) 4.91 (0.93) 

N 123 97 153 141 

Table 2: Relevance attributions to the subject areas 

In a preliminary analysis of the relevance attributions to the subject areas and 

complexity levels, we found that there were high variations in the numbers of students 

that had evaluated the relevance of different subject areas and complexity levels. In the 

mean value analysis of the importance of the four subject areas (cf. Table 2) all mean 

values at both survey times were above the scale’s mean and standard deviations were 
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similar. Noticeably fewer students gave an assessment of the importance of geometry 

than of the other subject areas. 

In the mean value analysis of the importance of the four complexity levels (cf. Table 

3), all averaged relevance attributions were above the scale’s theoretical mean, as well. 

Standard deviations of the variables increased with increasing complexities of the 

levels. Fewer students assessed the importance of more complex content. 

Survey   Level 4 Level 3 Level 2 Level 1 

T1 

M (SD) 5.14 (0.63) 5.15 (0.62) 5.20 (0.67) 4.84 (0.98) 

N 132 89 83 69 

T2 

M (SD) 5.02 (0.78) 5.00 (0.75) 4.94 (0.81) 4.74 (0.89) 

N 126 109 109 103 

Table 3: Relevance attributions to the complexity levels 

Results concerning research question 1 

We found little difference between the relevance attributions for the different subject 

areas (cf. Table 4).  

 
Arithmetics/   

algebra 
Geometry 

Linear  
algebra 

Calculus 

 T1 T2 T1 T2 T1 T2 T1 T2 

Arithmetics/   

algebra 
n.s.     

  

Geometry n.s. <.001 n.s.     

Linear  
algebra 

n.s. n.s. .041 n.s. n.s. 
  

Calculus n.s. n.s. .006 .043 n.s. n.s. n.s. 

Table 4: Mean differences between different subject areas at one survey point and same 

subject areas between survey points; p<.05 

The only statistically significant mean differences were those between T1 relevance 

attributions to geometry and linear algebra, as well as geometry and calculus, and 

between T2 relevance attributions to geometry and calculus. While relevance 

attributions for all four subject areas were somewhat lower in the second survey, none 

of the mean differences was significant on a 5% level. 

Results concerning research question 2 

Less relevance was attributed to more complex content: Mean differences between 

relevance attributions to Level 1 content and content on all other levels at both survey 
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points were statistically significant (cf. Table 5). From the first to second survey, 

relevance attributions concerning the complexity levels tended to decrease but only the 

mean difference between relevance attributions to Level 2 content at T1 and T2 was 

significant on a 5% level. 

 Level 4 Level 3 Level 2 Level 1 

 T1 T2 T1 T2 T1 T2 T1 T2 

Level 4 n.s.       

Level 3 n.s. n.s. n.s.     

Level 2 n.s. n.s. n.s. n.s. .034   

Level 1 <.001 <.001 <.001 <.001 <.001 <.001 n.s. 

Table 5: Mean differences between different complexity levels at one survey point and 

same complexity levels between survey points; p<.05 

Results concerning research question 3 

In responding to the open-ended question, students frequently stated that it seemed 

relevant to them to cover school mathematics content and mathematics didactics topics. 

Relevance was seen in addressing questions about the design of mathematics 

instruction and in addressing application references of mathematics. We found the 

categories “school mathematics/ mathematics relevant for school” (coded 5 times for 

T1, 5 times for T2), “didactics of mathematics” (coded 5 times for T1, 3 times for T2), 

“questions concerning the design of mathematics classes” (coded twice for T1, twice 

for T2), “applications of mathematics” (coded twice for T2), “mathematical topics” 

(coded twice for T2) and “history of mathematics” (coded once for T2). Most of these 

aspects have a strong connection to school and to school mathematics. Moreover, 

students made many more statements about what they found generally relevant in the 

teacher training program (e.g., didactics, psychology, internships) than about what was 

relevant in the mathematics program. For example, students would say “The study 

program should prepare us much more pedagogically”. Many students mentioned they 

would ascribe more relevance if their studies showed them that the teaching profession 

was right for them (“Above all, I think that we, as teaching students, should have more 

didactics and also internships, so that you know exactly whether the teaching 

profession is right for you”). Criticism was also named frequently (for example, about 

studying together with mathematics major students – “Prospective teachers should not 

have to study with the mono-maths students!”). All categories are presented in the first 

author's dissertation project (Büdenbender-Kuklinski, 2021). 

DISCUSSION 

In this paper, we dealt with three research questions. In an exploration of how important 

students consider given subject areas, the mean value analysis indicated rather high 

relevance attributions to all four subject areas. Hence, students of mathematics teaching 
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already seem to assess much of the content of their studies as relevant. There were less 

students who gave an assessment of the relevance of geometry. In a second mean value 

analysis, we explored how important students consider contents modelled on different 

complexity levels. Again, the students surveyed tended to attribute a high degree of 

relevance to the content of the various complexity levels though there seemed to be 

greater agreement about the relevance of less complex content which was seen as more 

relevant than more complex content. Our results also indicated that students ascribed 

less relevance at the end of their first semester than at the beginning. Analyzing an 

open-ended item to answer our third research question, we found that students named 

contents as relevant that were closely connected to school. We also found that some 

students connected a higher relevance to a personal feeling of security about their 

career choice. Finally, our analyses suggested that students rather criticized frame 

conditions of their studies than name relevant content. 

Results hinting at rather high relevance attributions contrarily to earlier findings 

That students found contents of various subject areas and complexity levels relevant 

matches findings by Bergau et al. (2013). They also found that teaching students 

wanted to acquire broad subject knowledge, which the students believed should go 

beyond the school subject matter. The often-described negative attitudes toward 

mathematics and the study of mathematics (e.g., Brown & Macrae, 2005; Scharlach, 

1992) do not seem to be confirmed here. Maybe the negative attitude does not concern 

the study content itself but results from feelings at the transition between school and 

university like being overwhelmed or feeling insecure.  

Lacking relevance attributions due to lacking criteria for what might be relevant 

It would also be possible that the criticism otherwise expressed results from students 

not knowing what could be relevant for them as teaching students in mathematics 

studies. They could thus initially criticize a lack of relevance but could recognize a 

relevance if suggestions are made to them as to where it could lie. The lower relevance 

attributions to geometry might then also indicate that students feel uncertain about 

geometry’s relevance. Geometry is not taught in the first semester so the uncertainty 

about its relevance might be connected to its missing appearance. If teaching students 

themselves are unsure at the beginning of their studies what could be relevant for them, 

the lack of treatment of geometry at the beginning of their studies could give them the 

feeling that it is not or hardly relevant at the university and they then adopt this assumed 

view as their own opinion. Our result of research question 2 that more complex content 

was seen as less relevant might also indicate that these were contents students did not 

recognize and thus could not assess as relevant. 

Differentiation in relevance attributions 

That students ascribed less relevance at the end of their first semester than at the 

beginning might indicate that they are more enthusiastic at the beginning and willing 

to ascribe more relevance but they lose motivation and enthusiasm throughout the 

semester after encountering various frustrations. As there were less students who gave 
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an assessment of the relevance of geometry, students also seem to differentiate between 

different contents in their attributions of relevance, at least to a certain extent. Earlier 

research found that geometry was not seen as a central part of mathematics by teaching 

students in open impulses (Winter, 2001, 2003), which could be interpreted as 

assessing it as little relevant. However, the importance of geometry was recognized by 

students in the past when they were directly asked about it (Winter, 2001), whereas a 

relevance in the present work was attributed at least to a lesser extent than in the other 

subject areas, despite direct inquiry.  

Relevance attributions’ possible links to school references 

That more complex content was seen as less relevant might also indicate that these 

contents seemed too far away from school mathematics for students and they thus 

found them irrelevant for their future job. This would fit with our finding concerning 

the open-ended question where students attributed a high degree of relevance to 

contents that closely connected to school. Hence, current support measures that present 

references between school and university mathematics to support higher relevance 

attributions by mathematics teaching students (e.g., Eichler & Isaev, 2016) seem to 

make a good approach. 

Relevance attributions’ possible links to feelings of insecurity 

That students named contents with close links to school as relevant contents might also 

indicate that they have problems with university mathematics. Lower relevance 

attributions might then be connected to feelings of insecurity. Possibly mathematics 

teaching students attribute less relevance to things they feel more insecure about to 

protect their own self-esteem. This possibility would also fit with our finding that 

students ascribed less relevance to more complex contents that they might have 

problems with. If students felt less secure at more complex content, they might also 

have ascribed less relevance here to protect their self-esteem as it would be less 

destructive for their self-esteem to have problems with contents that are not relevant. 

The lower relevance attributions to geometry might also be connected to feelings of 

insecurity with geometry as students have not yet engaged with geometry at university. 

Our finding that some students connected a higher relevance to a personal feeling of 

security about their career choice might hint at yet another kind of insecurity they might 

feel concerning their studies. Moreover, the finding that students rather criticized frame 

conditions of their studies than name relevant content in answer to our open question 

might suggest that their criticism of a lacking relevance is rather connected to a feeling 

of unease in their studies but not based on a clear idea of what is missing (cf. Wenzl et 

al., 2018).  

IMPLICATIONS AND OUTLOOK 

Our results serve as hypotheses to guide future research into mechanisms behind 

mathematics teaching students’ relevance attributions. They suggest that students’ 

relevance attributions might be supported by presenting links between university 
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mathematics contents and the teaching profession, as has been done, but there might 

be more possibilities. Students could profit from reflections on relevance criteria at the 

beginning of their studies, for example embedded in bridging courses. If insecurities 

concerning mathematical content are connected to relevance attributions, it might help 

to provide students with success experiences in their studies. Of course, our findings 

only reflect initial responses. This served our purpose of exploring the suitability of 

our newly developed measurement instrument but must not be mistaken to be suitable 

to answer questions about student thinking and their final judgments behind relevance 

attributions. Interviews with students might give more insights into their actual 

thinking. 
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Abstract. The paper reflects on the Inquiry Based Mathematics Education approach 

and the professional development of university mathematics lecturers. The main focus 

is on the design of tasks as a key aspect in lecturer training. The professionalisation 

activity we have established is rooted in a framework developed by the European 

project PLATINUM. We describe its basic ideas, the methodological approach and a 

didactical tool and focus on challenges and issues that arise in the design and 

implementation of mathematical tasks for an inquiry-oriented teaching. For 

empirical analyses, we use some data from a professional activity implemented at the 

Complutense University of Madrid in Spain and carried out jointly by a team from 

Madrid and Hanover.  
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INTRODUCTION 

The present study is located at the intersection of two issues: the methodological 

revitalisation of mathematics teaching towards inquiry-oriented approaches in the 

classroom, and the reflection about professional development of university teachers 

in a collaborative way. It is framed within the European project PLATINUM 

developed by researchers from seven European countries (Gómez-Chacón, et. al, 

2021). One of the goals of the project was to develop and pilot a platform for the 

professional development of mathematics lecturers on a regular basis in the format of 

a “hands-on” workshop. The need for such a training platform reflects the current 

situation in university mathematics teaching, where the lecturer has to find a balance 

between preparing knowledge and reflecting on pedagogic methods, as well as 

bringing complementary areas of expertise together in subject-didactic 

considerations. On the one hand, mathematics lecturers often have limited or no 

access to information about contemporary pedagogical and didactic methods1, which 

in turn might contribute to a lack of motivation to use them. On the other hand, 

lecturers, whose expert field is not mathematics education, cannot be expected to 

fully immerse themselves in mathematics education research2 to become experts in 

contemporary mathematics pedagogy and didactics. We are aware of these 

boundaries and therefore focus on a developmental process that different tools can 

foster in terms of knowledge about different teaching methods and how to apply 

them. This can then also have a positive impact on student performance. 

 
1 While didactics is a discipline that is essentially concerned with the science of teaching and instruction for any given field of study, 

pedagogy is focused more specifically on the strategies, methods and various techniques associated with teaching and instruction. 
2 This is due to a number of institutional restrictions, e.g. time, interest, possibility, institutional position, and expectations. 
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PLATINUM and the workshop we conducted are grounded in, among other things, 

the idea of creating Communities of Inquiry (CoI) (Jaworski, 2020). Collaborating in 

CoIs effectively supports lecturers in IBME and fosters their professional 

development in teaching mathematics, such that teaching of mathematics on the 

university level supports the aim to achieve students' conceptual learning of 

mathematics. The theoretical model of IBME in higher education by the PLATINUM 

project (Gómez-Chacón, et. al., 2021) introduces three levels which all approach 

teaching and learning through principles of development and interaction.  

The first level describes the inquiry in mathematics that is carried out by students and 

the lecturer in the classroom. Here student – lecturer interactions and student - 

material (e.g. tasks) interactions are essential. In the second level, lecturers reflect on 

the processes in the first level. Teaching material, e.g. learning tasks, are designed 

and adapted collaboratively based on the experiences in the classroom (i.e. first 

level). The lecturers discuss teaching and learning and give and receive feedback on 

the design of the learning tasks and their implementation. Together with lecturers, 

more experienced members and invited experts can promote and support professional 

development. In the third level, didacticians and educational researchers reflect 

together with the lecturers on the developmental process that takes place in the first 

and the second level, which also supports the developmental research. The 

boundaries between the first and second and second and third levels are crucial nodes 

in the development process. They are the communication and critical reflection and 

feedback nodes connecting lecturers and students and lecturers, researchers, and 

peers respectively. It is at this third level that the tools and reflections presented in 

this contribution are discussed, offering overviews of theoretical backgrounds for 

teaching. From this level, we carried out a previous collaborative work of deepening 

and discussing theoretical and practical aspects of IBME. We intend to support the 

reflective and evidence-informed teaching attitude of the workshop participants and 

promote different categories of reflections on the teaching and learning process.  

Following this model and taking the institutional restrictions of university 

mathematics lecturers into account, we focus here on a small-scale approach of task 

(re)design. The question is how or in which directions tasks could be developed or 

modified, essentially what makes a task an IBME task. In the international workshops 

of the PLATINUM project, we dealt with this question in different ways and 

developed various instruments. For the present paper we choose one of the tools 

developed and used to characterise and further develop inquiry-based tasks 

previously at local level in Leibniz University of Hannover (see section LUH 

workshop in Gómez-Chacón, et.al., (2021)). Two central characteristics of this tool 

are, on the one hand, its simple and direct usability by lecturers and, on the other 

hand, it enables to the interpretation of the effects of the tool against an elaborated 

subject didactic background (here ATD was chosen).  

In this contribution, we focus on our experience and data from the development of an 

International Workshop Inquiry-based education in mathematics and professional 
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development for university teaching that took place at Complutense University of 

Madrid (UCM) in 2021, which focused on the implementation of models and 

materials in Inquiry based mathematics education (IBME) developed in the 

PLATINUM project. In this workshop we introduced, among other things, the tool to 

support lecturers and teacher students in developing and characterising IBME tasks 

(Gómez-Chacón, et.al., 2021). The research question that we try to answer in this 

contribution is: What leeways and scope for actions could we observe with this tool? 

What difficulties occurred? 

The structure of this contribution is as follows: In the next section we describe the 

professionalisation workshop jointly conducted at the UCM. In what follows, we then 

focus on analysing data from this workshop and answering our research questions. To 

this end, we first address underlying theoretical and methodological aspects. We then 

present results of our analyses. Finally, we formulate some conclusions.   

IBM PLATINUM INTERNATIONAL WORKSHOP 

In the following we describe the institutional context and goals, the participants, and 

the pedagogy of the workshop. 

Institutional context and goals 

The concept of the PLATINUM workshop held in Madrid was developed with two 

boundary conditions in mind. First, we had to consider the methods and materials 

created locally by the three PLATINUM partners (Germany, Norway and Spain), that 

were developed specially to take the mathematical content into account. Second, the 

context of Professional development of mathematics teachers and lecturers at the 

institutional level at UCM. Here, the academic training of novice lecturers was a 

priority. IBME aspects worked out in the PLATINUM project had to be addressed 

within existing course structures for PhD students or assistant lecturers. From this 

point of view, there are principles of effectiveness in professional development that 

are promoted both in the content and in the training processes used. The following 

principles are focussed on the workshop: a) To have as a fundamental objective the 

participants’ learning; b) To be based on the mathematical knowledge that the 

participants must teach and c) To be connected to the teaching practices of the 

participants, serving as a support for them. So, the objectives of the workshop were: 

1) Practical initiation of university lecturers into an inquiry-based approach to 

teaching and learning of mathematics. 

2) Development of methodological skills to (re)design inquiry-based tasks. 

3) Knowledge of resources: examples of inquiry-based tasks and -projects in 

university mathematics teaching. 

In the following, we will focus on 2), specifically taking the mathematical knowledge 

to be taught into account. The specific approach of the workshop was the focus on 

modifying already existing tasks to become more inquiry oriented. With this focus we 
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also take into account institutional restrictions that lecturers have to face when they 

would have to develop new material from scratch. 

Participants 

Fifty participants from 8 different universities or mathematical research centres took 

part at the workshop. The profiles of the attendees were: new university lecturers of 

mathematics, mathematics research assistants, mathematical student-teachers of the 

master's degree in mathematics education3. In this contribution, we focus on this last 

group (21 participants from UCM).  

Pedagogy of the workshop 

The workshop was organised in the following steps: 

Step 1. Task 1, given before the start of the workshop. The participants were given the 

following task: For the development of the workshop bring one or two math activities 

that you find interesting or that may be problematic to work with the Inquiry Based-

Learning approach in university mathematics teaching. For those of you who are 

teaching, you can take it from the courses you teach. For those of you who are 

teacher students, you can take them from manuals and focus on the transition 

between high school and university or for the first academic year at the university.  

Step 2. Information given in the workshop about characteristics of inquiry-based 

tasks. Working groups were formed and each group chose a task for the group work. 

In the workshop, presentations about IBME aspects of tasks were given and a 

didactical tool to help characterising IBME aspects in tasks was provided (cf. next 

section and Table 1). The task given to the groups was: Which aspects of IBME does 

your task already fulfil? Which aspects (and why) does/should a modified task fulfil? 

Prepare a presentation of your group work result. 

Step 3. Sharing. Each group presented its modified task in the whole class group.  

Step 4. Going back and reflecting. Each group returns to the design of the proposed 

task and analyses the following aspects in depth: 1) Formulate learning goals for the 

original task and for the modified tasks; 2) Formulate an expectation horizon for 

solving the modified task; 3) Fill in the table and explain your choices. What did you 

find useful for IBME teaching, why did you not use the table, or why would you 

change it. 

THEORETICAL AND METHODOLOGICAL ASPECTS UNDERLYING THE 

DIDACTICAL TOOL AND THE ANALYSES  

Tasks are an important part of learning environments. Lecturers should develop their 

design skills on IBME tasks and to modify existing tasks in the direction of 

promoting more IBME. To support professional development of lecturers in this 

 
3 There are two types of participants, students who are going to teach at secondary level, but also PhD students in mathematics who 

are doing it for qualification. In Spain there is a figure of university teacher, called "associate" and they are teachers who are going to 

teach at both levels, secondary and university 
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respect, one challenge is to reflect about what it means for a task to be an inquiry-

based task in mathematics. For this we used a tool developed at the Leibniz 

University of Hannover to help identifying characteristics of inquiry-based tasks that 

focusses also on the mathematical content. The following dimensions are considered: 

a) Openness of the tasks (process open, open-ended, content-open), b) Enabling 

specific inquiry strategies (mathematical heuristics and developing solutions 

strategies), c) Enabling discourses on techniques, d) Enabling inner-mathematical 

knowledge linking, e) Enabling interdisciplinary knowledge linking4. The dimensions 

are compiled in form of a table to facilitate the use by lecturers (Table 1).  

 

Table 1. Table of dimensions for inquiry-based tasks 

An important aspect of using this tool is that it is not meant to classify tasks to be 

IBME tasks or not, so it is not meant for easy assessment. We see IBME-tasks as an 

open range of possible IBME orientations, were the dimensions above play major 

roles for (re-)designing tasks that allow to foster (eventually more) inquiry activities 

by students. The table and its use in the workshop represent a tool to help lecturers to 

collaboratively reflect about existing tasks, to redesign tasks with respect to the 

dimensions and to use it as a focus for discussion about tasks with colleagues.  

The development of this tool incorporated basic concepts of the Anthropological 

Theory of the Didactic (ATD) (Chevallard, 1999). In the following we will shortly 

introduce the concept of praxeology from the ATD that will serve as an analysis tool 

later. In ATD a praxeology is a basic tool to model knowledge in so called “4T-

models (T,τ,θ,Θ)”. They consist of a practical block (i.e. the praxis, T and τ) and a 

theoretical block (i.e. the logos, θ and Θ). Bosch and Gascón (2014) concretise: 

 A praxeology is thus an entity formed by four components, usually called the “four Ts”: 

a type of tasks, a set of techniques, a technological discourse, and a theory.  As activities 

and knowledge can be described considering different delimitations or granularities, a 

distinction is made between a “point praxeology” (containing a single type of task), a 

“local praxeology” (containing a set of types of tasks organized around a common 

 
4 Due to limitations of space we cannot go into details here. Please refer to (Gómez-Chacón, Hochmuth, et.al., 2021). 
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technological discourse) and a “regional praxeology” (which contains all point and local 

praxeologies sharing a common theory). (p. 69) 

We will mainly use the concepts of point praxeology and local praxeology to analyse 

how the participants used the table and what kind of modifications they made to their 

tasks. The overall idea is to analyse the works of the participants and then draw 

conclusions for the impact and success. For the analysis of the group work and the 

interpretation of modifications in view of the table and its dimensions we reformulate 

them and their aspects in praxeological terms.   

A next methodological step consists in embedding the tasks in the respective 

curricular context, outlining praxelogical landscapes and locating the initial tasks and 

the modified tasks in this map. Due to limitations of space, we will not go into the 

methodological details here, but we will illustrate the last aspect with an analysis 

vignette considering examples from the group results. We would like to notice that 

the participants did not know the ATD, nor was it our aim for them to learn about this 

theory. The restriction of the table to terms that seem technically evident, i.e. that can 

be used “superficially”, makes sense in view of the participants and the goals of the 

workshop. We introduced the dimensions and gave short explanations in the 

workshop but didn’t stress a precise definition of each dimension. They are 

formulated quite openly and such that there is room for interpretation by the 

participants of the workshops. This openness is deliberate because we did not want to 

focus on teaching the underlying ATD background of the dimensions but on 

promoting discussions among the participants. The meaning of the dimensions is 

allowed to be adapted to the context relevant for the participants. How the 

participants interpreted the meanings of the dimensions is also of interest. 

RESULTS  

In the following we present the results, regarding the dimensions of IMBE 

represented in the table and the usefulness of the table as a didactical reflection tool.  

Inquiry-based tasks and developed dimensions 

There were five groups, each (re)designing a task. Three groups focused on Solving 

Systems of Equations, one on the Derivative of Functions and one on the Concept of 

Vector Space. The transformation of the tasks essentially consisted of: 

- a transition from specific more or less straight forward calculations in view of tasks 

which address several independent punctual praxeologies (focussing mostly on 

techniques), to extended tasks addressing local praxeologies, i.e. tasks mobilising 

also technology aspects of the content (describing, validating, questioning, exploring 

etc.) and fostering a common technological discourse.  

- a problematisation from fixed procedural knowledge to a deeper understanding of 

definitions and concepts; the tasks were extended to focus on inner-mathematical 

knowledge linking that aims at connecting different mathematical concepts and 
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overcoming the compartmentalisation of mathematical knowledge (Kondratieva & 

Winsløw, 2018).  

Example 1: Derivative of a Function  

The original task is a point praxeology with task T to “calculate the derivative of a 

function”, that addresses the techniques of applying rules for derivatives. 

Technological aspects are not addressed by this task. Group 4 modified this to a task 

with several subtasks addressing different approaches and changes of representation, 

e.g. analytical term to graph or table, graphical differentiation5. The subtasks become 

more and more open. Inquiry strategies are interpreted by this group as the use of 

mathematical heuristics (see Polya or Schoenfeld for other forms of inquiry 

strategies). Inner-mathematical knowledge linking is understood as changing of 

representations and accompanying activities (drawing the graph, calculating the 

derivative graphically). Each subtask, again, represents a point praxeology. But in the 

course of all subtasks, also technological aspects are addressed that support the 

overall forming of a local praxeology. Some examples are the request to compare 

different approaches used and to explain the properties of the studied function based 

on the results from previous subtasks. The modified task from Group 4 also shows 

potential for further development of IBME aspects, that are not explicitly realised in 

this step of the task development. We see both, the progress of Group 4 and the 

potentials of our ATD based analysis method as very satisfactory. 

Task: Study the derivative of the function f(x)=(x^3-7x+6)/(x+5) with different 

approaches and using different tools. a) Calculate the derivative of this function: 

f(x)=(x^3-7x+6)/(x+5); b) Using the definition of derivative, get the derivative again. 

Compare the result with a); c) Draw the graph of the function, observe the maxima and 

minima and calculate its derivative at those points; d) Generate a table with the value of 

the derivative at each point calculated graphically using slopes. Plot this data on a new 

graph.; e) What are the properties of the function (deduced from its derivative)? f) Try to 

factor the polynomials of the function and then try to derive taking into account this 

factorization. 

Example 2: Solving Systems of Equations 

This topic was worked on by three groups (Group 1, 2 and 3). It is interesting to see 

the variety of approaches to the same topic by the three groups.  

Taking the (re)designed task from Group 2, the original task was a point praxeology 

with the task T to “find the solution of a system of equations using a specific 

method”, that address the technique of application of a concrete method. It was 

modified and opened up in several subtasks with:  

• respect to solution path: it is proposed to find the solution of a system of equations 

previously explaining several methods and to let the students use the method they 

want to solve the problem 

 
5 We present the tasks developed by the Groups in the supplementary appendix. 
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• respect to solution/result: it is formulation of a system of equations which is 

compatible indefinite and propose each group to find a solution which in several 

cases would be different. 

• respect to knowledge used: solving a system of equations geometrically and finding 

the relation with the real problem (giving meaning of the variables). 

• respect to knowledge applied: geometrical interpretation: plane intersection (inner-

mathematical knowledge linking). Science applications: balancing chemical reactions 

(interdisciplinary knowledge linking).  

The result of the modification is the integration of various point praxeologies into 

local praxeologies. Interesting here is also the interpretation of the group, that 

openness of a task also means freedom of the students to choose.  

 

Figure 1. Concept map of the topic 

Comparing all contributions of each of the three groups, we find that there is an 

evolution of the task and the related mathematical domain. The analysis of the 

conceptual structure of the topic gives rise to the concept map6 shown in Figure 1, in 

which four fundamental concepts are organised: representations, types of systems, 

solution methods and algebraic systems. Some relationships are established between 

the concepts shown and the semantic structure of the problems. As an example of the 

relationships established between the concepts, we take the solution methods. These 

methods are divided into matrix, algebraic and graphical7. For the concepts associated 

with the graphical method, the tasks modified emphasise that concepts, algebraic 

representations of equations, types of systems of linear equations and the semantic 

structure of problems are the basis of the study when dealing with the graphical 

method. For some groups, the design of IBME tasks also entailed the possibility of 

questioning the curriculum and the predefined organisation of the content. The more 

or less strict organisation of subtasks seems at first to contradict the possibility of 

 
6 We also use a concept map instead of a praxeological map for space reasons, to provide a rough overview of the diversity of 

solutions among three groups. Even though they work on the same topic, they follow quite different paths. 
7 This is associated with the relative position of the lines and planes on the plane or on the space according to the dimensions of the 

system and the means in the determinate, indeterminate compatible systems or to the incompatible systems definition. 
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opening up tasks towards more IBME. But for those groups this was a method to 

keep up the compatibility of task and curriculum. 

Table-tool valorisation 

The workshop focused on work on inquiry dimensions of mathematical content. 

Thus, the investigation targeted mathematical knowledge, in particular with the 

development of technological aspects (from point- to local praxeologies). In view of a 

particular task, the table used helped to generate questions about its IBME 

characteristics and further development possibilities. Four of the five groups use the 

table, even the group that did not use it highlighted its benefits. In their own words: 

“We did not use the table as such, but rather talked about the different contents that were in 

it, since in our case, the opening of activities only occurs in the last section… It is true that 

there can be several techniques, especially in the simplification of the matrix in section d, 

which allows us to affirm that in terms of techniques it is an open process”. The table was 

not simply applied by the students but provoked intensive group discussions. There 

were also difficulties that provoked reinterpretations of terms in it, that were 

interesting for the analysis. The researchers had ATD Theory as a background, so 

there are many aspects that are implicit and not transparent to the user. However, the 

analyses show that using the ATD conceptualisations that went into the development 

of the table also as an analysis tool for the students works, we see a lot more potential 

in the tasks and possible further developments than the students were able to produce. 

This is not a deficit of the students. The results are remarkably good for a short 

workshop with only a short introduction into the table, and without any introduction 

into the theoretical background. This also promotes the question how much of the 

theoretical background could be introduced to develop this kind of workshop and 

instruments further. This is an open balancing act between too much and too little 

theoretical background. And, so to speak, a basic problem for the further 

development of professional development workshops. 

CONCLUSIONS  

In our final section we bring all of the above together, addressing how the 

development of the workshop and the use of to support lecturer in developing and 

characterising IBME tasks opened up avenues of professional development. We have 

indicated the ways in which our work has related to PLATINUM’s three-level model. 

The observations made can be interpreted against this background. The modification 

of the initial tasks has led to an increase in the complexity and depth. In the design, 

the participants tried to state the concepts according to the prescribed curriculum and 

to establish connections between different registers (geometric, algebraic) and 

regional praxeologies that are usually less explicit in the lessons.  Regarding the three 

levels mentioned in the introduction the following aspects can be outlined: a) 

Students: Expansion of the ability to act, explicit addressing of 

technological/conceptual aspects, etc. b) Lecturers: Requirements for lecturers, pre-

structuring etc., necessary or helpful, the exchange on how small-step and guiding 
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necessary and helpful etc. c) Research: concept of training etc. but also needs for 

further research with regard to the modified task (beyond anecdotal evidence).  

The tool table is one example of promoting connections between layers 3 and 2, i.e. 

between research and teaching - but not only the table alone. Also, its embedding in 

the overall workshop. However, these interactions must be balanced in the sense that 

we as researchers (layer 3) cannot “drag” lecturers into this layer (sometimes 

researchers are also lecturers, we also reflected on this double position in Ruge & 

Peters (2021). These results encourage to develop research-based instruments like the 

table and the workshop for professional development that promote collegial and 

collaborative reflection and discussion.  

Acknowledgments: Supported by Instituto de Matemática Interdisciplinar (IMI) 

Spain, and European Project PLATINUM (2018-1-NO01-KA203-038887). 
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Academic mathematics (AM) has a central role in the preparation and professional 

development of secondary mathematics (SM) teachers, yet in recent years there is 

growing evidence that realizing the affordances of AM for SM teaching is not 

straightforward. This study is part of a long-term research program named M-Cubed, 

that seeks to investigate the processes involved in utilizing AM for informing SM 

teaching. In M-Cubed, mathematicians and experienced SM teachers watch videotaped 

SM lessons and discuss teaching alternatives. This study explores how, in this setting, 

mathematicians and teachers make sense of authentic teaching moves and decisions, 

how they invite each other to adopt new perspectives, and how these invitations are 

met. Findings provide insight into the social boundary between mathematicians and 

teachers, and into how opportunities for learning through crossing this boundary may 

be realized. We conclude by discussing possible implications for research and practice.  

Keywords: knowledge for teaching, advanced mathematics, teacher education, cross-

community encounters, boundary-crossing. 

INTRODUCTION 

Teachers’ engagement with academic mathematics (AM) and interaction with 

mathematicians are key components in the secondary mathematics (SM) teacher 

preparation programs of mathematics teachers in many countries (Tatto et al., 2010). 

The literature suggests various potential benefits of teacher-mathematician encounters 

for SM teachers. For example, it has been suggested that such encounters may support 

the development of teachers’ Horizon Content Knowledge (Ball & Bass, 2009; 

Wasserman, 2018); develop teachers’ understandings of and about the discipline of 

mathematics (CBMS, 2012; Even, 2011); and inform instructional decision-making 

(Cooper & Pinto, 2017; Wasserman & McGuffey, 2021). Nevertheless, empirical 

studies have indicated that in practice, AM studies may only have a limited impact on 

SM teaching, thereby suggesting that it is far from trivial to translate knowledge of AM 

into knowledge for teaching SM (Biza et al., 2022; Zazkis & Leikin, 2010).  

Relatively little is known about the processes involved in translating AM knowledge 

into knowledge for teaching SM, in part because such processes are often tacit and 

highly personal, in the sense that they are inspired by experiences of individual teachers 

in their particular AM studies (Zazkis, 2020). Research suggests that these translation 

processes build not only on deep understanding of AM but also on knowledge for 

teaching SM, as well as on knowledge about connecting AM and SM teaching (Dreher 

et al., 2018; Pinto & Cooper, 2022; Wasserman et al., 2018; Wasserman & McGuffey, 

2021). In addition, Cooper and Pinto (2017) suggest that such a translation may 

manifest in back-and-forth moves between different perspectives on mathematics, its 
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teaching and its learning, mutually enriching each other. All this suggests that realizing 

the potential affordances of AM for SM teaching is far from trivial, and that teacher 

education should look beyond development of teachers’ AM knowledge in order to 

support and encourage teachers’ in utilizing AM in practice, specifically in the context 

of teacher-mathematician interaction (Biza et al., 2022; Wasserman et al., 2018). 

This study is part of a long-term research program, named M-Cubed, that investigates 

processes involved in utilizing AM for SM teaching (Pinto & Cooper, 2022). In M-

Cubed (Mathematicians, Mathematics teachers, Mathematics teaching), small groups 

of mathematicians and experienced SM teachers view videotaped SM lessons and 

jointly inquire into mathematical issues and pedagogical dilemmas that they recognize 

therein. This research setting can be seen as a laboratory for generating and studying 

implications of ideas and perspectives from AM, for the consideration of authentic 

instructional situations. Within M-Cubed, the present case study investigates processes 

underlying realized and unrealized opportunities for utilization of the mathematicians’ 

perspectives and knowledge for informing SM teaching. We conceptualize and study 

these processes in terms of boundary crossing, as we discuss in the next section.   

THEORETICAL BACKGROUND 

The design and conduct of M-Cubed are informed by the literature on boundary-

crossing, which characterizes dialogical learning processes in cross-community 

interactions (Akkerman & Bakker, 2011). They define boundaries as a social and 

cultural discontinuity in action or in communication. Researchers have suggested that 

teacher-mathematician interactions may be framed as boundary encounters (Goos & 

Bannison, 2018; Pinto & Cooper, 2018, 2022). Pinto and Cooper (2018, 2022) have 

stressed that discontinuity in these interactions is manifested not merely in 

disagreements between the two parties but rather in tacit, incommensurable 

perspectives, which are difficult to recognize and make explicit, and that such 

discontinuity can hinder communication and collaboration between mathematician and 

teachers. Specifically, in terms of the practical rationality of teaching (Herbst & 

Chazan, 2020), mathematicians tend to have a strong obligation to the discipline, i.e., 

to mathematical precision and rigor, even when faced with pedagogical dilemmas, 

while teachers tend to have a strong obligation to students and their wellbeing and to 

the functioning of a class as a social entity. These different obligations can lead teachers 

and mathematicians to endorse conflicting courses of action. Pinto and Cooper (2018, 

2022) have shown that such tensions can challenge both parties to engage in boundary 

crossing (Akkerman & Bakker, 2011), namely, to make explicit and possibly 

reconsider their positions, thus making public and visible their processes of exploring, 

elaborating and refining potential utilizations of AM for informing SM teaching. 

The literature indicates various factors that may encourage and support boundary-

crossing (Akkerman & Bakker, 2011). For example, productive communication across 

discursive boundaries can rely on boundary objects (Star, 2010), that is, objects that 

are, on the one hand, robust enough to maintain a common identity across communities 

working with them, yet, on the other hand, flexible enough for the parties to interact 
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with them differently. In M-Cubed, the videotaped SM lesson episodes function as 

boundary objects. The episodes are selected by the researchers from the archive of the 

VIDEO-LM Project (Karsenty & Arcavi, 2017). Selection is based on various criteria 

that help in identifying potential opportunities for boundary crossing. The research 

question that guided this case study was: What are the opportunities for boundary 

crossing in teacher-mathematician interactions, and how may they be realized? 

METHODOLOGY 

Data for this study consist of 7.5 hours of videotaped discussions in three M-Cubed 

sessions (2.5 hours each) held in 2020, with the participation of five mathematicians 

(herein marked as M1-M5), five SM teachers (marked T1-T5), and two mathematics 

educators, the first and second authors of this paper. All of the participants expressed 

interest in, and openness to, the project’s premise of learning from and with one another 

about the affordances of AM for teaching SM. All the mathematicians and teachers 

have more than a decade of teaching experience. Three of the five mathematicians have 

taught mathematics courses for teachers. All five teachers have experience as students 

in AM courses. The first session of the three documented for this case study was held 

in-person, and the other two were conducted remotely due to the COVID-19 pandemic. 

Within data reduction, we analyzed plenary discussions that took place before and after 

participants watched the videotaped SM lessons, as these discussions were particularly 

rich in cross-interactions between teachers and mathematicians. These discussions 

were fully transcribed and selectively translated to English by the authors. 

The data analysis had three focal points: the emergence of a boundary in the M-Cubed 

discussions; opportunities for boundary crossing; and the realization of these 

opportunities. The first stage of analysis focused on identifying potential boundaries. 

We examined how different participants interpreted the goals of the joint inquires and 

how they approached them: the dilemmas they addressed, claims and observations they 

made, and justifications they provided. We then considered how different speaking 

turns relate to one another, not only in the sense of whether the participants agree or 

not, but also in the sense of being comparable, in terms of the questions that are being 

explored, and the implied grounds for endorsing or rejecting answers. The second stage 

of analysis focused on identifying opportunities for boundary-crossing. Here we looked 

for explicit or implied invitations from a participant to participants from the other 

community to make explicit and explain tacit aspects of their perspectives, or to adopt 

a new perspective. Finally, in the third stage of analysis, we explored whether and how 

invitations for boundary crossing were accepted, guided by different processes of 

dialogical learning identified in the literature, such as reflection and hybridization 

(Akkerman & Bakker, 2011; Pinto & Cooper, 2018, 2022).  

FINDINGS 

Our analysis highlighted various manifestations of boundary and boundary-crossing. 

In this paper we focus on one particular instance from the M-Cubed sessions that 

illustrates both realized and unrealized opportunities for boundary crossing. We first 
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provide an overview of the videotaped lesson episode that the participants discussed, 

and of mathematical ideas that were explored or implied in this discussion. Then, we 

discuss the boundary that emerged between the teachers and the mathematicians, three 

opportunities for boundary crossing that were unrealized, and one opportunity that was.  

A student’s unexpected question on Apollonian circles 

The M-Cubed session discussed herein revolved around a short exchange between a 

SM teacher, whom we will call Ms. L., and three SM students in a 12th-grade advanced-

track class. The exchange took place in an Analytic Geometry lesson, after the teacher 

presented and solved the following problem:  

What is the locus of points whose distance from (4,0) is twice their distance from (1,0)?  

The answer is an Apollonian circle of radius 2 centered at the origin (see Figure 1). 

Figure 1: The locus of points whose distance from (4,0) is twice their distance from (1,0) 

After Ms. L. concluded the solution, a student, whom we will call Ophir, asked a 

question, which triggered the following short exchange: 

Ophir Can I define circle in this manner? 

Ms. L. You’re asking if it will always come out to be a circle? 

Ophir Of course, it will. 

Ms. L. You all heard his question? Can he define a circle according to this 

property?... If the points are not (4,0) and (1,0)? 

Daniel It depends on the relationship between the two points. 

Ms. L. What if they are general points? (k,0) and (p,0)? 

Gefen Why zero? 

Ophir I can take those two points and do this (gestures a translation), and 

the circle will simply move together with them. 

Ms. L. Ok. This will be part of what I will assign, as general proofs. Your 

questions are excellent, I just want to know if it will always be a 

circle, and if it will always be [centered at the origin]. I see you’re 

starting to guess. And now a new question. 

Before moving to the M-Cubed discussion, we offer a few observations. It is important 

to note that in Ophir’s question – “Can I define a circle in this manner?” – the term in 

this manner is not clear. It appears that Ophir suggested generalizing the solution in 

some manner, but exactly how is open for interpretation. For example, Ophir may have 
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meant that two points in the plane, other than (4,0) and (1,0), may be considered. Ms. 

L. seemed to have interpreted Ophir’s question as referring to any two points on the x-

axis, and Gefen and Ophir generalized even further to any two points on the plane with 

the same y value. It is also not clear what Ophir meant by define. Ophir may have 

referred, as Ms. L.’s response seems to suggest, to the existence of a sufficient 

condition (“it will always come out to be a circle”), but he may have implied a 

necessary condition, or a definition, i.e., a sufficient and necessary condition. Thus, 

there are many different ways to derive a general mathematical statement from Ophir’s 

question. Here are a few options: 

• For any two given points A and B on the plane, the locus of points whose distance 

from point A is twice their distance from point B is a circle.  

• For any positive k, the locus of points whose distance from (4,0) is k times their 

distance from (1,0) is a circle.  

• For any positive k and for any circle C with radius k on the plane, there exist 

points A and B on the plane such that C is the locus of the points whose distance 

from point A is k times their distance from point B.  

• A circle is the locus of the points whose distance from some point A is k times 

their distance from some point B. 

Notably, some statements are true, and some are not. In the discussion between Ms. L. 

and her students, various statements were implied, but none were made fully explicit. 

Unrealized opportunities for boundary crossing 

After watching this exchange between Ms. L and her students, the participants engaged 

in exploring alternative responses to Ophir’s question. The conversation involved 57 

talk turns among two mathematicians and four teachers. At first, even though all the 

discussants engaged with the same task, two distinct conversations took place. In one 

conversation, the mathematicians made mathematical observations while suggesting 

interpretations to Ophir’s questions. In the second conversation, the teachers made 

observations about the classroom environment, while considering merits and risks of 

alternative teacher responses. These conversations were distinct in the sense that even 

though the mathematicians and teachers took turns and appeared to be responding to 

one another, they did not address questions and observations raised by discussants from 

the other community, as the following talk turns exemplify: 

90 M1 By the way, the student at the end who realized that it is possible to obtain 

all circles in this manner, it would be very interesting to unpack his 

thinking, what he fixed and what he changes in his head. 

1011 M2 At first, [Ms. L.] did not even understand what [Ophir] was asking. She 

said: “You ask if it will always turn out that way”. That is not what he 

asked at all. He asked if it could be taken as a definition of a circle. 

 
1 Some turns were omitted to maintain coherency, as evident in the turn numbering.  
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104 T4 It's a dilemma I have in nearly every lesson, especially with high-ability 

students. There will always be one or two [students] who will drag me 

there. It comes with a price. My first inclination is to play along, but then I 

lose all the rest [of the students].  

105 M1 And if Ophir would have been told “let's find the parameterization, just be 

careful of straight lines”. Is it too dangerous? 

107 T1 Why not put it to everyone? “This is what he asked, what do you think?” 

111 T3 […] They could benefit from it.  

We consider these distinct conversations as an indication of a boundary. The teachers 

and the mathematicians appeared to be interpreting the goals of inquiry differently and 

to be utilizing distinct types of knowledge, consequently leading the two communities 

to develop insights separately instead of learning from and with one another.  

Our analysis identified three unrealized opportunities for boundary crossing, where 

implicit invitations made by discussants to the whole group, to examine a specific issue 

from a particular perspective, were not picked up by members from the other 

community. For example, in turn 90, M1’s comment “it would be very interesting to 

unpack his thinking” can be seen as an invitation for an exploration of different 

mathematical statements that could underlie Ophir’s question, yet in the turns that 

followed, the teachers did not react to this invitation. In turn 105, M1 asks a question 

that is within the teachers' area of expertise ("Is it too dangerous?"). In doing so, M1 

invites teachers to examine a concrete teaching reaction, albeit from a perspective 

focused on how the mathematical discourse could be developed in the classroom. Here 

again, M1’s invitation is left unanswered. Conversely, in turn 107, T5 invites all 

participants to consider a possible teacher response (“Why not put it to everyone?”) 

without specifying what mathematical idea could be addressed. This question initiated 

a discussion among the teachers about how different students may respond (turns 108-

127), without any participation on the part of mathematicians. 

A realized opportunity for boundary crossing 

Although M1’s first two invitations for an exploration of what mathematical statement 

could underlie Ophir’s question were left unanswered, he continued raising this issue. 

In turn 128, M1 circles back to Ophir’s intentions:  

128 M1 It’s not clear what [Ophir] meant. That is, I would really like to know what 

quantifiers he had in mind. Maybe in high school it’s difficult to expect it 

[…], but in university I would have said: okay, tell me “there exists such 

and such”, phrase it as a clear logical statement. What do you mean? 

Here, M1 interweaves the two different conversations. He places a focus on the 

mathematics but also elaborates a concrete teaching response and questions its 

appropriateness for SM, while addressing his own teaching approach as a university 

lecturer. Presumably, this interweaving may have been the trigger that led the teachers 

to respond to M1’s third invitation, leading to a boundary-crossing event where M1 
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and the teachers built on each other's statements in a joint exploration. This exploration 

started with one teacher somewhat contesting M1’s comment (“Isn’t it clear what he 

meant? To us as teachers?”), which led M1 to further elaborate his perspective: 

131 M1 Is it clear to you? I mean, is it that for any circle there exist two points such 

that the ratio [of distances] is one to two? Or that for any circle there exists 

[a ratio] such that for these two points [this is the ratio of distances]? What 

is [Ophir] quantifying on? 

132 T1 The way I understood it is: can you define a circle in this manner. 

134 M1 What is “in this manner”? 

135 T1 With two points… 

139 T3 In the same form. 

140 T4 The distance from A is twice the distance from B. 

141 M1 Perhaps not twice the distance? Perhaps [the ratio] is a parameter? 

142 T3 Not necessarily twice. 

We observe that in this short exchange, the teachers started considering various 

interpretations to Ophir’s question, addressing different ‘parametrizations’ and 

‘quantifiers’ as M1 suggested, such as the relative position of the two points (turn 139) 

or the ratio  between the distances (turns 140-142). Thus, the teachers crossed the 

boundary, no longer focusing only on pedagogical risks and merits, but actively 

investigating Ophir’s question from a mathematical perspective. Whereas this 

conversation was cut short, and the teachers and the mathematicians did not follow 

through and explicated the possible interpretations of Ophir’s question, nor have they 

derived pedagogical implications, there are still indications that this brief boundary 

crossing was meaningful for the teachers, for example by helping them to make explicit 

why they appreciated Ophir’s question. On several occasions, teachers remarked that 

Ophir’s question is ‘beautiful’ but without elaborating why. Following this exchange, 

one teacher remarked:  

147 T5 Still, it is a beautiful question because [Ophir] knows one definition [for a circle] 

and the question was whether the same shape can be defined in another way. 

Here, T5 observes that the beauty of the question is linked with the fact that a student, 

who already knows one definition for a circle, tries to establish another definition. The 

word "still" implies that even if the student may not have thought of all the 

mathematical possibilities that the discussants started to unpack, the question is 

nevertheless beautiful in exploring alternative, equivalent definitions. 

DISCUSSION 

Our aim in this study was to investigate what opportunities for boundary crossing may 

rise in teacher-mathematician interactions that revolve around concrete SM 

instructional situations, and how these opportunities are realized. The analysis we 

presented, of a joint exploration between mathematicians and experienced SM teachers 

regarding possible reactions to a student’s unexpected question, has revealed both 

realized and unrealized opportunities for boundary crossing.  
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The study highlights mathematicians’ and teachers’ different ways of making sense of 

instructional situations and inquiring into possible pedagogical dilemmas that these 

situations may introduce, for example in terms of what they notice and how they 

interpret what they notice. Our analysis demonstrates how these differences may create 

a boundary within teacher-mathematician interactions. When exploring possible 

alternative reactions to Ophir’s question, at first the conversation divided. Even though 

the teachers and the mathematicians engaged in the same task, they interpreted the task 

differently, approached it from different perspectives, and responded to members from 

their own community. In particular, the teachers rarely engaged in mathematical 

discourse, whereas the mathematicians expressed less interest in translating their 

interpretations and observations into practical pedagogical insights. This dynamic does 

not encourage cross-interactions and thus limit opportunities for boundary-crossing.  

However, our analysis also suggests how this dynamic may change. On several 

occasions, discussants made explicit invitations for the group to inquire into possible 

reactions to Ophir’s question from a specific perspective. At first, these invitations 

were confined to one perspective – of the teachers’ or of the mathematicians’ – and 

were only accepted by members of the same community. But when an invitation by a 

mathematician interweaved both perspectives, it seemed to have ‘broken’ the 

boundary, leading teachers to adopt, even if only momentarily, the mathematician’s 

perspective on the instructional situation, leaving aside the question of possible merits 

and risks of different reactions to Ophir’s question, and exploring instead how the 

question can be interpreted mathematically in different ways. 

Our study underlines the profound difference between interaction and boundary 

crossing. Previous studies have emphasized the importance of teachers’ interaction 

with mathematicians and of teachers’ exposure to the ideas and perspectives of AM 

(CBMS, 2012; Wasserman et al., 2018). From this perspective, the M-Cubed session 

we investigated may seem highly beneficial for teachers, since the mathematicians and 

teachers appeared to be engaged in cross-interactions and responded to one other in 

what may seem, at least from a surface examination, as a joint inquiry. However, 

careful analysis of this session reveals that teacher-mathematician interaction, even 

when it is focused on SM teaching and even when it includes exchange of ideas and 

perspectives, may not suffice for a meaningful engagement of the teachers with AM or 

with mathematicians’ perspectives. Such interaction can be visualized as a movement 

– of the mathematicians and the teachers – on two parallel lines of inquiry, leading to 

different answers to different questions, and thus not providing a real possibility for the 

two sides to agree or disagree with one another, and learn from their cross-interaction. 

Finally, we make three observations on the boundary-crossing event we presented. 

First, this event focused on different ways of ‘mathematizing’ a student’s question so 

to unpack implicit mathematical ideas that could be addressed in a response to the 

question. However, this inquiry did not materialize into pedagogical insights and 

concrete responses, and more research is necessary to determine whether this particular 

inquiry represents a more general form of utilization of AM for SM teaching, and what 
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could be the affordances of such utilization. A second observation is that this boundary-

crossing event involved a shift of the teachers from their own inquiry to that of the 

mathematicians. In this study, such shifts were much more common than shifts of the 

mathematicians from their inquiries to those of the teachers. Further research may help 

to shed light into this observed phenomenon. A third observation relates to the key role 

of brokering in teacher-mathematician interaction (Akkerman & Bakker, 2011; Pinto 

& Cooper, 2018, 2022). As we have shown, opportunities for boundary crossing can 

be subtle and nuanced, thus could be easily missed. Further research of the realized and 

unrealized opportunities for boundary crossing in teacher-mathematician interactions 

can help facilitators of such interactions to identify and utilize boundaries that may 

otherwise remain implicit, and proactively encourage boundary-crossing. 
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This paper argues that inquiry into what we call the Brousseaunian guessing game 
evokes statistical modelling where various concepts and methods in inferential 
statistics are integrated into relatively large knowledge organisation. To achieve this, 
an implementation of inquiry-based learning was conducted in a course of teacher 
training programme in a Japanese university, and we analysed the process of inquiry 
by using some notions offered by the anthropological theory of the didactic. In 
particular, the concept of modelling was formulated by the notions and thereby the 
description of the modelling process revealed that the probabilistic and statistical 
knowledge was developed meaningfully for the students in their autonomous inquiry. 
Keywords: Teaching and learning of specific topics in university mathematics, novel 
approaches to teaching, inquiry, reference praxeological model, trophic relation. 
INTRODUCTION 
This paper reports a result of a didactic engineering conducted within the research 
program of the anthropological theory of the didactic (ATD, hereafter). In the didactic 
engineering, an inquiry-based statistics course was designed with the intention of 
examining the possibility of what we call the Brousseaunian guessing game as an 
inquired material. The guessing game, whose original setting was presented in 
Brousseau, Brousseau, & Warfield (2002), is a situation given by the following 
description:  

There is a box containing a large number of red and white 
marble balls with equal proportions, and we have three empty 
plastic bottles whose inside cannot be seen from outside 
(figure 1). Now, five balls are picked out and put into one of 
the bottles without anyone looking at the balls. We do this for 
the other bottles. Under these conditions, the followings are 
allowed for each of the bottles: 1) Drawing out a ball from the 
bottle to check the colour of the ball and put it back; 2) 
Repeating the first operation. 

The original game was designed to teach probability and statistics for elementary 
school students. It was referred as one of a typical teaching environment to enable 
students to learn the piece of knowledge involved—namely, fundamental situations. In 
contrast, the present study aims to investigate what probabilistic and statistical 
knowledge can be developed by university students through inquiring into questions 
raised from the guessing game. 

Figure 1. The bottle. 
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THEORETICAL FRAMEWORK AND RESEARCH QUESTION 
To investigate the possibility of the guessing game, we need some models that enable 
us to describe the process of knowledge development in the inquiry. In this paper, the 
notion of praxeology offered by the ATD is used to do this. Praxeology, a term made 
of the praxis and logos, is an epistemological model of any human activity, which 
consists of the quadruple of a type of tasks T, technique τ, technology θ and theory Θ. 
A praxeology is denoted by ℘, that is, ℘ = [T / τ / θ / Θ]. The pair of a type of tasks 
and a technique is called the praxis block of a praxeology. On the other hand, the logos 
block of a praxeology consists of the pair of a technology and a theory. The praxis 
block and the logos block of a praxeology correspond to know-how and knowledge of 
a human activity, respectively. Therefore, a praxeology is an epistemological model 
for grasping both any human practice and knowledge. 
Let us introduce here a theoretical construct that has not been used very often in the 
ATD for describing the growing process of praxeologies, that is the notion of trophic 
relation (cf. Chevallard, 2022). Any praxeological entity ℘0—which is able to not only 
represent a praxeological organization ℘, but also stand for its part metonymically, i.e., 
T, τ, θ, or Θ—can get larger and more sophisticated through integrating other 
praxeological entities ℘1, ℘2, ..., ℘i. Such relations of ℘0 to ℘1, ℘2, ..., ℘i are called 
the trophic relations—℘1, ℘2, ..., ℘i are the foods of ℘0. The case of the trophic relation 
of ℘0 to ℘1 is denoted by: ℘0 ↩ ℘1, where the left arrow with hook “↩” means eating. 
Here, a praxeological food is anything that is taken in for evoking a larger praxeology 
from the original praxeology, and all such taking in is called eating. Foods can come 
from various sources, such as books, the internet, teachers, and other media, as well as 
from knowledge students already have. The sequence of the eating by ℘0 of ℘1, ℘2, 
℘3 in succession can be denoted by: [[℘0 ↩ ℘1] ↩ ℘2] ↩ ℘3. Let us emphasize here 
that this diagram should be read as the following: ℘0 successively eats ℘1, ℘2, and then 
℘3. Such succession of trophic relations is actualised through the time flow with 
different trophic moments like the moment for “eating ℘2”. In this paper, we regard a 
series of trophic moments as a process of modelling. Namely, any praxeological eater 
℘0 functions as a system to be modelled, as well as the eating by ℘0 of a praxeological 
food ℘1 brings about a new model ℘0′ of the system ℘0: ℘0′ = ℘0 ⨁ ℘1 = [℘0 / ℘1]. 
This means that the model ℘0′ of the system ℘0 has the praxeological entities which 
belong to ℘0 or ℘1. Any whole process of such praxeological genesis starting from ℘0 
implies the trophic span of ℘0: ρ(℘0) ≝  {℘  | ℘0 ↩  ℘}. Precisely speaking, the 
elements of a trophic span are dependent on reference instances î (for example, 
students), according to whom—denoted by î ⊢—, a given praxeology eats other 
praxeologies: ρî(℘0) ≝ {℘ | î ⊢ ℘0 ↩ ℘}. 
In this way, any process where the mathematical praxeologies further develop is 
understood as mathematical modelling in the ATD (cf. Garcia et al., 2006). We note 
here that modelling is not limited to activity that mathematises some non-mathematical 
systems. Regardless of whether the system is in an extra- or intra-mathematical 
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problem, the activity is identified as a modelling if the tasks are accomplished through 
constructing some models of the system. Let us add short, but crucial remarks about 
the expression “statistical modelling” in this paper. We do not use this expression in 
its usual sense within statistics education research, which seems to refer to some 
methodological flow of modelling process (e.g., the so-called PPDAC cycle). By 
contrast, within the ATD, the word “modelling” means the genetic process of 
praxeological organizations from a more epistemological point of view. 
In light of the trophic relation, our spontaneous and ambiguous question about 
statistical modelling is refined and defined as the following: To what extent can the 
trophic span involved in the guessing game be developed in our setting, and how can 
the trophic moments progress?  
A REFERENCE PRAXEOLOGICAL MODEL OF THE GUESSING GAME 
In the ATD, a reference epistemological model of the concerned praxeologies—that is, 
a reference praxeological model—has to be built before designing and implementing 
some teaching experiments (cf. Bosch & Gascón, 2006). This is because we are trying 
to describe didactic phenomena by letting us emancipate ourselves from the dominant 
epistemology about the praxeologies. Otherwise, since such a dominant epistemology 
is taken for granted and conditions our view of understanding didactic realities in some 
way, we cannot capture what occurs, what the characteristic is, and especially what 
does not occur. 
Our reference praxeological model ℘ref for the statistical modelling consists of two 
praxeologies—the experimental one ℘exp and inferential statistical one ℘IS: ℘ref = ℘exp 
⨁ ℘IS. The first one ℘exp starts with the type of tasks of estimating the population 
proportion reliably, which is denoted by T0. This can be accomplished by different 
techniques, but at the beginning of the inquiry, it would be carried out by a lot of 
experiments (τexp). Although τexp can be justified by some technological-theoretical 
elements such as the principle of convergence of relative frequencies or the law of large 
number, this kind of justification is provided seldom unless being asked to explain the 
technique purposely. Accordingly, ℘exp is described as ℘exp = [T0 / τexp]. 
The second one ℘IS consists of two sub-praxeologies—the classical statistical one ℘CS 
and Bayesian statistical one ℘BS: ℘ IS = ℘CS ⨁ ℘BS. Both of them begin with the 
awareness of the fact that although the reliability would increase as the number of 
experiments increases, the experiments must be stopped at some point. This limitation 
brings about the question of “how do we reliably and economically judge the contents 
of the bottles?” Then, this would lead to the type of tasks T1 of determining the 
minimum sample size required for T0 and T2 of accomplishing T0 with as small sample 
size as possible. While the characteristics of T1 is that the sample size is predetermined 
before starting experimentation, that is not the case with T2. Accomplishing the type of 
tasks T1 and T2 evoke ℘CS and ℘BS respectively. In other words, in terms of trophic 
relation, T1 and T2 can eat the praxeological entities of ℘CS and ℘BS respectively. 
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We can assume various technical means such as hypothesis testing, interval estimation, 
and maximum likelihood estimation for T1. Let us denote them by τhyp, τint, and τlik in 
order. For example, τhyp would be used for judging whether the balls in the bottle are 
all red or four red balls and one white ball are in the bottle. When judging that it is not 
(3, 2) but (4, 1), τint can be put in use—hereafter, the combination of the colour of the 
balls is denoted as an ordered pair of the number of the red and white ball(s). The 
technique τlik would be also used in this kind of subtype of tasks. These techniques can 
be supported by two technologies: one is the technology θdis that has various probability 
distributions such as binomial distribution and normal distribution as its elements; the 
other one is θcon that consists of the definition and properties of conditional probability. 
The techniques τhyp and τint are justified by θdis, on the other hand, τlik is explained by 
θcon. For these technologies, the definitions of probability and random variable and 
basic properties of them belong to the theory Θpro as the theoretical elements. Thus, 
℘CS is described as ℘CS = [T1 / τhyp, τint, τlik / θdis, θcon / Θpro]. As for ℘BS, the technique 
τBay of the Bayesian update would be used because some successive means are required 
for T2. This technique is also supported by θcon and therefore, Θpro functions as the 
theory of ℘BS: ℘BS = [T2 / τBay / θcon / Θpro]. Bayesian statistics is a praxeological 
organization whose key technique is the repetitive update of probability based on Bayes’ 
theorem and newly gathered data. In contrast with classical statistics, that allows us to 
accomplish statistical inference without the samples of sufficiently large size. T1 is 
more classical statistical, while T2 is more Bayesian statistical. 
Let us add here about the possible paths in the process of modelling in ℘IS in terms of 
the dialectic of questions and answers, which fundamentally promotes any inquiry (cf. 
Chevallard with Bosch, 2019). As mentioned in the above, τhyp of ℘CS would emerge 
as an answer when questioning “how do we judge it is (5, 0)?” This question comes 
from the situation where we pick out a red ball many times in a row from the beginning 
of the experimentation. In this case, τhyp consists of probability of repeated independent 
trials. Also, τlik of ℘CS can be available to the question “what population is the most 
likely to produce the obtained sample?” if the students have learned the conditional 
probability by then. On the other hand, τint of ℘CS needs to be told or instructed by some 
media, which is something with the intention of teaching. However, it is natural to refer 
such media when the students encounter the question “how do we estimate the 
population proportion?” and then they would be able to learn the technique. As for τBay, 
we assume that the students will not be able to use this technique without any direct 
instruction by the teacher(s). This is because few of basic statistics textbooks 
commonly used in Japan cover the Bayesian inference. However, it is also assumed 
that once directed, τBay is fully available because many concepts and techniques on the 
Bayesian update can be brought about into the milieu from various media such as 
statistics textbooks for general readers and YouTube, etc. In addition, when the 
questions about those techniques—“what is p-value?” and “where does ‘1.96’ in the 
estimating interval come from?” for example—arise, the answers would be found or 
built in the logos block [θdis, θcon / Θpro] of ℘IS. In particular, inquiry into questions 
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about τhyp and τint mostly leads to θdis, while inquiry into τlik and τBay generally leads to 
θcon. The figure 2 shows the reference model. 

 
Figure 2. Our reference praxeological model of the guessing game. 

CONTEXT OF THE COURSE 
The implementation was conducted in the second term in 2020 for four students who 
were taking the training program for secondary mathematics teachers. Two of them 
were third, one was fourth and the other was graduated students. They had learned 
probability theory and statistics in the university by that time. However, they had not 
acquired the knowledge to apply the techniques and technological-theoretical elements 
mentioned in the reference model on their own. The course which was the part of the 
teacher training program consisted of 13 sessions of 90 minutes. All sessions were 
audio and video recorded. The teacher was the first author of the paper. 
In the first session, the explanation of the aims and outline of the course was given. 
Firstly, the focus on the statistics and inquiry-based learning was introduced with 
reference to the current educational situation. More precisely, the aims were applying 
statistics in inquiry into some questions and, by doing so, developing probabilistic and 
statistical knowledge meaningfully for the students themselves. Then, the teacher 
explained the “guessing game of the contents of the bottles” to them.  
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For the setting of the guessing game, the following initial question was presented to 
the students: “How many red and white balls are in each of the bottles?” Before starting 
the inquiry, the teacher emphasised that any predetermined knowledge as the goal of 
the course did not exist and that whatever the students needed was available throughout 
the course, including the internet and the library. In other words, there were neither a 
sole goal nor a single path determined by the teacher. We had intended to update the 
didactic contract that the students spontaneously and implicitly signed, because it is 
assumed that they had been familiar with the conventional didactic paradigm—that of 
visiting works. If the emphasis was not done, the students would not inquire the 
questions but explore what is expected for them as the “inquiring activity”. In short, 
we wanted to avoid possible negative effects from the old contract, while making the 
new contract of questioning the world explicit. 
The outline of the course was as follows: the part of the first inquiry (4 sessions); 
midterm presentation (1 session); second inquiry (4 sessions); analysis of the entire 
inquiry (2 sessions); final presentation (1 session). In both the midterm and final 
presentation, the students made the presentations for three mathematicians and two 
mathematics education researchers in the university, who were not involved in the 
course. In designing the course, we had intended that each presentation would be an 
opportunity to promote the inquiry, or more precisely, the modelling. This is because 
the questions, comments, and critiques from them to the techniques and/or 
technological-theoretical aspects must lead the students to reconsider the praxeologies 
they developed. This evokes the praxeologies that takes the existing praxeologies as 
the systems. Therefore, the opportunity of making the presentations and getting the 
feedbacks on them was expected to promote the modelling activity. 
In this paper, we describe and analyse the statistical modelling in terms of the trophic 
relation and trophic moments, focusing on the part of the first inquiry, midterm 
presentation, and second inquiry. 
PROCESS OF THE REALISED STATISTICAL MODELLING 
First inquiry (session 2 to 5) 
In the session 2 and 3, in response to the initial question, the students tackled the task 
of guessing how many red and white balls are in the bottles, which corresponds to T0 
in the reference model. Some students took 70 times drawings to make their judgment, 
and other students said that at least 15 to 20 times are needed. The latter students also 
claimed that they thought it was enough to take 20 times to make a judgment. We can 
see here the trophic moment: T0 ↩ τexp. Namely, the praxeology grew into ℘ at this 
point: ℘ = [T0 / τexp]. According to that, the question “how many times do we need to 
judge the contents reliably?” arose. For this question, the teacher taught that a value of 
95% is commonly used as the level of the required reliability. 
In this phase, the students encountered an interesting case: red balls appeared 18 times 
in a row from the beginning, and then a white ball appeared at the 19th drawing for the 
first time. Since the students had been thinking that the contents of the bottle were (5, 

523



0) by the 18th drawing, they were surprised at this result. Considering that such a case 
might be quite rare, they began to find the probability that the case happened under the 
hypothetical setting that the contents of the bottle were (4, 1). As a result, they found 
that the probability was less than 2% and concluded that it was very rare case. This is 
the spontaneous use of the idea of hypothesis testing. They successively tackled the 
subtype of tasks T1.1 of determining the minimum sample size to judge that the contents 
are not (4, 1) but (5, 0). Namely, the situation or milieu evoked the trophic moment 
which brings about the more sophisticated praxeology ℘′: ℘ ↩ T1.1 and ℘′ = [T0, T1.1 / 
τexp]. Technically speaking, ℘ ′ should be denoted as ℘ IS′, but “IS” is omitted for 
simplicity. Then, by applying τhyp, they built their own answer “if the red balls are put 
out 14 times in a row from the beginning, we can judge that the contents are (5, 0) with 
95% reliability”. We can see that the moment when ℘ ↩ τhyp and the construction of 
℘″ occurred here: ℘″ = [T0, T1.1 / τexp, τhyp]. It must be noted that this is a possible abuse 
of the significance level. The students found (4/5)14 < 0.05 and wrongly concluded that 
the “probability” of not being (4, 1) was more than 95% according to the calculation 
of 100 – 5 (%). They implicitly used the following statement which is generally 
incorrect: P(A|B) = P(B|A). We will mention about the abuse of the significance level 
in the last section. 
In the subsequent sessions, the term of hypothesis testing was introduced by the teacher 
with reference to τhyp. The students then tried to apply this technique further to define 
a criterion for judging whether the contents are (4, 1) or not. They constructed ℘‴ as 
the product of the moment when ℘ ↩ T1.2: ℘‴ = [T0, T1.1, T1.2 / τexp, τhyp]. However, they 
were unable to obtain the solution because of the increased number of variables in the 
combinatorial calculation. Regarding the introduction of the term, it had been expected 
not only to facilitate the application of the technique, but also to function as 
encountering with the logos block of the existing praxeologies. In fact, the students 
referred to some websites and studied the procedures of hypothesis testing. 
Nevertheless, the terms “null/alternative hypothesis” and “p-value” were not used to 
properly explain τhyp in preparing the midterm presentation. This would be because 
they were not familiar with the statistical concepts, such as random variables and 
probability distribution etc., in the descriptions. 
Midterm presentation (session 6) and second inquiry (sessions 7 to 10) 
In the midterm presentation, the students reported on the progress of their inquiry up 
to the point to the university teachers. Then, the teachers provided the feedbacks by 
raising the questions and making the comments. In the comments from them, the 
technological-theoretical elements that are directly related to ℘‴ appeared. One of the 
teachers said that the situation of the guessing game could be interpreted by using 
binomial distribution. Another teacher suggested that the technique the students used 
could be sophisticated by utilising the terms regarding the procedures of hypothesis 
testing and the concepts of the probability distribution. These are the elements of θdis. 
In addition, there was a comment that Bayes’ theorem could be applied to the guessing 
game. This is an element of a different technology θcon that is not directly related to the 
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technique τhyp but connected with τBay. The students did not understand all of these 
feedbacks on the spot. They were to learn them as needed in the subsequent inquiry. 
In the phase of second inquiry, the students referred to some media in response to the 
feedbacks and attempted to learn the elements of θdis. They were not able to sufficiently 
understand them because the connection of the statistical concepts with the problematic 
situation of the guessing game could not be recognised. Namely, they could not find 
how to model the situation in terms of random variables. However, the very fact that 
the elements of θdis were needed to justify and explain τhyp was understood. In this sense, 
we can see here the moment when ℘ ↩ θdis; that is, the praxeology grew into the larger 
one: ℘(4) = [T0, T1.1, T1.2 / τexp, τhyp / θdis]. Moreover, while referring the media, one of 
them found a description about the interval estimation in a mathematics textbook. The 
student got to know how to use this technique to tackle T1.2 with the help of the teacher. 
Let us note that the only a part of the theoretical aspects was explained to the student 
in the phase. For example, the teacher taught what the population and sample 
proportion were in this case. Then, the technique of interval estimation was shared 
within the group by the student, that is, the moment when ℘ ↩ τint occurred and the 
more complexed praxeology was constructed: ℘(5) = [T0, T1.1, T1.2 / τexp, τhyp, τint / θdis]. 
To be specific, a table was created in Excel with the number of drawing and the sample 
proportion as variables, and the 95% confidence interval of the population proportion 
was output. According to the result, the students found that 97 drawings were necessary 
and sufficient to uniquely estimate the contents of the bottles.  
As for the response to the feedbacks on Bayes’ theorem, the students also studied it by 
using some media—some video contents from YouTube in particular. Then, one of 
them learned the theorem based on conditional probability and understood how to find 
posterior probability from the assumed prior probability and obtained data. In fact, the 
student was able to calculate the posterior probability of being (n – 5, n) for n = 0, 1, 
…, 5, under the condition she actually got from the experimentation. However, when 
being asked whether the technique would be useful for the guessing game, she 
answered that it looked useless because “To me, the idea seems to be that there are 
bottles of all types.Then, one thinks ‘this is the bottle with that type because this 
[posterior] probability was the highest’. This is not the situation of this problem, so I 
think this idea is hard to adopt”. This explanation can be attributed to the gap between 
the tasks of the classical statistical type they were working on at that time and possible 
tasks of the Bayesian statistical type which is evoked by the technique τBay. The other 
students agreed with the decision not to use either τBay. According to the students X, ℘ 
did not eat such a praxeological entity in the inquiry: X ⊬ ℘ ↩ τBay. Finally, the 
findings mentioned above became their final answer.  
Summary 
Let us here summarise the answer to the research question, which is concerned with 
praxeologies that can be constructed in inquiry into the guessing game. We have seen 
the praxeological organisation ℘(5) was finally developed from ℘ = [T0 / τexp]. This 
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indicates the trophic span ρ(℘) = {T1.1, T1.2, τhyp, τint, θdis}, as well as the range of the 
constructed knowledge {T0, τexp} ∪  ρ( ℘ ). Comparing ℘ (5) with the reference 
praxeology ℘ref, the entities integrated in θdis (T1.1, T1.2, τhyp, and τint) are included in 
ρ(℘), while those in θcon (T2, τlik, and τBay) are not. In addition, ℘(5) did not have the 
theoretical discourse Θpro. The following descriptions make the comparison clear:  

℘ref = [T0, T1.1, T1.2, T2 / τexp, τhyp, τint, τlik, τBay / θdis, θcon / Θpro], 
℘(5) = [T0, T1.1, T1.2 T2 / τexp, τhyp, τint  τBay / θdis θcon / Θpro]. 

Regarding the progression of the modelling, it has been already shown in the above 
section. In terms of trophic relation or trophic moments, it can be summarised as 
follows: [[[[[T0 / τexp] ↩  T1.1] ↩  τhyp] ↩  T1.2] ↩  θdis] ↩  τint. Each moment when a 
praxeological entity eats another one leads the progression of the modelling. As we 
have seen, questioning how to accomplish the tasks, applying the techniques used in 
the previous cases, referring the media, and receiving the feedbacks through 
disseminating their own findings played the essential roles for the moments. 
Among these actions, studying new works is important, though it may be paid little 
attention in inquiry-based pedagogy. In the ATD, a process of visiting some pieces of 
knowledge associating with their raisons d’être is called study and research activity 
(SRA). Any authentic inquiry has the action of studying as a part of or a form of it. The 
students studied the procedures of hypothesis testing, how to apply interval estimation, 
and what is Bayes’ theorem, etc. In short, they constructed their statistical praxeologies 
through interaction with these works obtained from the media. Since the study was 
undertaken for the purpose of answering the questions, the praxeologies had their 
raisons d’être, and therefore, a statistical SRA developed in our case. 
Furthermore, what could be called the democratic relationship with knowledge was 
observed (cf. Chevallard, 2006). The students selected knowledge to be used, that is, 
praxeologies to be eaten, by themselves. We can see it in the situation where they 
judged that τBay could not be applicable for T1 despite the teacher’s instruction. In 
ordinary classes, students usually receive knowledge taught by the teachers and attempt 
to make use of it. The decision observed in the implementation is the result of renewing 
the didactic contract and indicates that autonomous inquiry has taken place. 
FINAL REMARKS 
In this last section, we want to point out two didactic precautions for emancipating 
teachers from traditional preoccupations in the reproduction of inquiry into the 
Brousseaunian guessing game. First, the following fact should be recognised in 
considering supervision of inquiry: direct instruction of knowledge can be effective in 
some cases. Teachers may expect students to learn everything possible on their own in 
supervising inquiry. This leads to the teachers avoiding directly teaching the concerned 
praxeological entities even if it is reasonable. In fact, the teacher of our implementation 
did not actively teach the technological-theoretical elements of the praxeologies. Here 
we see a didactic phenomenon that could be called refraining from direct instruction. 
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However, as mentioned in the above, the praxeologies developed to answer the 
questions have their raisons d’être. Thus, even if some works involved in the logos 
blocks are taught by the teacher, they would not be monumentalised. Accordingly, it is 
suggested that not to refrain from instructing more than necessary is important. 
Another suggestion is concerned with a phenomenon that can be called abuse of 
praxeological entities. We have seen that the students naïvely replaced the 
(conditional) probability—which is, de facto, the likelihood in this context—with its 
inverse probability. Teachers tend to feel guilty when they overlook misunderstandings 
of their students. Indeed, mistakes are usually regarded as antididactic events under the 
paradigm of visiting works. By contrast, under the paradigm of questioning the world, 
any possible flaw involved in knowledge needs not always be avoided in advance; in 
fact, it can be welcomed in inquiry as probably didactic events. This is because the 
failure can be recognised later, and this facilitates the inquiry by deriving new questions 
on the mistakes. Since there are many distorted explanations of different works in 
media especially about statistics (at least in Japan), this phenomenon is likely to be 
common. We should not have to be afraid of error, but to consider how to take 
advantage of them for making moments of promoting inquiry. 
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What mathematical knowledge do student teachers for grammar schools have at the 
end of their studies and how do students succeed in linking their knowledge with 
subject-didactic considerations in the development of online learning units? This paper 
reports observations on both questions from the context of subject-specific and subject-
didactic courses in German Master programs. The observations show that students 
generally have considerable difficulties in using standard knowledge from Analysis 
and Linear Algebra lectures. The linking of mathematical knowledge with subject-
didactic considerations also poses considerable challenges. In view of the findings, we 
will argue that it might be helpful to broaden the view in research regarding transition 
issues and, in particular, to consider institutional-societal conditions.  
Keywords: teacher education, ordinary differential equations, online learning units, 
subject-specific knowledge, institutional-societal conditions.  
INTRODUCTION 
After more than 100 years, Felix Klein’s dictum of the double discontinuity has not 
lost its relevance. Both, Klein’s critical diagnosis of the actual teaching of mathematics 
in schools and that, in order to improve the situation, it is the task of the university to 
train future teachers as well as possible, still seem to be true. Klein’s goals have been 
taken up in various ways in the last decades, for example, concerning capstone courses 
near the end of university studies (Winsløw & Grønbæk, 2014): Students should be 
shown connections between university mathematics they have already learned in order 
to use them meaningfully as a resource for their professional lives. Klein’s suggestion 
of specific bridging courses at the beginning of university studies is also being taken 
up in many places in Germany by a variety of measures (Hochmuth et al., 2022). 
A premise of Klein’s (1908) Elementary Mathematics form a Higher Standpoint course 
is that the students are well versed regarding university mathematics and were, in 
principle, able to represent mathematics as a science in its own right to grammar school 
students. Now, in this respect, it can be asked whether the actually learned knowledge 
from the basic first year courses of Analysis and Linear Algebra is in fact available to 
students in such a way that they can use it flexibly and adequately in order to acquire 
new mathematics that is closely related to school mathematical knowledge. This 
requirement addresses both techniques and rationales of content and concepts, such as 
representations of functions or of solutions of linear equations, derivatives as rates of 
change or tangent slopes.  In addition to the availability of subject-specific knowledge, 
it is also a question of whether and how students, who have already attended substantial 
parts of their compulsory courses in subject didactics and pedagogy, can use this 
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mathematical knowledge in preparing and reflecting online learning units. 
Surprisingly, the state of knowledge and the related subject-didactic ability to act with 
regard to academic mathematics strongly linked to school mathematics among student 
teachers, who have more or less completed their studies, has not been investigated in 
detail. 
This paper reports and discusses observations regarding those questions. We consider 
Master courses, in which students are asked to prepare online learning units on selected 
topics about Ordinary Differential Equations (ODEs) and accompanying essays 
reflecting the units from a subject didactical point of view. Elementary aspects of ODEs 
are a suitable choice because they use concepts from both Analysis and Linear Algebra 
in a way that has strong links to subject-didactic reflections of school mathematics. In 
addition, there are many contexts of use, for example in physics or biology, with 
models that can be assessed as school-related (e.g. harmonic oscillator, pendulum, and 
predator-prey models). Last but not least, there is a wide variety of literature that 
presents ODEs at different levels and didactically diverse ways: deductive and concept 
orientated (e.g. Hirsch et al., 2012), application-oriented (e.g. Bryan, 2021) or even 
inquiry oriented (Rasmussen et al., 2018). The courses considered here represent an 
opportunity to exploit the potential of advanced mathematics in mathematics teacher 
education addressed by Hochmuth (2022), opening up a view of mathematics that most 
student teachers do not encounter in current courses. One important didactic goal of 
the Master courses was the exploration and learning of the subject-specific preparation 
of mathematical knowledge for online learning units that are oriented towards concepts 
of inquiry-orientated learning (Artigue & Blomhøj, 2013; Jaworski, Gómez-Chacón & 
Hochmuth, 2021). Of course, it is also an empirical question which potentials students 
actually realise under the current restrictive institutional-societal conditions of study 
programs and the contradictions induced by this in the relationship between learning 
opportunities and learning resistances. Our qualitative analysis of the students’ 
developments provides some evidence with regard to those issues shedding light on the 
state of knowledge and subject-didactic abilities.  
The contribution is structured as follows: The next section provides information on the 
teaching-learning context of the courses. In particular, mathematical and subject-
didactic pre-knowledge, the literature provided and knowledge taught about ODEs, and 
the objectives of the learning units to be developed by the students are addressed. In 
the following section, in view of the above reflections, two research questions are 
formulated and briefly outlined regarding theoretical backgrounds and methodological 
issues. Observations regarding the research questions are then presented in the 
successive sections. In the concluding section, results are discussed and possible 
conclusions as well as further research issues are addressed. 
TEACHING-LEARNING CONTEXT AND DATA 
The observations reported are about Master courses for student teachers for grammar 
school at two German Universities. All students had successfully attended not only the 
basic courses on Analysis and Linear Algebra, but also courses about Numeric, 
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Stochastic, Geometry and Algebra. Specific pre-knowledge about ODEs was only 
available for a few. Such knowledge then came, for example, from the teaching of the 
exponential function in Analysis or of normal forms for matrices 𝐴𝐴 and observations 
regarding 𝑒𝑒𝐴𝐴 in Linear Algebra, or from their eventual second study subject Physics or 
another science. Therefore, introductory teaching units about ODEs were provided, 
which were mainly based on application-oriented literature (Bryan, 2021) and on 
inquiry-oriented presentations (Rasmussen et al., 2018; Gómez-Chacón et al. 2021). 
Fundamental theorems about unique solvability, the continuous dependence of initial 
conditions and parameters, and the stability of hyperbolic equilibrium points were 
mentioned and illustrated, but not proved. Instead, emphasis was placed on phase 
diagrams (in 1D and 2D), detailed phenomena-oriented treatments of linear systems 
(esp. equilibrium solutions, asymptotic behaviour) as well as applications such as the 
harmonic oscillator, the string pendulum, and predator-prey systems. Following the 
IODE course (Rasmussen et al., 2018), the notion of rate-of-change equation and 
directional- and vector fields were dominant. Elementary tasks mobilising changes of 
representation (terms, solution curves, phase diagrams) and their respective use and 
interpretation in application contexts were focussed.  
In the first half of the semester, the described contents were  taught in lectures with 
integrated exercise units. From week to week, the tasks of the exercise units were to be 
worked on and, in addition, a few tasks introducing new contents should be explored. 
In the second half of the semester, eight groups of three to four students each were 
accompanied in the development of online learning units. The learning units to be 
developed should cover introductory and slightly advanced topics including linear 
systems (with emphasis on 2D), harmonic oscillator (modelling various phenomena 
including resonance, possibly double oscillator), predator-prey models and 
bifurcations (in 1D and in 2D exemplified by pitchfork and Hopf bifurcation). In 
addition to the literature already mentioned, specific parts from (Chow et al., 2012; 
Hirsch, Smale & Devaney, 2012) and diverse internet resources, such as a school 
project work on the justification of periodic solutions of the Lotka-Volterra model, 
were provided or referred to. In addition, possibilities for the use of digital tools like 
GeoGebra and Applets in Wikis were introduced in the first half of the course. 
Moreover, subject-didactic concepts for the preparation of mathematics for teaching 
units in general (Barzel et al., 2012; Hußmann & Prediger., 2016) and inquiry-
orientated units in particular were recalled or introduced (Winter, 1989; Jessen, 2017) 
with specific foci on representations and types of linking mathematical knowledge. 
The exam consisted of the preparation of an online learning unit and an accompanying 
essay. Based on subject-didactic reflections, the essay should describe, explain and 
justify the respective preparation of the mathematical content and the methodical-
didactic design of the learning unit. The following observations mainly refer to the 
integrated exercise units, the development of the online learning units and the units 
themselves. The accompanying essays are considered insofar as design elements to be 
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recognised in learning units are reflected with respect to their overall inquiry 
orientation. 
RESEARCH QUESTIONS 
Based on the data described in the preceding section, two research questions are 
considered in the successive sections. In addition to formulating the research questions, 
we also sketch the respective theoretical backgrounds. The data analyses have been 
guided by qualitative content analysis (Gläser & Laudel, 2009). 
RQ 1: What students’ deficits from Analysis and Linear Algebra can be observed in 
the exploration of knowledge about ODEs? 
The deficits concern not only factual knowledge about mathematical objects, symbols 
and their definitions, but especially techniques and rationales and their 
interrelationship. In particular, it is about concepts, such as the concept of derivative 
or the flexible use of different representations of functions. Our view is oriented 
towards the 4T-model of the Anthropological Theory of the Didactics, although 
analyses in this respect are not be made explicit in this contribution, if only for reasons 
of space. 
RQ 2: What kind of linking of mathematics to application contexts using ODEs can be 
observed in the student’s elaborations? 
One focus of the courses was on the mathematical description of basic phenomena that 
could be assigned e.g. to Physics or Biology. Dynamic and structural properties of the 
phenomena should have motivated the use of concepts from Analysis and Linear 
Algebra. Otherwise, phenomena also served to interpret and validate achieved 
mathematical results. The students were familiar with the basic structure of the 
modelling cycle and respective modelling tasks presented in school as well as from 
their subject-didactic courses. Our theoretical background is complemented by insights 
from studies on the use of mathematics in engineering and beyond (Hochmuth & 
Peters, 2021; 2022). 
ON RQ 1: SUBJECT-SPECIFIC DEFICITS REGARDING ANALYSIS AND 
LINEAR ALGEBRA 
Students were given the task of relating rate-of-change equations to representations of 
slope fields and to justify their assignments. Considerable hurdles were observed both 
in the interpretation of the equations and in their representation by slope fields. 
Regarding for example equations like 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑡𝑡 − 1 (Rasmussen et al., 2018, p. 1.5) 

students could hardly detach themselves from drawing the right-hand side function 
itself into a coordinate system and then integrating it directly. Students failed in 
sketching the slopes, that are, in this case, independent of 𝑦𝑦 (!), or, finally, in sketching 
the solutions that depend on a constant. Also expressions like 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=  𝑦𝑦2 − 𝑡𝑡2 

(Rasmussen et al., 2018, p. 1.5) turned out to be rather difficult. Students got confused 
by the simultaneous occurrence of the variables t and y. Basically, in each point 
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(𝑡𝑡,𝑦𝑦) of the coordinate system a straight line with unit length and the right slope must 
be drawn. Against the background of the drawn slope field, it is then a matter of 
detaching oneself from point-by-point interpretation of both the symbolic and the 
iconic representation and of passing over to local or global conceptions of functions, 
i.e. to consider 𝑦𝑦 as a function dependent on 𝑡𝑡, or to think about graphs of functions 
whose tangents correspond to the drawn straight line segments of the slope field. 
The tasks require a flexible handling of punctual, local and global perspectives on 
functions and their respective iconic and symbolic representations. In this respect the 
teacher students seem to be on a similar level of knowledge as college students, targeted 
by the IODE material, although they already completed their mathematical study. 
Against the background of Klein’s second discontinuity,  subject-specific knowledge 
underlying didactic considerations in the sense of basic ideas of derivatives and 
functions hardly seemed to be available. From this observation, it is comprehensible 
why in the development of the online learning units but also in lesson plans for schools 
about e.g. derivatives, didactic-methodical considerations are seldom substantiated by 
subject matter, but instead pedagogical considerations dominate (Hochmuth & Peters, 
submitted). 
While students were essentially able to deal with vector fields in the generic case of 
planar linear ODEs with constant coefficients, i.e. cases where the matrices possess 
linear independent rows and the origin is the unique equilibrium solution, and to use in 
such cases publicly available GeoGebra applets, the planar system 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −3𝑥𝑥 − 1

2
𝑦𝑦, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 6𝑥𝑥 + 𝑦𝑦 leads to severe hurdles in getting an overview of the solutions and in 
particular about the equilibrium solutions. No group was able to come up with a 
complete answer. This task also originated from the IODE course (Rasmussen et al., 
2018, p. 10.13): The respective goal is to explore what happens if the matrix belonging 
to the right side has linear dependent rows, i.e., the kernel of the linear mapping is a 
one-dimensional subspace (the trivial case of a zero matrix is excluded from 
considerations), which geometrically represents a straight line through the origin 
consisting of equilibrium points. The other non-equilibrium solutions can then be 
represented by straight lines parallel to each other intersecting the straight line of 
equilibrium points and, since the corresponding eigenvalue is -2, converge to the 
intersection points. Of course, the task could systematically be solved by a more or less 
canonical approach. But such an approach was only sketched in the lecture and not 
trained. The intention of giving this task was to enable students to combine knowledge 
about 2D-matrices (or linear mappings) with geometric and analytical considerations.  
On the one hand, such ideas already play a role in school mathematics and, on the other 
hand, they form the subject-specific basis of related didactic considerations. Unlike 
college students, the student teachers have successfully passed courses that provide 
such knowledge in several contexts (multivariable Analysis, Linear Algebra, 
Analytical Geometry). However, it was hardly possible for the students to use such 
knowledge in this new context. Of course, one does not really need such taught 
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knowledge to explore the given situation, instead might reflect about it in an elementary 
and direct way, but this was not possible either. The latter is the concern of the task in 
the IODE context: The insight into such phenomena should motivate to take a closer 
structural look and to discover structural reasons for such solution patterns. 
Conversely, the goal of basic university lectures like Analysis and Linear Algebra was 
to provide structural knowledge for ordering such phenomena systematically. But 
neither such a transfer, nor successful ad hoc explorations appear in the students’ 
works. 
A particularly rough case of misunderstanding related to Linear Algebra showed up in 
the following assertion presented in a submitted learning unit: The linear system 𝑥𝑥′ =
𝐴𝐴𝑥𝑥 is solvable if rg(𝐴𝐴) = rg(𝐴𝐴|𝑥𝑥′) holds. Obviously the later could formally be 
noticed, but actually makes no sense. 
In the situation of considering elementary situations of bifurcations the following 
nonlinear system was considered (Hirsch et al., 2012, pp. 162):  

𝑥𝑥′ =
1
2
𝑥𝑥 − 𝑦𝑦 −

1
2

(𝑥𝑥3 + 𝑦𝑦2𝑥𝑥), 𝑦𝑦′ = 𝑥𝑥 +
1
2
𝑦𝑦 −

1
2

(𝑦𝑦3 + 𝑥𝑥2𝑦𝑦). 

With respect to this system, the linearisation at the origin (0,0) should first be 
determined and the corresponding local phase diagram be sketched. No group of 
students could find the linearisation directly from the given equations, which hints on 
a missing conceptual understanding of, e.g., the Taylor expansion in higher dimension. 
Instead, they tried (many calculation errors occurred) to calculate the Jacobi matrix 
formally. The eigenvalues are 1/2 ± 𝑖𝑖, which means that the Hartman-Grobman-
Theorem is applicable and locally the phase portrait could be sketched, i.e., locally the 
solutions of this system spiral away from the origin. Then the students should transform 
the system to polar coordinates (𝑟𝑟,𝜃𝜃), which leads to 

𝑟𝑟′ =
𝑟𝑟(1 − 𝑟𝑟2)

2
,   𝜃𝜃′ = 1. 

Neither during group work through the course nor as homework a correct solution was 
worked out by any student. For some of the students, hurdles start with the fact that 
they did not realise that the chain rule had to be applied. And if this was recognised, it 
could not correctly be executed. The chain rule for functions of several variables is a 
standard content of Analysis 2 and polar coordinates are typically treated at the latest 
in the context of the substitution rule for multidimensional integration. Interestingly, 
students with Physics as second subject also failed. Because of all these hurdles, the 
interesting global structure of the solutions of the nonlinear system, which would 
remain undiscovered by focusing only on the local considerations around the origin, 
could not be appreciated and not adequately presented in developed learning units. 
Likewise, it could not be appreciated that such insights were possible by (rather simple) 
qualitative considerations in the context of phase diagrams, in particular without 
explicitly calculating solutions of the (in the beginning) complicated-looking system 
of differential equations.   
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Summarising, the presented examples show considerable technical deficits, which 
made it impossible to acquire and represent rationales in the somewhat more advanced 
field of ODEs. Generally, the students could not rely on conceptual knowledge with 
respect to either multidimensional Analysis or Linear Algebra. Both in the course and 
its exercise units and in the elaboration of the learning units, these deficits obstructed 
an appreciation and appropriate use of illustrative representations such as vector fields 
and phase diagrams. This suggests that students moved away from inquiry oriented and 
rationales-focused presentations of ODEs in their own elaborations of learning units 
and returned to small-stepped and calculation-focused elaborations. 
ON RQ 2: USING MATHEMATICS IN APPLICATION CONTEXTS AND 
MODELING 
ODEs allow to place mathematics in the context of everyday but also in physical, 
biological, chemical or technical contexts. The literature used in the course presented 
extensive chapters on topics from these areas and demonstrated how the qualitative 
approach focused on in the course lead to interesting insights, often without complex 
calculations and usually without solving the equations explicitly, which in fact is often 
not possible in the case of ODEs. Several application contexts are also used in the 
IODE material to promote and motivate a basic understanding of concepts and 
mathematical relationships. Thereby, concepts such as rate-of-change equations and 
tools like phase diagrams, allow students to understand the mathematical concepts even 
without explicit knowledge from application fields. They potentially enable students 
to get insights in dynamic interrelationships and, above all, phenomena to be modelled 
on the basis of everyday ideas. However, it is also obvious that basic mathematical 
deficits as addressed in the previous section make such epistemic processes 
significantly more difficult, which can be seen in several rather problematic derivations 
of models in the developed learning units.  
An interesting observation in this context is that insight into mathematical deficits was 
averted by the teacher students by locating the hurdles instead in insufficient 
knowledge of application fields, such as Physics. This might be related to 
characteristics of known modelling cycles (Blum & Leiss, 2005) and dominant ideas 
of “applicationism” (Barquero et al., 2011), which suggest that modelling essentially 
takes place in an extra-mathematical world: If modelling does not work out, then, of 
course, it is due to missing knowledge in the extra-mathematical world. In other words: 
Underlying ideas about the role and the use of mathematics in application contexts turn 
out to be a kind of ideological obstacle, here possibly for the purpose of psychical relief 
in view of the experience of failure. Of course, this is a hypothesis which has to be 
reviewed in further research.  
Conversely, short-circuited argumentations transferring directly from modelling 
contexts to mathematics can be found: in learning units and accompanying essays we 
find a lack of noted needs for justification and proof of such argumentations. Thus, 
besides the phenomenon of a strong separation between context and mathematics, we 
also found phenomena of instant identifications, hence an implicitly assumed identity 
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of reality and mathematical model. Related to this, there is also the phenomenon that 
mathematical results are sometimes directly applied to reality. The possibility that, in 
addition to explicit assumptions made, further and uncontrolled assumptions are 
included in models, and that every calculated and proven property thus also represents 
a validation possibility of the respective model as such, is only acknowledged in 
principle, but rarely considered in practice.  
Summarising, any finely woven interweaving of various mathematical discourses 
related to slightly different ways of talking and doing mathematics as well as justifying 
validity (Hochmuth & Peters, 2021), which could and should also have subject-didactic 
relevance in school contexts, cannot be observed. 
DISCUSSION AND OUTLOOK 
There is only few research so far about the academic mathematics knowledge of teacher 
students at the end of their studies and its availability for developing subject 
didactically reflected learning units. This paper focuses Master's programmes in which 
teacher students have to mobilise knowledge from basic lectures in a way that is 
professionally relevant both to the subject and the subject-didactic. Thus, these courses 
are in the context of the second discontinuity addressed by Klein. The focus of the 
reported observations was on (non-) available knowledge from introductory courses 
about Analysis and Linear Algebra as well as their use in inner and extra-mathematical 
contexts. Regarding subject-specific knowledge, there are considerable deficits with 
respect to both techniques and rationales. It seems that a central premise of Klein's 
concerning his Elementary Mathematics from the Higher Standpoint, namely reliably 
available university knowledge, is hardly given. Problematic claims of a life-world 
orientation expressed by the students contribute to questionable results with regard to 
the use of mathematics even in the context of simple application situations. Moreover, 
the subject-specific deficits at least add to the fact that teaching materials that have 
been clearly prepared in the sense of an inquiry orientation and in which ideas are to 
be introduced and used in a concept-oriented way are transformed by the students into 
small-stepped, calculation-oriented learning units.  
In recent years, the focus in university mathematics education research has been on the 
first discontinuity, i.e., the transition from school to university. Against a broad 
background of theoretical and empirical analyses, a wide variety of measures has been 
developed and established (Hochmuth et al., 2021; Hochmuth et al., 2022). However, 
if one looks at our results also from the point of view of observations in (Hochmuth & 
Peters, submitted), where we reflected on problematic aspects of the prevailed societal 
determined formation of learning processes, one is led to the following questions: Are 
the approaches and orientation of those measures adequately specified? The observed 
deficits do indeed show that students can mobilise very little university mathematics 
knowledge after three years of university mathematics studies that are successful in the 
sense of the examination requirements. How do the measures work in this respect, and, 
in particular, could they potentially contribute to teacher students never gaining access 
to university mathematics?  
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Similar study conditions at other universities at least suggest that the reported 
phenomena are not exceptional, although our insights do not allow statements 
regarding their frequency or representativeness. In order to systematically deepen our 
observations, more research with a substantial subject-specific reference and with a 
critical view on institutionalised teaching-learning relationships seems necessary. In 
view of the officially successful study efforts a  crucial question concerns the 
following: How must university teaching be constituted in which “learning processes 
are possible in which, beyond [...] mechanisms of influence and control, real [... ] 
experiences and insights can be gained” (Holzkamp, 1991)?1 
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Mathematical content knowledge is a crucial part of teachers’ professional 
competence and is necessary for developing pedagogical content knowledge. In most 
cases, mathematicians, who are not familiar with demands on teachers’ content 
knowledge, teach the mathematics courses for mathematics teacher candidates. To 
learn about goals and teaching practices in courses for teacher candidates, we 
interviewed mathematics professors about their teaching and view on mathematics for 
teacher candidates, in particular about connections between mathematics at school 
and at the university.  The interviewees mostly do not have specialized mathematic 
content knowledge for teaching in mind, but follow a trickle-down hypothesis 
regarding the mathematics needed in school. 
 
Keywords: Teachers’ and students’ practices at university level, Transition to, across 
and from university mathematics, specialized content knowledge for teaching. 
INTRODUCTION 
Nearly 100 years ago, Felix Klein expressed the “double discontinuity” as a major 
problem in mathematics teacher education (Klein, 1924). The first discontinuity is 
concerned with the transition from school to university and the second discontinuity 
describes the return to school. When teacher candidates enter the university from 
school, they cannot link mathematics from school with the mathematics they learn at 
the university. After forgetting most of school mathematics, they are send back to 
school to teach just this mathematics. Wu (2011) formulated and criticized the second 
discontinuity as “Intellectual trickle-down hypothesis” where teaching advanced 
mathematics will lead to the needed content knowledge of teacher. Klein and Wu 
distinguish mathematics at school from mathematics at university. Deng (2007) 
describes differences between mathematics as academic discipline and as a school 
subject, which are important for both discontinuities. The second discontinuity is 
special for teacher candidates and raises the question: How and what kind of 
mathematics should teacher candidates learn at the university? 
The COACTIV-study (Baumert & Kunter, 2013) showed that content knowledge plays 
an important role for developing pedagogical content knowledge. In addition, it is 
mostly build during studies at the university (Baumert et al., 2010). Therefore looking 
at the content knowledge taught at the university is important for developing teachers’ 
professional competence. 
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In Germany, teacher candidates often do not visit specialized courses in mathematics, 
but attend the courses together with mathematics students (Gildehaus et al, 2021). 
Since mathematicians teach these courses, it can be expected that this courses are not 
orientated on teacher candidates. Even when they are separated mathematicians mostly 
teach the courses for teacher candidates. In this way, the mathematicians act as teacher 
educators (Leikin et al., 2018). That makes it important to learn about their goals and 
view on mathematics teacher candidates have to learn. 
THEORETICAL BACKGROUND 
Based on Shulmans (1986) model of professional competence of teachers COACTIV 
(Baumert & Kunter, 2013) formulates four aspects of teachers’ professional 
competence: Beliefs, values and goals, motivational orientations, self-regulation, 
professional knowledge. The professional knowledge is further divided into five 
domains of knowledge: content knowledge, pedagogical content knowledge, 
pedagogical/ psychological knowledge, organizational knowledge and counselling 
knowledge.  
Teachers’ content knowledge is described as “teachers’ understanding of the 
mathematical concepts underlying the content taught in middle school” (Baumert & 
Kunter, 2013, p. 34) and is explicitly distinguished from academic research knowledge. 
Therefore, teachers should possess a deep understanding of school mathematics. 
We will now describe two models that describe teachers’ subject matter knowledge in 
more details. The first approach extends content knowledge with a new construct: 
School related content knowledge. This construct explicitly deals with Klein’s second 
discontinuity and therefore relates school mathematics to university mathematics. We 
will use school related content knowledge to investigate the connections seen by the 
lecturers between their lectures and the mathematics used in school. 
The second approach describes four levels of mathematical knowledge teachers should 
reach. The normative model is specifically designed for mathematics teachers’ 
education and does not distinguish between school mathematics and university 
mathematics, but describes different situations, in which mathematics is used. Using 
this literacy model, we will describe the level of mathematics the lectures want the 
mathematics teacher candidates to reach. 
School related content knowledge 
Dreher et al. (2018) introduced a new dimension of teacher professional competence: 
School related content knowledge. This dimension directly relates university 
mathematics to school mathematics. School related content knowledge consists of 
three facets: curricular knowledge, a top down direction from academic mathematics 
to school mathematics and a bottom-up view from school mathematics towards 
academic mathematics. 
The curricular knowledge describes knowledge about reasons why topics are treated in 
school and how topics are connected over the curriculum. The top-down facet starts at 
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the academic perspective and covers reducing and decompressing mathematical ideas 
for teaching. This view is also about the right definition, tasks and explanations 
adequate for students of a specific grade. The bottom-up perspective respectively starts 
at school mathematics. It is concerned with the underlying proofs for claims and 
assumptions implicitly made in school mathematics. Are these claims and assumptions 
justified and which concepts of academic mathematics lay behind them. 
School related content knowledge was empirical separated from mathematical content 
knowledge and pedagogical content knowledge, even though it has high correlations 
with both constructs (Heinze et al., 2016). Using this construct as specialized teacher 
knowledge Hoth et al. (2020) could not support the trickle-down hypothesis, showing 
that school related content knowledge and university related knowledge develop 
independently from each other. Jeschke et al. (2021) also found effects for school 
related content knowledge on teacher action-related competences. 
Literacy model  
Based on Macken-Horarik (2012) Bauer and Hefendehl-Hebeker (2019) develop a 
Literacy-Model explicit for mathematics teacher education with four levels: Everyday 
Literacy, Applied Literacy, Theoretical Literacy, and Reflexive Literacy. 
The first level describes Mathematics that is visible in everyday live for everyone. The 
second level focuses on Mathematics in relation to other sciences and presenting 
specialized tools and algorithms for solving concrete problems, without looking at the 
theory behind the tools. The third level deals with the mathematical theories. Here lays 
the knowledge written in mathematical papers and monographs. This level is 
addressed, when students learn about definitions, propositions and proofs.  The fourth 
level deals with mathematics as a discipline, and it`s work methods, principles and 
regulations, that often stay implicit. The four levels are consecutive. Therefore, 
students can only reach one level if they already reached the previous level.  
The authors see achieving the last level as the goal of teacher education. It is not only 
a nice to have overview of the other levels, but necessary for teachers as representatives 
of Mathematics. Even though the number of lectures in Mathematics is limited, the 
teachers should not stop at a lower level. 
Previous Findings 
Only few studies concerning the design of courses for teacher candidates exist. 
Ableitinger et al. (2020) interviewed seven teacher educators of one university after all 
mathematics courses were designed specifically for teacher candidates. The results 
show that educators do not think in categories like content knowledge or about teacher 
practices, but see mathematics for teacher candidates in comparison to mathematics for 
mathematics students. However, they had the discontinuity for teacher candidates in 
mind. In addition, personal beliefs were a major factor in the reasoning. 
Yan et al. (2020) asked 24 lecturers what teacher candidates should know about 
university mathematics and let them design a hypothetical calculus course for teacher 
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candidates. The main goals laid in the nature of mathematics as a discipline. The 
teacher candidates should experience mathematical investigations and see connections 
within and beyond mathematics. Yan et al. (2022) also describe the value in advanced 
mathematics that educators see: In addition to the increased epistemological awareness 
and connections between mathematical ideas, it lays in the problem-solving abilities. 
The lecturers also give some connections between advanced mathematics and school 
mathematics. 
When looking for connections between advanced mathematics and school mathematics 
de los Ángeles et al. (2022) found, that educators had difficulties in finding connections 
between advanced mathematics and content of lower secondary classes. It was easier 
for the educators to find connections to upper secondary content. Their results suggest 
that the educators do not plan to teach these connections in their courses. The reasons 
for that were unawareness, missing time, teacher candidates should build the 
connections and building these is part of professional practice. 
Overall, these results indicate that mathematicians do not have in mind a specialized 
content knowledge for teaching in their lectures. They mostly think of a university 
mathematics perspective, even though they recognize differences between school 
mathematics and mathematics at the university. 
RESEACH QUESTIONS 
This study wants to give answers for two research questions. Both are concerned with 
the design of mathematics courses for teacher candidates: 

1) How do mathematicians design lectures for teacher candidates? Do they differ 
from lectures for math students? 

2) Do mathematicians have specialized content knowledge in mind when designing 
courses for teacher candidates? 

METHODOLOGY 
Because all interviews were conducted with lecturers from one university, we will first 
describe the structure of studies at this university and afterwards the participant and the 
interview manual. 
Mathematics courses for teacher candidates in Magdeburg 
In Germany, teachers have to teach two subjects and therefore study two subjects. In 
addition, the study programs of mathematics teacher candidates are separated from the 
study program in Mathematics. Sometimes lectures in Mathematics are the same for 
both study programs, which is not the case in Magdeburg. Most mathematics courses 
are joint with students from other subjects or specific courses for teacher candidates. 
The structure of the studies for future teachers in Magdeburg follows the typical 
structure in Germany. In the first semester students takes the courses in Calculus 1 and 
Linear Algebra 1. Both lectures are joint with students in Physics and mathematical 
engineers. In the second semester, the teacher candidates take the courses Calculus 2 
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with the same group of students and geometry, which is a special lecture for teacher 
candidates. 
Further compulsory lectures are Numeric and Stochastics. Stochastics is a lecture 
specific for teacher candidates and numeric is a joint lecture with students in 
Mathematics and other subjects. There is also a lecture in History of Mathematics 
combined with a seminar with a selected topic as part of the bachelor studies. The last 
lecture in the bachelor studies and the lecture in the Master of Education are required 
elective courses.   
Participants 
Overall, eight interviews are part of this study. All of the participants are members of 
the Faculty of Mathematics at the Otto-von-Guericke Universität Magdeburg. One 
participant has a postdoc position; the other seven participants are professors. Two 
professors are women. 
All of the participants have given at least ten courses in Mathematics. Six of the 
participants have at least given one course specifically for teacher candidates, five of 
them a course of the first year. The other two professors have only given elective 
modules. Only two participants have given more than ten courses for teacher 
candidates.   
Interview Descriptions 
The guided interviews consist of two parts. The first part addresses teaching of teacher 
candidates. The second part deals with the relationship between mathematics at school 
and the mathematics at the university. 
The first part consists of four segment, dealing with the following aspects: Describe a 
course for teacher candidates you teach this semester or have taught before. Describe 
a dream course you would teach, if there were no limitations. Which courses should 
teacher candidates and mathematics students visit together? Comment on three given 
principles for a seminar.  
The second part starts with questions about goals in school mathematics: What do you 
think are the goals in mathematics in school and what should be the goals? Afterwards 
the interviewees should comment on four statements. The first three statements concern 
the relationship between school mathematics and mathematics at the university, e.g. 
“One has to understand, that mathematics at the university has nothing to do with your 
job as a teacher”. The last comment deals with the fourth level of the literacy model. 
All interviews were conducted online and the questions were displayed on the screen. 
The durations of the interviews are between 44:10 and 1:08:06. 
All interviews were recorded and transcribed by the author, who afterwards analyzed 
it using qualitative content analysis. The author translated the quotes. 
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RESULTS 
We will start with first research question regarding course design and specifically at 
the first semester lectures in Analysis in Linear Algebra. 
Course design 
The lecturers described the lectures for teacher candidates to be similar to the courses 
for students in mathematics. 

I6: But it isn’t actually, let‘s say, regarding the volume of content and structure, far away 
from the other Analysis lecture. 

The Linear Algebra course was just one semester instead of two semesters, so it was 
shorter:  

I2: I would say it was a condensed Linear Algebra 1 and 2, proof-oriented on the 
blackboard. 

Overall, the lectures in the first semester are similar to the lectures of students in 
mathematics. The proof orientation mentioned in the last quote meets the third level in 
the literacy model. Some lecturers explicitly separate the proof oriented lectures from 
lectures for students in e.g. economics, which focus on using algorithms and therefore 
only reach the second level.  
However, there are still some specific features of lectures for teacher candidates. The 
lecturers describe them as more concrete, having more examples and applications and 
less technically. For example, not all theorems are proven in full generality, showing a 
slight shift to level two in the literacy model: 

I8: That means, at technical complicated things I will simplify it. 

Advanced lectures, that teacher candidates and mathematics student attend together, 
are mostly designed for mathematic students: 

I2: I honestly have to admit, I didn’t take [teacher candidates] into consideration  

I6: Actually, there is no reason, to change anything for the teacher candidates 

However, by choosing topics for students presentations or oral exams the lectures 
differentiate between teacher candidates and mathematics students. The chosen topics 
need less previous knowledge or are less theoretical and are less relevant for further 
lectures, which teacher candidates do not visit.  
Interestingly the interviewees do not see large differences in the mathematics 
competencies of math students and teacher candidates at the beginning of university, 
e.g.:   

I2: Now, when I say it, I would say, differences are not that big  

On the other hand, they describe motivation as different between both groups. This is 
also justified by the clear goal of being a teacher: 
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I8: and with some teacher candidates, it is […], that their ambition is not, to do it best as 

possible, but to somehow pass.  

The lecturers also described a course for teacher candidates without limitations and 
constraints. They give different approaches and some are quite different from typical 
courses. However, it is striking, that only one of the courses is actually specific for 
teacher candidates. When they start describing the course they talk about teacher 
candidates, but when asked, if it is specific for teacher candidates, only one lecturers 
can confirm this. This seminar should explicitly connect university mathematics with 
school mathematics: 

I5: selected topics from university mathematics with their references to school praxis and 
would try, but I cannot do this alone 

In this case, the lecturer wants to visit schools with the students and talk about the 
content afterwards. The lecturer wants to show connections between school 
mathematics and mathematics at the university, which relates to school related content 
knowledge, but he can not to this alone, as the second half of the quote shows. 
Overall, the lecturers for teacher candidates are oriented on the courses for mathematics 
students, but seem to have a slight lower level concerning the literacy model. However, 
the lecturers stress the third level. The fourth level is not mentioned for any student 
group. Only one lecturer mentions a link between school and university in a theoretical 
course design, while the other lecturers design courses not specific for teacher 
candidates. 
Connections to school mathematics 
The lecturers mention some direct connections between their lectures and mathematics 
in school: 

I2: as solving systems of equations is something, which is not too far away from what is 
needed at school 

I7: that we proof all the theorems, which are typically in school. Something like angle-
theorems, Pythagorean Theorem, existence of perpendicular lines, unique 
parallel line, such things we discus there. 

These quotes show direct connections identified by lecturers, where the content is the 
same in school and at the university. However, the lecturers mostly mention these 
connections in special cases, but not as a main goal of their courses. They are also not 
described as opportunities for building specialized knowledge for teachers. 
Even though the lecturers mention connections to school mathematics, it seems more 
like a background knowledge then referring to some kind of school related content 
knowledge.  
Lecturers rather want the teacher candidates to have an overview of mathematics. They 
should know more than just mathematics they teach in school: 

I7: Just, to widen the view, and to put it in a bigger context. 
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I8: to not only learn an epsilon more than, what you do in school, but much more 

Thereby the knowledge of university mathematics and experiences of university 
mathematics is helping in teaching better: 

I7: That they somehow get the students to freely exchange and discuss, either with the 
teacher or with the classmates, to uncover fallacies and help each other. 

I8: that it is important, to understand complicated things, to be able to explain simple things 
well. 

The lasts quotes implicitly include the trickle-down-hypothesis. Students have to learn 
complicated mathematics to understand easier mathematics and are then able to explain 
it to students in school. Therefore, they need a good overview of mathematics.  
Overall, the math lecturers see the teacher candidates as a specific group. Nevertheless, 
they think from a mathematics point of view. Therefore, teacher candidates need 
knowledge in mathematics and this knowledge helps teaching. They mostly do not 
have specialized content knowledge as described in the theory section in mind. 
DISCUSSION 
Overall, the mathematicians describe lectures for teacher candidates mostly as 
modified, especially shortened, lectures for mathematic students. Specifying lectures 
for teacher candidates means making it more concrete, showing applications, examples 
and using content, which is also part of school mathematics. In mentioning that the 
lectures for teacher candidates are proof oriented, mathematicians expect at least the 
third level of the literacy model. It is not astonishing that teachers should know that 
level of mathematics in the mathematicians view. However, they explicitly state the 
second level as not enough.  
They also draw connections between university mathematics and school mathematics. 
A student, who has more complicated knowledge in mathematics, can explain 
mathematics better in school. In addition, university mathematics is a more complex 
and general case of school mathematics, so the teacher should know some of it, to be 
some steps ahead of the students. Therefore, in both perspectives the trickle-down 
hypothesis is implicitly mentioned.  
The connections between school mathematics and university mathematics are also not 
concrete. The lecturers only describe shared contents and do not link the needed to 
knowledge to teach with the knowledge of their courses. Therefor they do not describe 
a top-down or bottom-up perspective regarding the shared topics. However, two 
lecturers want to foster theses connections, but cannot, because they are missing 
knowledge about mathematics in school. 
Overall, the lecturers do not emphasise specialized content knowledge, but want 
teacher candidates to have an overall solid knowledge of mathematics. The lectures are 
mostly contrasted with lectures for mathematic students, what is in line with the 
previous findings.  
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These results describe interviews from one university and with a small group of 
lecturers. That means all of the lecturers are working at the same institution. Therefore, 
it is necessary to repeat such interviews with more lecturers from other universities to 
understand what is special and what can be generalized.  
Similar we only discussed results directly to one course or some courses. Since a 
specialized mathematical knowledge is investigated, it would also be interesting, which 
view on school mathematics the mathematicians hold. What the teacher candidates will 
or should do in school will influence the teaching at the university. At the same time, 
despite some evidence, it is not clear, whether the described concepts of specialized 
content knowledge for teachers lead to actual learning effects of students. 
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We report on a course in advanced mathematics and didactics aimed at prospective 
upper secondary teachers, taught jointly by a mathematician and a mathematics 
educator using a team teaching format. The course is novel in that it covers 
mathematical and didactical content concurrently and jointly. The present paper 
focuses on the team teaching aspect, with the aim of investigating what opportunities 
for learning, in particular for the teachers, arise from such a teaching practice. 
Drawing on commognitive theory, we analyse a teaching episode that displays how the 
team teaching might contribute to creating opportunities for meta-level learning, but 
also how implicit assumptions made by the teachers might create challenges for some 
students. 
Keywords: Teachers’ and students’ practices at university level, Novel approaches to 
teaching, Upper secondary mathematics teacher education, Team teaching, Meta-level 
learning. 
INTRODUCTION 
There is some consensus among mathematicians and teacher educators (e.g., Dreher et 
al., 2018; Leikin et al., 2018) that prospective upper secondary mathematics teachers 
need a solid knowledge of central topics of upper secondary mathematics, such as 
calculus and algebra, including some more advanced topics. However, research (e.g., 
Wasserman et al., 2018; Zazkis & Leikin, 2010) has shown that both prospective and 
practicing upper secondary mathematics teachers have difficulty seeing the relevance 
of more advanced mathematics courses to their teaching practice. In 2021, the authors 
of this paper received funding from Uppsala University for developing a course partly 
aimed at addressing this problem. The design of the course is novel in that it covers 
mathematical and didactical content concurrently and jointly, not as two separate parts 
of the course. To this end, the course is taught through team teaching (Friend et al., 
2010), where two teachers are present in the classroom conducting the teaching 
together. In this paper we will focus on this aspect of the course, with the aim of 
examining what opportunities for learning that might arise from team teaching. 
Although opportunities for student learning will be discussed, we will concentrate on 
opportunities for teacher learning afforded by the team teaching. We will also discuss 
some challenges that arose in the teaching of the course. 
CROSS-DISCIPLINARY COLLABORATIVE UNIVERSITY TEACHING 
There are several models for collaborative teaching (Friend et al., 2010, p. 12), ranging 
from “one teacher, one assistant” models, via parallel and alternative teaching, through 
to team teaching, “in which both teachers lead large-group instruction by both 
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lecturing, representing opposing views in a debate, illustrating two ways to solve a 
problem, and so on” (ibid., p. 12). The research literature on co-teaching of 
mathematics at the university level mostly consists of case studies in the context of 
elementary teacher education. For instance, Ford and Strawhecker (2011) developed a 
blended mathematics content/method course, co-taught by a mathematician and a 
mathematics educator in a format that included team teaching to a limited extent.  
Studies involving co-teaching of university-level mathematics are rare. Lehmann and 
Gillman (1998) report on a semester of collaborative teaching. However, in that case 
both teachers were mathematicians. More directly relevant to the present study is the 
work of Zaslavsky and colleagues concerning a course in Mathematical Proof and 
Proving, taken primarily by prospective secondary mathematics teachers and co-taught 
by a mathematician and a mathematics educator. Sabouri et al. (2013) focus on the 
professional reflection of the teachers, building on one specific classroom situation to 
discuss “ways in which the collaboration between these two experts made them 
conscious of each other’s considerations and of the importance of questioning their 
assumptions and negotiating them” (p. 312). Meanwhile, Cooper and Zaslavsky (2017) 
conducted an in-depth analysis of a teaching episode to investigate the two teachers’ 
views on proof and proving as they come across in their teaching, and the affordances 
of these views on the students as future teachers. Perhaps unsurprisingly, the analysis 
revealed the mathematician to be more concerned with the content and presentation of 
the proof, while the mathematics educator paid more attention to the thinking of the 
prover, what Cooper and Zaslavsky label the “human element” of the proof. They also 
note that the teaching mostly took the “one teach, one observe” approach, and that a 
teaming approach might have created greater opportunities to discuss and reflect upon 
differences in views. In conducting their analyses, Cooper and Zaslavsky drew on a 
discursive approach to teaching and learning, the commognitive framework (Sfard, 
2008). This framework also forms the theoretical backdrop of the present study. 
UNIVERSITY MATHEMATICS TEACHING AS A DISCURSIVE PRACTICE 
From a commognitive perspective, mathematics and mathematics teaching are seen as 
discursive practices, characterized by the words and visual mediators used, the 
narratives told about mathematical objects and their relations, and the repetitive 
patterns, routines, of the discourse (Sfard, 2008, p. 131-133). As a patterned activity, 
mathematical discourse is governed by two types of rules. Object-level rules are 
“narratives about regularities in the behaviour of objects of the discourse” (ibid., p. 
201). Most of what we think of as mathematical rules or facts belong to this category, 
for instance, differentiation rules or the distributive law. Meta-level rules, on the other 
hand, govern the actions of the discursants, that is, they regulate “the activity of the 
discursants trying to produce and substantiate object-level narratives” (ibid., p. 201). 
An example could be rules for what counts as an acceptable mathematical proof. Meta-
level rules (metarules for short) behave differently from object-level rules. They may 
evolve over time and vary between contexts. Moreover, where the rules governing the 
mathematical objects are explicitly articulated as mathematical narratives, metarules 
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can be tacit. Indeed, Sfard distinguishes between endorsed and enacted metarules, 
where the former “are explicitly recognized as a person’s own” (ibid., p. 204), while 
the latter are inferred by an observer of the discourse. Furthermore, metarules are 
typically normative and value-laden; constraining rather than deterministic; and 
contingent rather than necessary (ibid., p. 202). It should be pointed out, however, that 
not all metalevel rules satisfy all these characteristics. They should therefore not be 
taken as defining the notion of meta-level rule; the defining property of a meta-level 
rule is rather that it governs the actions of the discursants rather than the objects of the 
discourse. For more detail on this, see Viirman (2021, p. 469-470). 
In commognitive terms, learning is defined as change in the learner’s mathematical 
discourse. Such change can be of two types: object-level learning, which involves 
expanding one’s discursive repertoire of objects and narratives about them; and meta-
level learning, which involves changes in the meta-level rules of the discourse (Pinto, 
2019, p. 4). Typically, meta-level learning involves discursive change that is not 
initiated by the learners themselves, and that evolves through repeated engagement 
with the new discourse. For instance, in the move from school to university, the 
meaning of, and rules governing, many familiar mathematical objects and narratives 
change in ways that are not always made explicit. A few studies have examined 
university mathematics teaching from the perspective of meta-level rules and learning. 
Viirman (2021) investigated how the discursive practices of seven university 
mathematics lecturers teaching first-semester courses served to model mathematical 
discourse, and Pinto (2019) compared the opportunities for object- and meta-level 
learning offered by two teaching assistants through their tutorial lessons in a Real 
Analysis course. As Pinto points out, “while instructors do not typically engage in open 
and explicit discussions about the meta-rules of their discourse in the course of their 
lectures, their recurrent actions, and their comments about their actions, provide 
glimpses into their mathematical discourse and its underlying meta-rules” (p. 4).  
Using this terminology, we address the question of how and to what extent team 
teaching, with its element of teacher dialogue, can create opportunities for meta-level 
learning. Although we are interested also in opportunities for student learning, here our 
main focus is on the learning opportunities created for the teachers. For instance, we 
hypothesize that the dialog inherent to the team teaching might help make explicit 
enacted metarules both concerning mathematics and mathematics teaching. Before 
addressing the research question, however, some information on the course and the 
teaching, as well as on data collection and analysis, is needed. 
METHODS 
Setting – the course, the teachers, the teaching 
The course is positioned late in the upper secondary teacher education program and 
runs with 1-2 two-hour sessions a week, a total of 30 sessions, throughout the spring 
semester, in parallel with the students’ final thesis work. The students have taken three 
semesters of mathematics prior to enrolling in this course, including, for instance, 
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linear algebra and calculus of one and several variables. For most students, these 
semesters are placed early in the program. Thus, their prerequisite knowledge is not 
always up-to-date.  
For assessment purposes, the course consists of a mathematics part, 10 ECTS [1] 
credits, and a didactics part, 5 ECTS credits. The mathematical content of the course is 
taken from abstract algebra and real analysis, with a focus on topics relevant to upper 
secondary mathematics. For algebra, this means mainly ring and field theory, for 
instance Euclidean domains and field extensions, but only some rudiments of group 
theory. Applications include a treatment of the classical problems of geometric 
constructions (proving, for instance, that squaring the circle is impossible) and a 
discussion of the insolvability of the general fifth-degree polynomial equation. In 
analysis, we begin by detailing the construction of the real numbers through Cauchy 
sequences and then give a rigorous treatment of concepts familiar from upper 
secondary school calculus, such as limit, derivative and integral. Didactical topics 
covered include, for instance, the epistemological structure of calculus and well-known 
student difficulties with calculus topics, but also didactical perspectives on notions 
such as definitions, examples, proof, generalisation, representation and classification. 
The course is assessed through a variety of means, including two closed-book exams 
on mathematical content; an open-book exam on didactical content; and group and 
individual presentations on mathematical and didactical topics. 
As already mentioned, the course is taught concurrently by the authors of this paper. 
The first author, ME, is a researcher in mathematics education, but also has a solid 
background in advanced mathematics (a masters degree in mathematics plus a number 
of additional courses at the doctoral level), whereas the second author, M, is a research 
mathematician, but also an award-winning teacher of university mathematics, 
professionally involved in didactical networks within the science faculty at Uppsala 
University. In the teaching of the course, the second author takes main responsibility 
for the mathematical aspects, and the first author for the didactical ones, but both are 
knowledgeable enough in the other’s domain of expertise to be able to engage in 
meaningful dialogue. In planning and conducting the course, we wanted to establish 
connections between university and school mathematics teaching. Wasserman (2018, 
p. 6) describes a spectrum of such connections, on the level of content, disciplinary 
practice, classroom teaching and modelled instruction. We aim at achieving 
connections of all these types, for instance through explicitly pointing out content 
connections and ways in which the content can inform the students’ future teaching 
practice, but also through encouraging student meta-reflection and through viewing our 
own teaching as a source of examples of practice, to be used for didactical reflection. 
We also try to achieve a high level of interaction with the students, by engaging them 
in conversation around the mathematics rather than just lecturing. 
Data and analysis 
So far, the course has been given once, with nine students enrolled. All sessions (except 
the first four, due to technical difficulties) were video-recorded. In addition, the first 
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author has kept notes from the joint planning of the course, and we also conducted 
some informal interviews with the students. So far, we have conducted preliminary 
analyses of a small part of the material, focusing on teaching episodes where there was 
much interaction between the two teachers, or between the teachers and the students. 
In particular, we were looking for exchanges where the focus was on meta-level rather 
than object-level discourse, that is, where discussion revolved around, for instance, 
more general aspects of mathematical discourse, on implications for teaching practice, 
or on didactical aspects of the teaching currently taking place. From these exchanges 
we then selected instances which we deemed particularly representative or 
enlightening. We then analysed these further, with the aim of investigating how the 
dialogue between the teachers, or between the teachers and the students, influenced the 
opportunities for learning, both for students and teachers, arising from the teaching. 
The final decision to make opportunities for teacher learning the focus of this paper led 
us to select the particular episode presented below. All dialogue was originally in 
Swedish, and has been translated by the first author. 
RESULTS 
A first, general, observation is that at the very onset of the course we realised that we 
had unrealistic expectations of the mathematical maturity of the students. We knew 
that it was some time since they had studied mathematics, and in the information 
distributed to the students prior to the course we emphasised the need to review 
material from earlier courses in algebra and calculus in preparation for this course. In 
particular, we designed the first session around the algebra of integers and polynomials, 
and asked the students to review the statements and proofs of the fundamental theorem 
of arithmetic, and of Euclidean division of integers and polynomials. We intended to 
have the session revolve around a discussion of the structure of these proofs, and of 
abstract properties of integers and polynomials more generally, to prepare the students 
for the introduction of the concept of a ring in the second session. However, it soon 
became clear that most of the students had struggled with the proofs, and we instead 
had to spend much of the session explaining them in detail. When we reflected on the 
session afterwards, M first attributed the student difficulty to particularities of the 
proofs. However, ME, who had been less directly involved in the teaching during the 
session, and thus had greater opportunity to reflect on the discourse as it unfolded, 
observed that some of the difficulties seemed to originate in lack of experience with 
proving more generally. Further reflection and observation during the following 
session led us to agree on ME’s point of view.   
Hence, we deemed it necessary to devote more teaching time to presenting and 
explaining the mathematical content. This placed more of the responsibility of the 
teaching on M, and made it more difficult for ME to interact, since there was less time 
available for didactical and mathematical reflection. Moreover, it was decided that ME 
should concentrate much of his teaching contributions on issues of proof and proving, 
and this is also the topic of the example episode that is presented and analysed below. 
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A teaching episode – proving an equivalence 
This episode is taken from Session 6, and appeared in the context of proving a property 
of the valuation 𝜈 in a Euclidean domain, namely that 𝜈(𝑎) = 𝜈(1) ⇔ 𝑎 is a unit (has 
a multiplicative inverse). The form of the statement prompted some meta-level 
reflection from M, prior to the presentation of the proof, concerning the two implication 
claims implicit in an equivalence: 

M Often, you cannot prove these two claims together, that is, show this [points 
at the equivalence written on the board] directly, rather you show one claim 
at a time, first this one [points from left to right in the equivalence] and then 
this one [points from right to left], or the other way around, depending upon 
what you feel like. I think that we’ll go this way first [points from right to 
left], because it is easier. 

ME That’s a bit interesting, because in many contexts, when you first encounter 
the idea of proving things, in number theory and things like that, then you 
often work with expressions that you reformulate in various ways, and then 
these equivalences will somehow hold all the way through.  

M Unless you do something like extracting roots or something like that. 

ME Yes, exactly, so if that is, like, your entry point to proving things, then you 
run the risk of forgetting that a claim like this typically needs to be split up 
and treated in two separate parts, because you’re somehow used to being able 
to do everything at once. 

M A typical problem with the presentation of proofs like that often is that the 
student starts with what they are supposed to prove. You write down the 
equality you want and then you manipulate it until you get the equality you 
had to begin with or the other way around or whatever, and sometimes it’s 
like, if you interpret it kindly, those are the calculations that you need to do, 
but the structure of the proof is unclear if you do it like that, OK? It’s always 
better if you need to prove an equality (…) even if you figure out what the 
process is by fiddling with the equality yourself, at least when you present it 
start with one side and rewrite it until you get the other side ‘cause then you’ll 
have a clear direction of your argument. OK? Don’t start with the claim, the 
equality, and start working on both sides at once, because it is not systematic. 

ME No, because we don’t know that the equality holds to begin with. 

M For instance that, yes [laughs].  

S So, then, one direction is a is a unit and then that [referring to the claim  
𝜈(𝑎) = 𝜈(1)]	holds, or if that holds then a is a unit? 

M Exactly, it’s those two. So that, an equivalence [writes on the board: ”An 
equivalence arrow is two implications”] an equivalence arrow is two 
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implications, OK? So, we have A is equivalent with B [𝐴 ⇔ 𝐵] means that 
A implies B [𝐴 ⇒ 𝐵] and that B implies A [𝐵 ⇒ 𝐴]. 

In this dialogue, the respective statements by M and ME prompted responses that 
elaborated on what was just said, adding further levels of reflection.  From the point of 
view of an insider to the discourse, what was happening could be described as follows: 
M began by stating a general principle of proof, which prompted ME to reflect on 
potential didactical problems with the simple types of claims that typically are 
secondary school students’ first contact with proof, which in turn caused M to highlight 
a typical student mistake with proof and to formulate an explicit metarule for this kind 
of proof. Prompted by a student comment about the particular proof under 
consideration, he also put the initial observation about equivalences and implications 
into symbolic form on the board.  
However, given the students’ difficulties during the first sessions and their lack of 
recent engagement with mathematics, it was likely too optimistic to assume this degree 
of insidership to mathematical discourse from many of them. A closer analysis of the 
dialogue reveals a number of places where M and ME made implicit assumptions on 
the students’ familiarity with mathematical discourse, and in particular on their ability 
to move between object-level and meta level discourse.  
The example given, in quite abstract and imprecise terms, by ME in his first statement 
assumed both that the students understood what kind of proof situations he was 
referring to (proof through algebraic manipulation) and that they were capable of 
reflecting on these at the meta-level, as examples of ways of mathematical reasoning. 
In his response, M aimed to complete the argument with details (not all algebraic 
manipulations result in equivalences), but again it was implicitly assumed that the 
students could follow this meta-level argument. For M, as an insider, it was clear what 
situation ME was referring to, but possibly it was less clear to the students.  
In his next statement, ME reached his intended conclusion by connecting the two 
strands of the argument; if your main encounters with proof are through proving 
algebraic identities, often as a sequence of equivalences, then you can easily be led to 
think that this is how you typically prove equivalences. However, this again assumed 
that the students were able to follow this quite abstract meta-level reasoning, reflecting 
on what unites and separates two forms of mathematical argumentation, one of which 
had only been described too abstractly and with lack of precision. When M then 
connected this to a well-known type of student mistake, the fact that ME’s argument 
concerned proofs of algebraic identities was clear to him as an insider, but in fact this 
is the first place where the term ‘equality’ (or ‘identity’ – the word ‘likhet’ in Swedish 
can mean both) was explicitly mentioned. The point was possibly further obscured by 
the fact that M was also unable to resist making a joke in the process (the manipulations 
resulting in getting back where you started). Still, M did formulate a useful explicit 
meta-rule for proving equalities, and at least one student (S) had apparently been able 
to keep track of the original narrative, prompting him to also explicitly state the 
connection between equivalences and implications.  
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The deepened analysis presented above indicates how ME and M made implicit 
assumptions on familiarity with mathematical discourse that possibly posed a 
challenge for the students. The analysis suggests at least two possible sources of 
problems. First, ME’s comment was highly abstract, lacking a concrete example to 
specify the kind of situation he was talking about. Second, the language he was using 
was not sufficiently precise. For M, with access to a large and well-organised “library” 
of mathematical, as well as didactical, objects and examples, ME’s statements had clear 
referents, despite their vague formulations. However, even if the students might very 
well be aware of the relevant examples, it is unlikely that such vague prompting would 
suffice for them to recall them in this context. Still, there are tensions here. If ME had 
taken the time to support his remark with a carefully presented example given with 
precise details, it would have ceased being just a remark, thus disrupting the ongoing 
mathematical argument. Moreover, ME’s comment was prompted by an observation 
made in the moment and had to be made before work on the actual proof started, 
meaning that the time available for coming up with a supporting example was limited. 
Lest we paint too bleak a picture here, despite these misgivings the dialogue format of 
the team teaching did support a deepened didactical reflection in the moment, in the 
process creating opportunities for meta-level learning concerning proofs and proving, 
although perhaps not for all students. In particular, here it led to an enacted metarule 
being made explicit for the students, in a way that would likely not have happened had 
only one of the teachers been doing the teaching.  
DISCUSSION 
The analysis presented above exemplifies how team teaching led both M and ME to 
realise the need for constant awareness of students’ less developed mathematical 
discourse. Despite M and ME being didactically knowledgeable teachers, in their meta-
level discussion they nevertheless lose track of this. Still, the episode also illustrates 
how team teaching can contribute to making metarules visible to students, thus creating 
opportunities for meta-level learning by providing insight into the “explicit discussions 
about the meta-rules of their discourse” (Pinto, 2019, p. 4) typically only glimpsed in 
teaching. But it also suggests ways in which team teaching can create opportunities for 
teachers’ in-the-moment reflection, as one teacher is not solely responsible for 
managing the lesson. In the episode analysed, comments made by M prompted ME to 
reflect on the teaching taking place, a reflection that continued after the particular 
session. In this way, the team teaching also contributed to teacher learning. Only a 
small part of the data has been analysed so far and we expect further analysis to provide 
stronger support for the value of team teaching for meta-level learning.  
Widening the perspective from this particular episode to the course as a whole, between 
the teaching sessions M and ME reflected on and discussed the teaching, providing 
analysis and critique. This process led to both teachers gaining new insight into their 
teaching practice, in a way that would have been more difficult, and possibly would 
not have happened, had either been the sole teacher of the course. This resonates with 
the observations made by Sabouri et al. (2013), where the collaboration between the 
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mathematician and the mathematics educator “made them conscious of each other’s 
considerations and of the importance of questioning their assumptions and negotiating 
them”. Examples of learning that led to changes in teaching practice include the 
realisation of the crucial importance of timing when making comments, in order not to 
disrupt an ongoing argument, and of keeping comments short and precise. Moreover, 
ME has come to realise that the (over-)abstraction evident in the episode above is a 
recurring tendency in his teaching that he needs to work on, while M has noted how 
impatience sometimes causes him to not allow students enough time to reflect and 
formulate their arguments when conducting group discussions. Here it is also worth 
noting that the process of researching your own practice in itself creates opportunities 
for teacher learning, which are enhanced if you are two people doing the analysis. 
There are also a few general observations to be made in relation to previous research. 
We note that the modelling of mathematical discourse that Viirman (2021) found in his 
analyses of university mathematics lecturing occurred also in this context. Moreover, 
the different roles discerned by Cooper and Zaslavsky (2017), where the mathematician 
took main responsibility for content, while the mathematics educator focused more on 
the “human element”, were less present in this course. In the episode discussed above, 
both M and ME made didactical reflections about proving. Indeed, it was a conscious 
choice when planning the course to try to avoid this strict separation of roles, showing 
by example that mathematical and didactical reflection go hand in hand. 
We also want to make some remarks concerning difficulties we have encountered when 
trying to implement team teaching. Similarly to what Cooper and Zaslavsky report, 
much of the teaching took the “one teach, one observe” approach, rather than the more 
interactive format we had aimed for. This was due partly to us not being able to do the 
detailed planning of the sessions together, and partly to the need for more presentation 
of content described earlier, which sometimes caused ME to refrain from, for instance, 
initiating discussion of the lecturing of M as a model of instruction (Wasserman, 2018) 
since he knew that we were pressed for time. Moreover, in the light of the analysis 
above, there is a risk that the kind of reflection needed to make sense of meta-level 
comments made in the moment might contribute to student cognitive overload. In 
conclusion, however, so far we feel that the team teaching has a definite potential to 
contribute positively to student and teacher learning, particularly at the meta-level. 
Moreover, it is a very enjoyable form of teaching, something also highlighted by, for 
instance, Lehmann and Gillman (1998), and we recommend others to try it if they get 
the opportunity.  
NOTES 

1. European Credit Transfer and Accumulation System. One academic year corresponds to 60 ECTS credits. 
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Since the 19th century, studies of mathematics at university have been a main 

component of the usual preparation for teaching at secondary level. Already around 

1900, Klein pointed out that specific measures are needed to ensure that the university 

mathematical preparation becomes useful to the teacher, and he insisted that 

universities themselves must take responsibility for these measures. In this paper, we 

discuss this problem, as it presents itself in 2022, and we present and exemplify some 

principles of task design which are intended to support students’ mobilisation of 

university mathematical knowledge in relation to specific mathematical challenges for 

high school teachers. 

Keywords: 3, 15; Klein’s second discontinuity, task design, ATD. 

THE PROBLEM 

The gap between university mathematics and secondary school mathematics has 

widened considerably in the 20th century. At the same time, the two institutions and 

their mathematical disciplines are not monolithic. At universities, mathematics has 

developed into several related, yet quite different disciplines of teaching and research, 

including the various domains of “pure mathematics” but also other disciplinary 

branchings referred to by labels such as applied mathematics, data science, computer 

science, statistics and even parts of engineering, finance and other profession oriented 

sciences. All of these are to some extent “references” for secondary school level 

mathematics: particularly at the upper secondary level (with students aged 15-16 

onwards), various “streams” are present in most countries, which not only offer more 

or less mathematics, but also mathematics which can be more or less closely related to 

the university level forms of mathematics. This complicates both of the transition 

problems, described by Klein as the “double discontinuity” (Klein, 1908/2016; 

Winsløw & Grønbæk, 2014). One cannot simply talk of one “school mathematics” and 

of one “university mathematics”.   

Here we will consider only the second discontinuity, between university studies of 

mathematics (in some form) and teaching secondary level mathematics (in some form). 

It arises for university students as they prepare to become secondary level teachers. In 

most countries, this involves some mixture of university mathematics studies (some 

are in fact designed for teachers while some are not) where in general the second 

discontinuity must be considered. We do not consider generic educational components 

here, but only those parts that are directly aimed at adapting the future teachers’ 

mathematical knowledge to presumed needs for teaching at the secondary level, with 

its variation and the rest of the students’ university mathematical preparation in mind. 

Even in European countries, the organization of teacher education programmes – and 

in particular, the part we focus on here – varies considerably. It can be considered as a 
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bridging problem, where the continents to be bridged are two curricula: the mandatory 

programme of mathematics units studied at university (excluding the profession 

oriented part), and the secondary curricula in which the student will be teaching. In 

many countries (such as France and Denmark), there is a “consecutive” organization 

where the professional part comes last; in other countries, like Germany, a more 

“parallel” organization can be found. 

We will now further delimit our problem, considering with Watson and Ohtani (2015, 

p. 3) that “the detail and content of tasks have a significant effect on learning; from a 

cultural perspective, tasks shape the learners’ experience of the subject and their 

understanding of the nature of mathematical activity; from a practical perspective, tasks 

are the bedrock of classroom life”. This leads us to the following general problem: 

What are possible principles for designing tasks which, within a consecutive model, 

allow future teachers to adapt their mathematical background to the professional tasks 

of teaching mathematics at secondary level? In particular, how do these principles 

relate to mathematical tasks worked on by the future teachers at university, and by 

students in the schools where they prepares to teach? 

We note that similar questions were studied by Bauer (2013) within the parallel model 

found in Germany.  Naturally, the answers proposed here cannot exhaust the full range 

of relevant principles for task design related to courses in the consecutive model, but 

the focus on “adapting their mathematical background” will nevertheless allow us to 

propose a reasonably complete set of principles. Our discussion, at the end of the paper, 

will focus on the extent to which the proposed principles may be adapted or even 

extended to other similar, but different contexts. However, even before that, we need 

to furnish a more precise framework for the above problem, and then present our 

context, principles, and some examples of their use. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTION 

We adopt, from the anthropological theory of the didactic (ATD), the notion of 

institution, which, are roughly speaking, social systems. This wide and unclear 

definition can be made more precise (see e.g., Chevallard, 2019, p. 92): human beings 

occupy, throughout their lives, various positions p in different institutions I, and for 

each of these positions, certain relationships, denoted RI(p,O) are required to certain 

objects O (O can be, for instance, knowledge objects, physical entities etc.). One can 

even define the elusive notion of institution as being a configuration of positions, each 

defined by a set of such relationships which occupants of the position is required to 

have in order to occupy p within I. For instance, to be a teacher t in a school institution 

S, it is required to hold certain relationships to a number of didactical tasks, to hold 

certain degrees etc. – these tasks, degrees and so on all being objects whose existence 

for S is confirmed by the relationships held by (some) positions in S.   

Institutions may come in types such as schools and universities. Institutions may also, 

at least apparently “share” objects, for instance in the sense that they label certain 

objects in the same way. Yet, what is labelled, for instance, “real numbers” and 
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“algebra” may not only differ from institution to institution, but even from position to 

position within these.  

The second discontinuity has been modelled, within this framework, by Winsløw 

(2013) as pertaining to passages of the type  

RU(σ,ω) → RS(t ,O) 

where U is the university institution, σ is a student in U, ω is a (mathematical) 

knowledge object  to which σ is required to hold the relationship RU(σ,ω); and S is a 

school institution, t is a mathematics teacher in S, and O is an object to which t is 

required to hold the relationship RS(t,O). For the passage to be meaningful, it is 

naturally expected that RU(σ,ω) is of some relevance to RS(t ,O), so that the latter could 

be supported by the former, presumably with some further development. If this 

development occurs, at least in part, already within the university institution, we can 

rewrite the above passage as 

RU(σ,ω) → RU(σ,O) ≅ RS(t,O) 

where RU(σ ,O) ≅ RS(t,O) indicates an approximate similarity of the relationship 

obtained by σ within U and the relationship to be held by t within S. If working with a 

task of type T can achieve the passage RU(σ,ω) → RU(σ,O), at least in part, we write 

RU(σ,ω) 
𝑇
→ RU(σ,O) 

In this paper, we now consider the following research question:  

Given a relationship RS(t,O) required to occupy t in S, how could some T be designed 

so that σ could develop RU(σ ,O), with  RU(σ,O) ≅ RS(t,O), based on some RU(σ,ω)? In 

other words, what principles can be formulated for the design of T ? 

Here, we present and explore four principles which have progressively been identified 

in the course of more than a decade of task design in the context described in the next 

section. The principles each focus on O at one of the praxeological levels  (type of task, 

technique, technology and theory – for definitions of these ATD notions, see e.g., 

Chevallard, 2019, pp. 91-92). 

P1. In case O is a mathematical type of task taught in S, T is simply a task of which 

is somewhat more demanding – but otherwise similar – to O, with the additional 

demands being satisfied by drawing on some RU(σ,ω). 
P2. With O as in P1, T requires σ to pose a task of type O, based on some RU(σ,ω) 

which may also lead to a more theoretical or structured relation RU(σ,O). 

P3. If O is one or more mathematical techniques (authentic or imaginary, correct or 

erroneous), which 𝑡 should be able to foresee and assess, then T could ask σ to 

foresee or assess O while drawing on some ω; 

P4. If O is a segment of mathematical technology or theory, which 𝑡 should teach or 

otherwise know, then T could demand that σ establishes whether O is 

mathematically consistent with ω – for instance, can be proved based on ω. 
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Klein’s discontinuities focus on the future teachers’ relation to (school) mathematical 

objects. Klein points out that it is potentially useful for future teachers to establish such 

relations RU(σ,O) from the “higher standpoint” of university mathematics (an element 

of which we denote here by ω); but that doing so requires deliberate support measures 

within U, here conceived as engaging σ in work with carefully designed tasks T. The 

above principles then distinguish, but do not exhaust, important cases for the 

construction of T, as we will show through examples.  

To prevent misconceptions, we also underline that the research question – and therefore 

the list – does not pretend to cover all task design that may be relevant to mathematics 

teacher education. Indeed, future teachers also need to develop didactical knowledge 

(both practical and theoretical) that cannot be directly supported by elements of “pure” 

mathematics as learned in standard university courses.  

We will now outline the concrete context in which the four principles have emerged, 

and then present and analyse some examples of concrete T designed with them. 

CONTEXT 

The principles P1-P4 have progressively been made explicit in the theoretical terms 

given above, as they were developed and used within a concrete context by the first 

author (since about 2009). This context is a course, called “Mathematics for the 

teaching context” (UvMat), offered at the University of Copenhagen to students who 

do a minor in mathematics in view of becoming high school teachers.  

We now outline what RU(σ,ω), and in particular ω, could be in this context (for minor 

students σ). Before UvMat, σ has taken at least 1.25 years’ credit of mathematics 

courses, covering: one- and multi-variable calculus, linear algebra (including axiomatic 

vector space theory), ordinary differential equations, abstract algebra (rings, fields and 

groups), differential geometry, discrete mathematics, statistics and probability, and 

analysis up to Fourier and metric space theory. The calculus part involves some level 

of computer algebra use.  

We note that the mathematics courses drawn on are basic courses in the bachelor 

programme on pure mathematics. They focus primarily on theory development, and 

students are required to solve relatively theoretical tasks (except for the calculus part) 

involving deductive reasoning. Virtually no examples are studied of how the theory 

applies to solve practical problems outside of pure mathematics. 

What, by contrast, could RS(t,O) – and in particular O – be? Danish high school 

mathematics has several levels and variations, but the core could be described as a 

study of concrete one variable functions and models based on such, up to practical uses 

of differential and integral calculus. Other mandatory domains are probability, statistics 

and geometry. Students’ grades in mathematics depend largely on their ability to solve 

standard tasks, with or without the use of computer algebra systems. Deductive 

reasoning still appears, but recent curricula give reinforced attention to modelling and 
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interactions with other high school disciplines, and to mathematical inquiry. Also, the 

use of computer tools – especially computer algebra systems – is strongly emphasised.  

A bridge needs solid bases on both sides. It is not an aim for UvMat to connect all of 

the mathematical background of students to all of the high school mathematics they 

will have to deal with as teachers, but each task in UvMat must have solid connections 

to both, and in particular focus on important aspects of high school mathematics. 

EXAMPLES AND ANALYSIS OF TASKS DESIGNED FROM P1-P4 

In the following, the tasks we present come from the final exam in the course; former 

exam items (from an inventory of well over 100) are also used as exercises in the 

course. The students are informed, though, that exam items are never mere variations 

of former exam items; they always require the student to create new connections 

between course contents and university mathematics, and the high school object 

involved. Thus, the continuous development of such tasks form a central challenge of 

running UvMat. As exam tasks need to be relatively simple, the course also involves 

more involved assignments (see Huo, to appear, for an in-depth analysis of an 

example). 

P1: Solving “advanced variations” of school mathematical tasks 

Mathematics teachers naturally need to be able solve the tasks given to students, and 

some of the items worked on in UvMat are merely advanced variants of high school 

tasks (often involving non-trivial construction of a mathematical model, e.g. for a 

probability item). Here is an example: 

Britta participates in a multiple choice test with n questions. For every question, one can 

choose among 3 possible answers, of which only one is correct. Passing the test requires 

that one chooses correct answers for at least half of the questions. Britta knows nothing of 

the subject and answers randomly. 

a) If there are 10 questions, what is the probability that Britta passes the exam? 

b) If the test is to be made, so that students like Britta has less than a 5% chance to pass, 

how big must n then be? Explain your answer. 

(Exam June 2019, exercise 5) 

Question a) is a standard application of the binomial distribution and, as such, is simply 

a high school level task. It merely prepares the second question b), which is technically 

harder, as the parameter n is unknown, rather than given. Students use tools to compute 

values of the binomial distribution function corresponding to given values of the 

parameters n and p (the latter being 
1

3
 here). Another difficulty is that the meaning of 

“at least half” depends on whether 𝑛 is even or odd. Many students will solve b) by 

computing, for increasing values of 𝑛 , the binomial distribution function 𝐹𝑛,1/3 at 

something like 𝑛/2. Since 𝐹𝑛,1/3 is only defined on {0,1, … , 𝑛},  many students simply 

look for the first even n where  𝐹𝑛,1/3 (𝑛/2) > 0.95, which in this case is 30. However, 

562



  

the correct answer is, in fact, just 23 (we leave it to the readers to work out the details, 

using some software able to do compute binomial distributions).   

To understand the kinds of ω elements to be drawn on here, we note that b) is quite 

similar to “inverse problems” related to probability distributions. The students have 

indeed encountered such problems in connection with subjects like confidence 

intervals, treated both in this course (from a high school perspective) and in the 

predecessor courses on statistics (at a technically more advanced level). Thus, solving 

b) certainly draws on very specific theoretical and technical elements ω, in addition to 

familiarity with a certain computer algebra system (Maple), which they have developed 

both in UvMat and in some of the prerequisite bachelor courses. This also illustrates 

that a variety of RU(σ,ω) – even with ω being rather far from the school mathematical 

type of task O – could be relevant to such “extended” tasks of type O.  

P2: Posing school mathematical tasks 

Some of the mathematical tasks, which teachers need to solve regularly, are related to 

preparing tasks for their students – either by selection or construction. Here, more 

advanced mathematical work than merely solving tasks  can be involved. The 

following UvMat item is an attempt to generate such a more advanced perspective: 

We say that a quadratic equation is nice if it is of form 𝑥2 + 𝑏𝑥 + 𝑐 = 0 where 𝑏 and 𝑐 are 

integers.  

a) If you are given two integers 𝑚 and 𝑛, how can you construct a nice quadratic equation 

with 𝑚 and 𝑛 as solutions? Explain a method and give an example of how it works. 

b) Can you construct a nice quadratic equation that has both a rational and an irrational 

solution? Explain. 

(Exam August 2019, exercise 2) 

The mathematical elements from university mathematics which need to be drawn on 

here, can be summarized as: knowing how to use a formal, ad hoc definition (“nice 

quadratic”) without confounding the definition with an everyday conception of “nice”; 

a result about polynomials (“𝑎 is a root of 𝑝(𝑥) if and only if 𝑥 − 𝑎 is a factor in 𝑝(𝑥)”; 

and some experience with reasoning about irrational numbers. The latter may sound a 

bit vague, but in fact, b) can be solved in many ways – the most complicated probably 

being to use the quadratic formula. A better way is to use an observation easily made 

from a), namely that the product of the solutions is 𝑐 , while this product will be 

irrational in the case described in b). Thus, very simple facts about polynomials and 

irrational numbers – not currently taught in high school, but certainly encountered at 

university – are activated here, to address what is clearly a relevant mathematical task 

for high school teachers, given that quadratic equations are taught and used there. We 

note that the kind of RU(σ,O) built here is typically more theoretical and less technical 

than what is aimed at in P1, corresponding to mobilizing more theoretical parts of ω. 
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P3: Assessing or imagining student techniques 

Logarithm functions and their use form part of the core content in high school 

mathematics. Part of the difficulty is the “indirect” definition they are usually given, as 

inverse functions of exponential functions (cf. also P4 below). On the other hand, this 

theoretical definition is important in many frequent practices, such as solving equations 

involving exponents. The following item directly attacks such situation: 

Peter and Lise have to decide whether the equation ln 𝑦2 = 𝑒−𝑥 defines a function (with 𝑦 

as a function of 𝑥). Peter says: “Yes, for the equation can be rewritten as 2 ln 𝑦 = 𝑒−𝑥, so 

𝑦 = exp (
1

2
𝑒−𝑥).” Lise says: “No, for the equation can be rewritten as 𝑦2 = exp (𝑒−𝑥), so 

for each 𝑥-value there are two 𝑦-values”. 

a) Who is right? Give a detailed explanation of the correct answer. 

b) One of the two answers is false. Explain where the error arises. 

(Exam June 2014, exercise 3) 

We first note that this exercise involves a school mathematical task (“does the equation 

ln 𝑦2 = 𝑒−𝑥 define a function…”) but the tasks given to the university students in the 

above item is at another level: consider some (imaginary) student solutions, decide 

whether they are correct, and explain why. In fact, it is a crucial teacher task to relate 

to students’ mathematical work and provide feedback; items formed in this manner are 

therefore found occasionally (such in about 1 in 10 of the exercises proposed) 

throughout the course. As for the mathematical contents, students will know the 

identity ln 𝑥𝑎 = 𝑎 ln 𝑥  but may not have thought about that it is only valid, and 

meaningful, for positive values of 𝑥. In the exercise, Peter makes a mistake in his first 

“rewriting” of the equation, since the given equation is also meaningful for negative 𝑦, 

while the second is not.  

The university knowledge, which the students could apply to solve this item, is not 

very advanced. They have certainly worked with more formal (set-theoretical) 

definitions of functions than what is seen in high school, but the informal definition 

(“to each value of 𝑥 there must correspond exactly one 𝑦”) suffices to realize that Lise 

is right, and then look for an error in Peter’s rewritings. That identities such as 

ln 𝑥𝑎 = 𝑎 ln 𝑥  may have restricted validity (beyond what makes the expressions 

meaningful) is also something which university studies could increase students’ 

awareness of. In particular, unlike in high school, they would often see qualifications 

like “for all 𝑎 ∈ ℝ, 𝑥 > 0”, following an identity. So we can say that, in addition to the 

explicit treatment (in the UvMat course) of logarithms, the theoretical notion of 

function, and the logical subtleties related to equation solving (in particular, 

implications), the main university mathematical element (ω) to invest in this task is a 

more developed practice of applying identities only were they are valid. This specific 

RU(σ,ω) turns out, in practice, not to be sufficiently developed for many students. 

Indeed, as observed by Winsløw et al. (2014), working with tasks designed to facilitate 

some passage RU(σ,ω) → RU(σ,O often involves “repairing” dysfunctional RU(σ,ω). 
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P4: Making new theoretical connections 

A great deal of the work in UvMat – perhaps as much as half – concerns theoretical 

aspects of high school mathematics, like proofs of results or constructions which 

appear more informally in high school, such as the general meaning (and construction) 

of 𝑥𝑦  for 𝑥 > 0, 𝑦 ∈ ℝ; see Winsløw et al., 2014, pp. 77-79). The strong focus on 

theory is in part a consequence of the aim to draw on university elements ω (where 

RU(σ,ω) is often very limited when it comes to students’ practical experience with the 

praxis level of ω. The general familiarity that students have gained with formal theory 

is frequently an asset they need to draw on, as they solve tasks based on P4. 

Our last example relates to work carried out in the course with the theory behind linear 

regression. In high school mathematics, it is mainly taught as a practice carried out 

with some tool like excel, along with informal explanations that this provides “the best 

linear model” for a given 2d data set. In the course we revisit proofs which the students 

may have seen in statistics courses, along with more elementary approaches (see 

Winsløw et al., 2014, pp. 79-81). The following item links the theoretical problem of 

“minimizing least squares” to one-dimensional optimization as taught in high school: 

A simplified form of linear regression results from requiring that the regression line passes 

through the point (0,0), so that the equation of the line is of form 𝑦 = 𝑎𝑥 where 𝑎 is a 

constant. 

a) Derive a formula for 𝑎 corresponding to a data set (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛), by determining 

𝑎 such that the sum 𝑆(𝑎) = ∑ (𝑦𝑘 − 𝑎𝑥𝑘)2𝑛
𝑘=1  is minimized. 

b) Explain how this formula can be used to determine the resistance 𝑅 in an electrical 

circuit, based on corresponding values of the current 𝐼 and the voltage 𝑈, knowing that 

Ohm’s law says that 𝑈 = 𝑅𝐼. 

(Exam January 2012, exercise 5) 

It is a fact that optimization of two variable functions is not usually taught in Danish 

high school, and that alternative approaches to linear regression (as taught in UvMat) 

are also somewhat beyond what most high school classes would meet, or be able to 

cope with. While a) and b) rely in principle only on high school mathematics, the 

theoretical nature of the questions – and the requirements in terms of symbolic 

computation – certainly draws on RU(σ,ω) with ω involving both practical and 

theoretical elements that are not strictly related to linear regression, but nevertheless 

supposed to be developed or strengthened at university.  

The last question is not technically demanding (one should explain translate the 

formula from a) to give an estimate for 𝑅 in terms of a set of measurements (𝐼𝑘, 𝑈𝑘) of 

current and voltage). Nevertheless, it is important for mathematics teachers at high 

school to know and integrate models from neighbouring disciplines in their teaching, 

not least when it comes to statistics topics like the present one. Question b) requires 

one to make a connection between a simple model from physics and the mathematical 

result developed in a). 
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DISCUSSION AND CONCLUSIONS 

To what extent can the principles and examples above be of interest outside of the 

context in which they arose? To most university teachers and researchers interested in 

the general problem we described in the introduction, the principles (derived from an 

ATD model of the problem) would remain arid speculations without the examples. Yet, 

it is fully possible that many of the same scholars would also not see the relevance of 

the examples for contexts familiar to them. Indeed, they are more or less arbitrary cases 

of efforts to link certain objects O and ω  which occur in Danish high school 

mathematics and in the first two years of undergraduate mathematics at the University 

of Copenhagen. Most probably, many of these objects could in themselves be found in 

equivalent contexts elsewhere, but the emphasis on theoretical and technical aspects of 

them, reflected in the examples, could still be felt to be less relevant there. For instance, 

a recent study by Bosch et al. (2021) of external didactical transpositions in university 

mathematics suggests that in North America, the first years of undergraduate studies 

are often much more focused on technical aspects of calculus. This might mean that 

integrating such technical aspects would be seen as much more important than what is 

reflected by the examples given here, while the emphasis on proof (reflected by P4) 

would be considered less helpful. Similarly, for contexts in which probability 

distributions or linear regression do not feature centrally in the secondary curriculum, 

the example given for P1 and P4 would appear irrelevant.  

Thus, to go beyond those examples of T – that certainly depend on the specific context  

– we really need to hold on to principles such as P1-P4. They can constitute a 

framework which could be adapted to such more or less different contexts: engaging 

students in work with O (centrally occurring in secondary mathematics) that is 

characterised by a focus on different praxeological levels of relevant to future teachers 

on the one side, and on drawing on similar levels of some central objects ω in students’ 

university mathematical background.  

But this conclusion merits other reservations. Applying the four principles take a 

certain inventory of O and ω as given conditions, and the potential as well as the 

feasibility of linking them as a working hypothesis (following Klein, 1908/2016). At 

least two major questions are left open by this: the question of external didactical 

transposition, both at university and in secondary school, resulting in the given O and 

ω; and the actual importance of the potential for the subsequent professional practice 

of t (a position which is somehow put aside by the non-examined “similarity” RU(σ,O) 

≅ RS(t,O)). The first major question contains in fact two separate aspects: the 

possibility of inadequacy (or at least needs for development) of secondary 

mathematics, and the problem of determining the adequate mathematical basis to be 

developed at university, and the extent to which this should consist in teaching 

conceived for more general publics than future teachers. The last question has been 

examined in more detail by Winsløw (to appear), linking it to recent quantitative 

studies of correlation between teachers’ university mathematical background and the 

quality of their performance as secondary teachers. This kind of research may also have 
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bearings on the second major question, as it involves identifying structural similarities 

of teacher education programmes that produce, according to such quantitative studies, 

teachers with high performance (measured by learning gains of the teachers’ students, 

or by measures of teacher knowledge that correlate with high teaching performance). 

Among these similarities are, in fact, a combination of certain standard undergraduate 

mathematics units and units focusing on teachers’ knowledge of central secondary 

mathematics. But we still need more direct and theoretically precise ways to investigate 

how students’ participation in such courses affects their later performance as teachers, 

and in particular how principles for task design may contribute to enhanced effects. 
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INTRODUCTION AND RESEARCH QUESTION 
We are witnessing a rapidly changing landscape of coding and computational thinking 
integration in compulsory education in many parts of the world. In particular, in their 
2022 math assessment framework, PISA states that “students should possess and be 
able to demonstrate computational thinking skills as they apply to mathematics” and 
that they anticipate “a reflection by participating countries on the role of computational 
thinking in mathematics curricula” (OECD, 2018, p. 5, para. 12). Such a push to rethink 
school mathematics creates a pressing need to rethink the preparation of math teachers.   
Since 2001, the Mathematics Department at Brock University in Ontario (Canada) has 
implemented a sequence of three courses (MICA I-II-III) in which math students 
(including future math teachers) learn to use coding to investigate mathematical 
concepts, conjectures, theorems, and applications. In line with the international trend, 
the Grades 1-9 math curriculum in Ontario was revised in 2020-21 to include the 
expectation that students develop and use coding skills to learn math. This created a 
need to revisit the design of the MICA III section dedicated to future teachers.   
Indeed, the challenges faced by teachers in the transition from university math learning 
to school math teaching have been known for a long time and have been addressed by 
the INDRUM community (see, e.g., an ongoing international seminar; Grenier-Boley, 
n.d.). To address the second of “Klein’s double discontinuity,” we based our redesign 
on the following research question: How can a mathematics content course for future 
teachers assist them in gaining skills and attitudes needed for making the transition to 
their future role of teachers, specifically in the case of using coding for mathematics 
learning? In this poster, we present our redesign of MICA III as our initial attempt at 
responding to this question, explore a potential theoretical lens for reflecting on the 
redesign, and provide some illustrations using student work. We hope to have input 
from the INDRUM community as we prepare to give the course again in 2023.  

COURSE DESIGN AND PROPOSED THEORETICAL FRAMEWORK 
Sporadic meetings between the two first authors took place over 8 months in order to 
revise and/or develop new course objectives and elements using an “experiential” 
education (Kolb, 1984) perspective to provide opportunities for future teachers to make 
productive links between their learning of university math and their future profession 
as school teachers (thus helping to bridge Klein’s second discontinuity).   
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The three course objectives are: O1) to further one’s experience of using coding to 
learn math (including conducting investigations); O2) to develop an understanding of 
that experience (the learning), including affordances of coding for math; and O3), a 
new objective, to develop an understanding of teaching (supporting the learning) and 
curriculum. The course continues to be structured around four individual coding-based 
math inquiry projects (similar to MICA I-II; O1), complemented with a posteriori 
revised guided reflections based on selected new readings (O2-3). Two new lab 
activities were also introduced on learning and comparing coding languages (O2-3). 
The course concludes with a revised collaborative project, where future teachers work 
in pairs with a local school teacher to prepare and implement a coding and math activity 
in the classroom, and to reflect on the experience (O3). 
We propose to frame learning in MICA III with a triple instrumental genesis approach 
that aligns with the three objectives: teachers undergo a personal genesis (developing 
schemes to use coding in their own math learning; O1) and a professional genesis 
(developing schemes to use coding for didactic purposes in math classrooms; 
Haspekian, 2011; O3). As part of the latter, the teacher must also support school 
students’ geneses of coding for math learning (Gueudet et al., 2020; O1-3).  

NEXT STEPS  
Our next steps include analysing student data (student work and perceptions collected 
through pre-/post-questionnaires and interviews) to evaluate the design of the course 
and prepare for the next iteration of course design refinement.  
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RESEARCH TOPIC 
From September 2022, teacher training in Hungary will be reformed in both form and 
content. As part of this, the training of mathematics teachers will also be transformed 
[1].  
Since 2013, teacher training has been organised in 10 (for primary school teachers) and 
12 (for secondary school teachers) semester-long courses. (Eurydice, 2022) Students 
follow a two-subject teacher training programme, leading to a master's degree. Teacher 
training consists essentially of subject-specific preparation and teacher preparation. 
The credits for teacher preparation include credits in pedagogical, psychological theory 
and practice, in subject methodology, credits for teaching practice in parallel with and 
following the training, and credits for the preparation of a portfolio, which is 
compulsory during the training. The highest credit value of the teacher preparation is 
the continuous individual teaching practice for 50 credits. (Novotná et al., 2021) 
Every year for the past few years, I have conducted a survey of graduate students, 
asking for their views on teacher training. The three problems most frequently reported 
were: (1) the training is too long (6 years); (2) students meet too late school pupils in 
the teaching practice during their training (usually only in year 5); (3) the mathematics 
curriculum is too much and difficult to learn. 
RESEARCH QUESTION 
What are the structural changes in teacher training programs and what difficulties these 
changes can correspond to? 
RESEARCH RESULTS 
The new teacher training lasts 10 semesters (5 years) and the qualification allows the 
students to teach both in primary and secondary schools. The training leads to a 
master's degree, but the diploma does not allow teachers to prepare for the higher level 
final exam. To do so, one must also complete a one-year course of training to become 
a so-called "master teacher". 
The biggest change from the previous training is the completely reformed system of 
teaching practices. Whereas before, students had 15 hours of teaching practice first in 
their 5th year of university, the new system will be as followed: 
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in semesters 2 to 4, there will be socialisation exercises in schools, which are not yet 
linked to the subject area, students will be introduced to different aspects of school life; 
in semesters 6 to 7, students will participate in a group teaching practice of their subject, 
a completely new part of the course, which will be accompanied by a methodology 
course at the university; in the 8th and 9th semesters, the individual teaching practice 
mentioned above will take place and the continuous teaching practice in the 10th 
semester is not a new element in the training neither (but half the length of the recent 
version). 
 Primary school teacher training 

(5 years) 
Secondary school teacher training  
(6 years) 

 Mathematics Teaching Mathematics Teaching 
Credits 100 100 130 100 

Table 1: Distribution of credits in parallel teacher training programmes before 2022 

 Teacher training (primary and secondary 
school teachers, 5 years) 

Master teacher training (higher 
level education, 1 year) 

 Mathematics Teaching Mathematics Teaching 
Credits 105 90 50 10 

Table 2: Distribution of credits in consecutive teacher training programmes after 2022 

The answers to the three problems raised are thus: (1) the course will be one year 
shorter, but those who want to teach students at higher level will still have to spend a 
total of 6 years at university; (2) there will be a definite positive change, students will 
meet students and will have the opportunity to try teaching more often and much sooner 
than before; (3) the same situation as in (1): those who do not want to teach at higher 
level will have a significantly reduced set of mathematical skills to learn (105 credits 
instead of 130). 
NOTES 

1. On the poster the structure of the new mathematics teacher training programme will be presented. 
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Pre-service teachers often see no relevance in their mathematical content courses for 

their mathematics teaching (Ticknor, 2012). In this context, mathematical ideas can be 

distinguished in the local content that will be taught at school and the nonlocal content 

that is often addressed in university mathematics (Wasserman, 2018). The nonlocal 

content is supposed to help restructure and deepen the understanding of the local 

content from a higher standpoint, but many pre-service teachers are not able to make 

these connections on their own (Hefendehl-Hebeker, 2013). One manifestation of this 

restructuring is the unification of seemingly unrelated mathematical objects so that they 

are grasped more coherently under an overarching mathematical idea (Serbin, 2021). 

This project aims at supporting pre-service teachers in relating local and nonlocal 

mathematical content by the design of profession-specific teaching-learning 

arrangements for abstract algebra learning. Wasserman, Fukawa-Connelly, Villanueva, 

Mejia-Ramos and Weber (2017) proposed an instructional model for the overall 

structure of such intertwined learning trajectories, but further empirical research is 

needed on a more specific task design level and the design principles.  

For task design, relating registers and representations has proven as a fruitful principle 

for developing conceptual understanding of mathematical concepts at school level 

(Prediger & Wessel, 2013). In addition, also in university mathematics teaching 

relating registers and representations is an activity central to developing understanding 

of mathematical content (Moreno-Arotzeno, Pombar-Hospitaler & Barragués, 2021). 

On a more specific task design level, comparing and contrasting as cognitive activities 

are often used to identify characteristic properties of a concept and are shown to have 

positive effects on the learning process (Lipowsky et al., 2019). We see a coordination 

of relating registers and representations with contrasting and comparing as a potential 

in regards to intertwining local and nonlocal mathematics (e.g. solving 𝑥 + 5 = 12 and 

solving 𝑑120 ∘ 𝑥 = 𝑠1 in the dihedral group). This leads us to the question: “Which 

potential and conditions of success can be identified for the design principle relating 

registers and representations in terms of intertwining local and nonlocal algebra?”  

                                                             

Figure 1: General logical structure (Prediger, 2019, p.6) and project-specific realization 
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Methodologically, this project follows the design research approach according to 

Prediger (2019). The formulation of design principles with a general logical if-then 

structure (see figure 1a) is a central predictive theory element. The poster will focus on 

the design principle relating registers and representations that arose within the first 

cycle of the design experiments (see figure 1b). Design experiments with secondary 

pre-service teachers will be conducted, transcribed and analysed with qualitative 

content analysis. The poster will present insight into the learning pathways and the 

resulting implications for the effect of the design principle and its conditions of success. 
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INTRODUCTION AND RESEARCH QUESTION 
The poster contains information about a study conducted in a recent course among 
prospective Swedish mathematics teachers at Karlstad University evaluating 
“Interactive Mathematical Map(s)1” developed at the University of Passau, Germany. 
In this study, we analyse to what extent does the use of the digital tool Interactive 
Mathematical Map(s)1 promote students’ favourable beliefs concerning the nature of 
mathematics, as described in Felbrich et al. (2008). Such beliefs "are a crucial part of 
the professional competence of mathematics teachers" (ibid, p. 763). The interactive 
three-dimensional mathematical map is intended to "offer the student an optimal 
solution for establishing successful learning processes" (Brandl, 2009, p. 106) by 
integrating the historical origin of mathematical concepts as well as interdependencies 
between them. The design-based research and development process of the digital 
didactical tool Interactive Mathematical Map(s) is described in detail in Przybilla et al. 
(2022) and Datzmann et al. (2020). 
THEORETICAL FRAMEWORK 
The study is based on Felbrich’s understanding of the belief structure as a one-
dimensional space containing four principal orientations: "the formalism-related ", "the 
scheme-related", "the process-related", and "the application-related" orientations (cf. 
Felbrich, 2008, p. 764). Two “mutually exclusive and antagonistic” (ibid.) alignment 
poles can be distinguished: a dynamic one, represented by process and application and 
a static one, defined by formalism and scheme. This means, a "person favours either a 
dynamic or a static view on mathematics" (ibid.). While the static perspective gives a 
non-accurate picture of mathematics, which is unfavourable for teachers and learners 
(cf. ibid.), the dynamic view on mathematics emphasizes the subject as an emerging 
science containing and allowing for failures. The latter is considered as favourable 
beliefs related to the nature of mathematics (cf. ibid.). By analysing students’ feedback 
to working with the Maps, we try to understand if favourable beliefs are promoted. 
METHODOLOGY AND RESULTS 

In the study, the digital tool Interactive Mathematical Map(s) was used in a Geometry 
course for Swedish mathematics teacher education. In total, 44 students (in-service and 
                                           
1 The tool is freely available at the web address https://math-map.fim.uni-passau.de/ under the tab Interactive Map. 
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prospective teachers) participated in the study. For each of the components of the map 
a short explanatory video was created. The participants tested the functionalities of the 
map and produced own texts as application of the mathematical-historical content in 
the mathematical map during work assignments2.  The assignments concluded with a 
technical and content evaluation of the individual components of the map.  

As result of qualitative content analysis the students’ answers contain clear indications 
that the map seems to open up for viewing mathematics as an emerging science. The 
considerations about the usefulness of the map included reflections upon the relations 
to the structure of mathematics and students’ opportunities to learn. Dynamic under-
standing of mathematics can be seen in, for instance, students’ reasoning about the 
struggle when mathematicians develop mathematical concepts. This was expressed in, 
for example, terms of how the historically authentic development of mathematics gives 
students a deeper knowledge of mathematics and its nature. Most students show a pro-
cess-related and application-related orientation in relation to their future role as teach-
ers when using the map. The tool is also seen as a way to motivate their future students 
to see the relevance of mathematics. Overall, students’ reflections suggest that the use 
of the digital tool Interactive Mathematical Map(s) promotes favourable beliefs related 
to the nature of mathematics.   
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INTRODUCTION AND DISCRIPTION OF THE ORGANIZATION 

This report summarizes the work of TWG6 “students’ practices and assessment” of the 

third INDRUM conference in Hannover (Germany). It had 19 registered participants 

from nine different countries, and 14 contributions – nine papers and five posters. 

The themes addressed in the contributions of our group mostly focused on students’ 

practices. These especially covered the following activities: self-regulated and 

informal learning, problem-solving, programming, communicating about mathematics, 

and note-taking. But we also had contributions on possible learning barriers as well as 

on students’ self-perceptions and their emotions towards mathematics.  

The sessions of TWG6 were organized as follows. In two 90-minute presentation 

sessions, the authors of the papers were asked to present the main ideas of their paper 

within 20 minutes, followed by a short slot for essential questions. The authors of a 

poster could present their poster within 5 minutes. In subsequent discussion sessions 

the whole group discussed the papers presented intensively. These sessions had been 

originally planned in three phases: a phase with questions to the authors of each paper 

in the plenary, followed by small group discussions about these questions, and a final 

reporting phase. However, our group spontaneously decided to stay in the plenary 

discussion mode, because already in the first phase with questions to the authors of the 

papers presented, intensive debates evolved – not only with the authors but within the 

whole group. Discussions around the posters took place in a separate poster session. 

SYNTHESIZED SUMMARY OF THE CONTRIBUTIONS  

The group leaders assigned the contributions to one of the two following overarching 

themes: students’ practices in traditional settings and students’ practices in innovative 

courses or related to innovative course elements. 

Students’ practices in traditional settings 

Five papers and four posters had been assigned to this overarching theme. An overview 

of the topics of the corresponding papers can be seen in Table 1.  

The first three papers in Table 1 focus on students’ learning behavior in their self-study 

phase. Tim Kolbe & Lena Wessel investigated the learning strategies used by 

engineering students in a mathematics service course. They specifically found that the 

students relied much on rehearsal strategies, and used many course-external resources 

such as YouTube videos. Robin Göller et al. compared the self-regulated learning 

behavior of four students from two different countries: two students from Finland and  
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Authors Topic 

Tim Kolbe & Lena 

Wessel 

Self-regulated learning by engineering students in a 

mathematics service course 

Robin Göller, Juulia 

Lahdenperä, & Lara 

Gildehaus 

Self-regulated learning of two German and two Finish 

students with the common goal of getting though the exam 

Lukas Günther, Nico 

Marten, & Katharina 

Berendes 

Development of an analytical framework for describing 

informal learning situations in mathematical study programs  

Johanna Ruge Dynamic barriers in students’ learning processes 

Jocelyn Rios Multilingual students’ experiences in introductory college 

mathematics courses 

Table 1: Papers on students’ practices in traditional settings 

two students from Germany. They found that although the students shared the goal of 

passing the exam, their learning behavior differed and was probably influenced by the 

institutional context, for instance, the possibility to receive institutionalized help in the 

case of difficulties. The paper by Lukas Günther et al. focused on informal learning 

situations as opposite to institutionalized learning. They developed a framework for 

analyzing students’ activities in such situations in detail, which can make way to 

suggestions for supporting them in their self-study phase. Nico Marten then presented 

a poster on a project in which this framework is used to analyze how engineering 

students at a German university gather information for finding answers to mathematical 

problems, and then to offer appropriate support. 

The other two papers from Table 1 focus on barriers that might inhibit students’ 

learning activities. Johanna Ruge reflected on so-called “dynamic learning barriers”. 

In such dynamic learning barriers, students inhibit their own learning although they 

actually want to learn, for example, because of constraints impressed by the 

institutional environment such as examinations, but also by a curriculum prescribing 

precisely the subject matter to be learned.  Finally, Jocelyn Rios showed that also 

language might be a learning barrier in mathematics classes. She, for instance, found 

that multilingual students who prefer to do mathematics in a language other than the 

language of the classroom are less likely to feel comfortable speaking in class.  

In addition to the contributions above, we had three posters focusing on students’ 

affective state. Aaron Gaio at el. investigated the development of students’ self-

efficacy with regard to mathematics in their first year at a university in Italy, and found 

that students tend to overestimate themselves at the beginning of their studies. Sophia 

Pantelaki investigated the development of students’ emotions towards mathematics, 

and found that social interaction might influence these emotions positively. Finally, 

Takuo Oguro at el. focused on a special emotion, namely math anxiety. They found 
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that the math-anxiety of students majoring in social and human environment at a 

university in Japan did not increase – against their hypotheses. A reason might be that 

the mathematics courses observed were activity-oriented.  

Students’ practices with innovative course elements or in innovative courses 

An overview over the four papers assigned to this theme is shown in Table 2. In 

addition, Johanna Rämö et al. presented a poster proposing an innovative teaching 

model that promotes cooperative learning, which builds upon group work facilitated 

by the teachers in primetime meetings.   

Authors Topic 

Frank Feudel & 

Anja Panse 

Students’ perspectives on suitable positions of blanks in guided 

notes 

Elena Nardi Students’ narratives on exponential growth in colloquial 

situations  

Irene Biza Students’ usage of digital resources for problem-solving  

Laura Broley et 

al. (presented by 

Chantal Buteau) 

Effective orchestration features of a project-based learning 

course on programming for mathematics investigation 

Table 2: Papers on students’ practices with respect to innovative course elements or in 

innovative courses 

The foci of the four papers in Table 2 were rather individual. Frank Feudel & Anja 

Panse investigated at which elements of a mathematics lecture students appreciate 

blanks in guided notes (notes with blanks students fill in during the lecture) and why, 

and found that the extent of appreciation and the reasons for students’ preferences 

varied between different elements of a mathematics lecture. Elena Nardi investigated 

in a mathematics education course that especially aimed at making mathematics visible 

in daily life and society how students communicate about exponential growth in a 

colloquial situation related to the Covid-19 Pandemic. She found that many students 

spoke rather sloppy about exponential growth in this situation although an accurate 

description might be important for being able to judge the political decisions made.  

The latter two papers focused on students’ usage of digital tools. Irene Biza 

investigated students’ usage of digital resources when solving a problem on divisibility. 

She found that the availability of such resources influenced students’ problem-solving 

activities, for example because they used these to search for solutions to the problems 

posed that had been found by others. She then rose the question of how the availability 

of such resources could be used to create productive learning activities. Finally, Laura 

Broley et al. identified in a project-based course on programming for mathematics 

investigation what effective orchestration features of such programming courses could 

be from the students’ point of view, for instance, teaching assistants that can push the 

students to the next step in the case of problems, and a pleasant class atmosphere.  
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IMPORTANT POINTS FROM THE DISCUSSION  

Our group had intensive discussions on each paper. Instead of presenting details of all 

these discussions, we want to summarize some important general points that emerged 

during them. These mainly evolved around four themes:  

1) Impact of students’ practices on teaching and vice versa  

2) Methodological issues in empirical research – especially on students’ practices 

3) More general theoretical issues that arose from the research presented 

4) Our identities as researchers 

Impact of students’ practices on teaching and vice versa: We want to highlight three 

issues discussed. One refers to digital resources. Their availability has a great impact 

on students’ practices, e.g., on their problem-solving activities. In our discussions, it 

became obvious that further research is necessary to specify this impact with the goal 

to design learning situations in which the usage of such recourses and especially the 

process of seeking and processing information provided by online resources becomes 

a productive learning activity. A second important issue refers to the tendency to guide 

students’ practices in teaching innovations too much, which might take away their own 

responsibility for their learning. Therefore, a balance is needed between providing 

freedom and help for designing productive learning situations. A third important issue 

that came up in our discussions was the possible effect of active learning on students’ 

practices. There was an agreement that active learning does not only have the potential 

to change students’ practices like their participation in class, but also their view of 

mathematics, for example about the relevance of mathematics in society.  

Methodological issues in empirical research – especially in research on students’ 

practices: We want to mention two important issues here that came up in our 

discussions several times. One is the problem that research on students’ practices often 

relies on self-reports. On the one hand, activities/phenomena reported do not 

necessarily coincide with the actual state. Especially a non-reference of certain 

phenomena does not allow conclusions about these. For example, if students do not 

mention certain experiences in a course does not mean that these did not occur. Maybe 

other experiences were just considered more relevant. A further problem of self-reports 

is that students might have a different perspective on educational notions than 

researchers, for example, on “understanding”. Both issues should be considered when 

interpreting research results relying on self-reports. A second important issue we want 

to mention here is the influence of the context on research results. Several of our 

contributions indicated that the institutional setting and the design of courses research 

takes place in have a substantial influence on the results. This should be considered 

when interpreting such research result, and a replication of studies in other contexts 

might help to specify the influence of the context.  

Theoretical issues that arose from the research presented: We want to mention 

three important issues. One was the issue of using general theories or frameworks in 

mathematics education research, for example a general framework on informal 

580



  

learning situations or a general note-taking framework. We discussed benefits and 

problems of using such frameworks. On the one hand, they might allow conclusions 

for more students (in all kinds of settings), but they might disregard specificities of 

mathematics, for instance, of mathematical reasoning. A second issue that came up in 

the discussions was the role of the mathematical content in research on students’ 

practices. As it is one aspect of the research context, it certainly influences the results. 

However, the actual role the mathematical content plays in a specific study probably 

depends much on the question(s) investigated. The third important theoretical issue we 

want to mention here refers to basic educational notions from mathematics education 

research such as learning, but even the notion “mathematics”. We recognized that it is 

hard to define them and questioned whether a definition is really necessary, in 

particular, because students also have their own interpretations of these notions.  

Our identities as researchers: This was the most general theme that came up in our 

discussions. Formerly, most of our participants had originally been socialized in the 

discipline of mathematics. This might influence practices carried out as mathematics 

education researchers, for instance, the desire to define notions used precisely. 

However, since mathematics education research is multidisciplinary, we asked 

ourselves whether our identities might have changed. One view that many of us agreed 

on is that we have multi identities that we call upon in different situations.  

CONCUDING REMARKS AND FUTURE PERSPECTIVE FOR TWG6 

Our group had lots of interesting contributions focusing on all kinds of students’ 

activities like self-regulated and informal learning, problem-solving, programming, 

communicating about mathematics, and note-taking, as well as on barriers that might 

inhibit students from carrying out such activities and from engaging with mathematics. 

The contributions were good starting points for fruitful discussions which brought up 

lots of general issues that are relevant for the mathematics education community at 

large – and for research on students’ practices in particular.  

However, some important themes were underrepresented in our group this year:  

• We only had few contributions focusing on students’ affective and emotional state 

although these probably highly influence the activities students finally carry out. 

We therefore hope for more contributions focusing on these themes in the future.  

• We only had one study that touched upon the problem of equity although inequity 

is a big problem in current education – also at university.  

• The “assessment” part of our TWG’s name “students’ practices and assessment” 

was only touched upon this year in two studies in which portfolio assessments were 

used for gathering data, although assessment is a very important issue that highly 

influences students’ study behavior. 

Therefore, research focusing on these themes might enrich this group in the future 

much, but, of course, also more research on students’ activities considered this year in 

other contexts to find out to what extent the results presented might be generalizable.   
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This paper draws on the discussion around the impact of digital resources on problem-

solving activities and presents findings from the analysis of eight undergraduate 

mathematics students’ responses to a problem on divisibility that was part of their 

summative assessment through a portfolio of learning outcomes. The analysis indicates 

that the availability of digital resources impacts students’ problem-solving activity: 

digital resources provide information useful for problem-solving; they provide answers 

to the problem; and, they facilitate hypothesis building or execution of time-consuming 

procedures. A digital resource might be used mainly for a procedural performance of 

a repetitive task (e.g., trial and error) or it may also include modelling (e.g.  

programming an algorithm underpinning a repetitive task). 

Keywords: Students' practices, problem-solving, digital resources, exploration, 

divisibility.  

PROBLEM-SOLVING AND RESOURCES 

Problem-solving is an activity related to tasks students do not know how to approach 

in advance. What makes a task a ‘problem’ depends on the context in which this task 

is encountered, on the available tools and on solvers’ precedent experiences (Bosch & 

Winsløw, 2015; Schoenfeld, 1992). A routine task for secondary students may become 

a problem for exploration for primary school students. Problem-solving appears in all 

human activities. Especially in mathematics, problems might be pure mathematical 

problems within a mathematical theory (e.g., proving a conjecture that will lead to a 

new theorem); application problems that are related to real-life situations (e.g., 

calculating the volume of a 3D shape); or, modelling problems that are application 

problems, in which a transformation of a real-life situation to the mathematical 

structure is required (e.g., modelling the spread of a virus) (Verschaffel et al. 2014).   

Problem-solving activity has been seen through approaches that can guide and organise 

mathematical explorations – see, for example, the four problem-solving steps proposed 

by George Pólya (1945): understand the problem, devise a plan, carry out the plan and 

look back on your work. In mathematics education, problem-solving is seen also as a 

vehicle for students’ learning. Teaching through problem-solving opens opportunities 

for mathematical learning as well as for appreciation of mathematics and its value (e.g., 

Schoenfeld, 1992; Liljedahl et al., 2016). Problem-solving activities have been also 

connected to mathematical intuition and affect (Liljedahl et al., 2016). Also, problem-

solving activities trigger, or are followed by, discussions and reflection about problem-

solving. Such discussions have been seen by researchers as: a metacognitive activity 

(Verschaffel et al. 2014); a synthesis of selection, organisation and connection of 

582



  

results obtained during problem-solving that will be useful for future problems (Bosch 

& Winsløw, 2015); or, as an opportunity for meta-level learning (Sfard, 2008). In the 

work I am discussing in this paper, I am interested in the last of these, as I see problem-

solving activity as an opportunity for reflection on solvers’ ways to engage with 

exploration, conjecturing and verification. 

Of relevance to the discussion in this paper is the role of resources in problem-solving 

activities. Problem-solving is strongly related to the tools that are used and the 

environment in which the problem-solving takes place (Bosch & Winsløw, 2015). 

Amongst these tools we can consider analogue tools (e.g., rulers, textbooks, physical 

models etc.) as well as digital resources such as educational, or other general use 

software (e.g., Dynamic Geometry Software - DGS, online blogs, etc.) Students and 

teachers can access platforms with affordances to seek information, to participate in 

discussions, to ask questions or to experiment with ideas (Santos-Trigo, 2020). The use 

of digital resources has enhanced the range of mathematical investigations with quick 

and accurate calculations, reliable drawings, dynamic manipulations of objects and 

affordances for modelling. Also, digital resources offer more opportunities, in 

comparison to the analogue world, for conjecturing (abductive reasoning) through 

exploration of a wide range of cases (e.g., through experimentations in DGS 

environments or trials with repeated calculations in spreadsheets) before proceeding to 

a deductive proof of what looks like a plausible response to the problem. Bosch and 

Winsløw (2015) discuss the dialectic relationship between questions and answers as 

an essential component of knowledge development. Answers to questions, when 

established, become resources for the investigation of further questions “through a 

variety of media (books, journal articles, conference talks, teachers, web tutorials and 

so on)” (p. 363). Media are not seen in abstract: they are part, and contribute to, 

knowledge development, in interaction with the institutional context (milieu) where 

questioning and answering are taking place (ibid). Problem-posing and problem-

solving that consider media together with “an appropriate experimental milieu” (ibid, 

p. 21) are essential for students’ self-sustaining work with questions and answers. 

Recently, some university mathematics programmes have introduced programming 

courses in which students investigate mathematical ideas, solve problems, and discuss 

real-life applications of mathematics (e.g., Buteau et al. 2019). In those courses, 

programming is a means for mathematical investigation as well as for mathematical 

learning. Gueudet et al (2020) report that programming mediates mathematical enquiry 

activity in the social context of those who are involved. Very often, programming is 

one of the range of resources available to solvers that mediate problem-solving. Thus, 

it is plausible to claim that such spread of available resources (mostly digital) has 

changed our way of solving problems. This interaction of the problem-solving activity 

with the available (digital) resources is the focus of the investigation presented in this 

paper.  

For this investigation, I draw on the documentational approach (Gueudet et al., 2014) 

that has been developed to discuss the interaction of the resources with teachers. In this 
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paper, the attention is on the interaction of problem solvers, and not necessarily 

teachers, with available resources when they deal with the problem which is not 

familiar to them. A resource can be anything that informs problem-solving activity, it 

can be an online blog, a piece of software, a textbook or interactions with others 

(Trouche et al., 2019; Kayali & Biza, 2021). In contrast to other studies that discuss 

problem-solving in the mediation with a specific digital technology, here I do not refer 

to any specific type of digital technology. Problem-solvers would use any resource at 

their discretion for their investigation. Thus, the choice of the resources, their use and 

appropriation to the problem-solving activity, as well as the mediation of these 

resources to the problem-solving discourse are seen together and in interaction. With 

this conceptual frame in mind, in this paper, I investigate the question: How does the 

use of digital resources influence the problem-solving work on an unfamiliar 

divisibility problem? I do so through the analysis of undergraduate students’ written 

work on a problem of divisibility, with a particular focus on their use of resources 

(digital or not). I now present the context of the study, the participants and the problem 

before discussing examples from students’ work.  

CONTEXT, PROBLEM, PARTICIPANTS AND METHODS 

The examples I discuss in this paper are from the work of eight students who attended 

a Mathematics Education course for Mathematics (also, occasionally Engineering or 

Science) undergraduate students. The course is offered as optional to finalist (Year 3) 

students of Bachelor of Science courses in a research-intensive university in the UK.  

The aim of the course (entitled The Learning and Teaching of Mathematics) is to 

introduce students to the study of the teaching and learning of mathematics typically 

included in the secondary and post compulsory curriculum (Biza & Nardi, 2020). The 

learning objectives of the course include: to become familiar with Research in 

Mathematics Education (RME) theories; to be able to critically appraise RME literature 

and use it to compose arguments regarding the learning and teaching of mathematics; 

to become familiar with the requirements (professional, curricular and other) for 

teaching mathematics; to engage with findings from research into the use of digital 

resources in the learning and teaching of mathematics; and, to practise problem-

solving. Contact time is four hours per week (two for lectures and two for seminars) 

for twelve weeks. Lectures are teacher-led and partly interactive. Seminars are student-

led (see details about the course in Biza & Nardi, in press; Nardi & Biza, in press).  

 “Problem-Solving” is one of the topics discussed in the sessions. Students are 

introduced to literature on problem-solving (e.g., Verschaffel et al. 2014; Pólya, 1945) 

in the lectures. Also, students have the opportunity to practise with mathematical 

problems and reflect on their solution in the seminars. The course is assessed through 

a Portfolio of Learning Outcomes that involves: nutshell accounts of RME theoretical 

constructs; reflection on students’ own learning experiences in mathematics; solving a 

mathematical problem and reflecting on the problem-solving approach; and, 

responding to fictional classroom situations (see Biza & Nardi, in press). The examples 
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presented in this paper are from students’ responses to the problem-solving item of the 

portfolio (Figure 1) and their reflections on their problem-solving approach.  

If possible, construct a 10-digit number, which is divisible by all natural numbers up 

to 18, including 18, by using ALL digits 0, 1, 2, … , 9 only ONCE. 

Figure 1: A divisibility problem 

The problem in Figure 1, is an adaptation of similar problems on divisibility found 

online in a blog for mathematics teachers and students (https://www.algebra.com/). 

The problem was chosen because it can be approached with different methods, it 

requires simple divisibility rules and does not require a known algebraic approach. 

Also, the problem requires a level of exploration of what the target number might be, 

without knowing whether such a number exists or not. Such exploration can be done 

through the use of divisibility rules (e.g., the digits of a number divisible by 9 add up 

to a number which is divisible by 9 and vice versa), finding the Lower Common 

Multiple (LCM) of all the divisors of the target number (LCM of 1, 2, …, 18 is 

12252240) and, then, finding a multiple of LCM that has ALL the 0, 1, 2, … , 9 digits 

only ONCE, if this number exists. The last step involves the time-consuming process 

of checking all the multiples of 12252240 with 10-digits. In fact, there are four numbers 

that satisfy the conditions of the problem: 2438195760, 3785942160, 4753869120 and 

4876391520. Any of those numbers is a sufficient response to the problem that asks to 

“construct a 10-digit number”. As the description in the portfolio indicates, students 

had the liberty to follow their own way with the problem and use any available 

resources (including digital tools):  

Any mathematically correct and accurately justified response will receive full marks. In 

your investigation, you may consider using digital tools (e.g., computer or scientific 

calculators) and software (e.g., Excel, MATLAB®1, etc.). In addition to your solution to 

the problem, you will attach your working on the problem. This is not going to be marked 

[…]  It does not need to be tidy or correct; a scanned version of your handwriting suffices. 

Data include students’ solutions to the problem, their working on the problem and their 

reflection on their problem-solving approach. Although there was no access to the 

actual problem-solving activity of the students, I analyse the submitted responses as 

evidence of what the students chose to report and how they self-reported their 

approaches to the problem. 

EXAMPLES OF STUDENTS’ WORK ON THE PROBLEM 

Of the eight responses I discuss here, only Student H (for simplicity S-H), followed a 

deductive approach to the problem. S-H wrote that he accessed the divisibility rules 

from the Brilliant platform of resources for STEM2. They named the target number 

ABCDEFGHIJ (where each letter represents a digit of the number) and they applied 

the divisibility rules to create a set of simultaneous equations, see an excerpt from the 

 
1 MATLAB®,  https://uk.mathworks.com/products/matlab.html 
2 Brilliant, https://brilliant.org/wiki/divisibility-rules/ 
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response (not the entire response) in Figure 2. A logical fault in the steps led to a 

contradiction that made S-H to conclude that such a number does not exist.  

 

[…] 

 

[…] 

Figure 2: An excerpt from Student H’s response to the problem 

Another student, S-C, calculated how many numbers with 10 different digits exist (“We 

start with 10! different numbers”) and started narrowing down the choices of numbers:  

We start with 10! different numbers. We can identify that the final digit of the number must 

be 0, otherwise the number would not be divisible by 10. This now leaves 9! different 

numbers.  

To be divisible by 4, the last 2 digits must form a number that is also divisible by 4. This 

gives us the choices of 2,4,6,8 as possibilities for the 9th digit. By checking through each 

possibility for the 8th digit and eliminating repeat numbers, we can reduce this to 7! × (32). 
(S-C’s response, original copy) 

Then, S-C created a Java program that uses the Heap algorithm (Heap, 1963) to 

produce and check 10-digit numbers that satisfy the conditions of the problem:   

Having narrowed the choices down and being unable to get any further with the problem, 

I made a computer program that used Heap’s algorithm to check every possibility for the 

10-digit number that met the constraints of the problem. This gave four solutions: 

4876391520, 4753869120, 3785942160, 2438195760. (S-C’s response, original copy) 

Since the question only asks for one solution, I chose 4876391520 and checked it was 

divisible by each number 1-18 manually. This was indeed a solution to the problem. (S-

C’s response, original copy) 
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Although S-C started the exploration by narrowing down the range of 10-digit 

numbers, they did not manage to produce a small enough set of numbers. As a result, 

their course of action changed and they programmed an algorithm that produces and 

checks all the 10-digit numbers (1010).  

The remaining students calculated the LCM and then tried to find the appropriate 

multiple of the LCM that satisfies the condition of the problem. One of them, S-A, 

identified the LCM correctly but could not work out an approach, other than trial and 

error in a range of numbers as they describe below:  

I must admit that I was unable to come across this number on my own mathematical ability 

alone as I could not work out a way, other than a simple trial and error approach, to 

complete the problem without assistance. […] 

From here I looked to find what ballpark number [roughly estimated number] would be 

needed to multiply my LCM to get a 10-digit number. It was clear that some value in 

between roughly 100 and 1000 would give me the required result. Other than plugging 

some very random values into my calculator, this is where I hit a wall. I eventually 

crumbled and resorted to researching online to find a method or some sort of answer by 

anyone who had done [on a] similar problem [sic]. After some searching, I found a website 

in which people submit different problem solving questions and people try and give their 

answers. Someone had already submitted this question [the problem in Figure 1] and 

people had gone about it in a similar way to myself. One person had written a computer 

program which gave back several 10 digit numbers constructed from the digits 0,…, 9 

which supposedly were divisible by the natural numbers up to and including 18.  

I checked that this number, 2438195760 [their emphasis], was divisible by my LCM, which 

it was meaning that this 10-digit number is indeed divisible by the natural up to and 

including 18 using each digit only once. (S-A’s response, original copy with my additions 

in square brackets) 

S-A found the LCA, but “hit a wall” in their effort to find the right number. They could 

not see any option other than “plugging some very random values”. So, they felt that 

they cannot solve the problem on their “own mathematical ability” and sought help 

from somebody who has solved a similar problem. So, with appropriate search, they 

found a webpage3 that includes a discussion on, and a proposed solution to, the 

problem. In this webpage, S-A found a response to the problem by somebody who had 

“written a computer program”. It is not clear whether S-A attempted the computer 

program or not and how they ended up with the right number (which they then checked 

whether it was divisible by the LCM). If S-A took the number from the website, as the 

outcome of the work somebody else “had done [on a] similar problem”, their role as 

problem-solver was to verify whether this number satisfies the given conditions or not. 

 
3 The website S-A mentions in their response is: 

 https://www.algebra.com/algebra/homework/word/misc/Miscellaneous_Word_Problems.faq.question.58446.html  
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So, instead of exploring whether a number with certain properties exists, S-A ended up 

confirming whether a number found by somebody else has these properties or not. 

S-D, S-F and S-G calculated the LCM as well and then identified the target number 

with trial and error. S-D, for example, used the (ANS+NUMBER) functionality of the 

calculator and checked the answers one by one: 

Solving the LCM as 12,252,240 I then used trial and error on my calculator (ANS + 

12,252,240) and visually checked each answer for one that met the conditions of the 

problem. (S-D’s response, original copy) 

S-F and S-G identified a range where the multiplier might be located (in the interval 

82-816 for S-F and in the interval 101-199 for S-G) before performing their trials 

(Figure 3).  

Figure 3: An excerpt from Student F’s response to the problem  

The choice of 199 as the upper boundary by S-G (199 is the first multiplier that gives 

a target number) sounds quite precise. This boundary might have chosen 

retrospectively after S-G had found the target number, but this is a speculation that 

cannot be verified. However, it seems that S-G is not convinced that the trial and error 

is the best approach to the problem, as they acknowledge: 

Although I am happy that I found the correct solution, I feel that my approach was not the 

most efficient. If I had a better comprehension of [a] mathematical programming tool such 

as MatLab I could have produced a code that would have eliminated a lot of the tedious 

calculation that took up a lot of time. (S-G’s response, original copy) 

S-B and S-E overcame the tedious part of calculating possible numbers by using a 

spreadsheet. As S-B wrote:  

To begin I found that the lowest common multiple of all of these numbers is 12252240. 

Then, as the number must be divisible by 10, it must end in zero. This means the smallest 

and largest possible numbers are 1234567890 and 9876543210, respectively, so dividing 

both by 12252240 give about 100 and 708. I then made a spreadsheet of the multiples of 
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12252240 from 100 and 708. I then checked all of these numbers to see if they satisfied 

the requirements. I found the numbers 2438195760, 3785942160, 4753869120 and 

4876391520. (S-B’s response, original copy) 

S-E took a creative step by narrowing down possible numbers in the spreadsheet:  

I used Excel to calculate multiples of the LCM in the required range.  Some blocks that 

could be ignored were easily identifiable and shaded out (those with the first and second 

digits the same, and with a 0 as second digit as well as last).  I then scanned the remaining 

numbers and ignored those with digits repeated. (S-E’s response, original copy) 

It seems that the spreadsheet facilitated the generation of LCM multiples, similarly to 

the repeated additions (or multiplications) other students did with the calculator. 

However, in the spreadsheet, the whole range of numbers was provided, instead of 

producing one number after another in a calculator. In a spreadsheet, the identification 

of patterns is easier, as is the elimination process – exactly as S-E did.  

DISCUSSION 

Findings presented in this paper aim to contribute to the discussion around the impact 

the availability of digital resources may have on problem-solving work. Specifically, I 

draw on the work of eight undergraduate mathematics students on a problem to 

investigate the question: How does the use of digital resources influence the problem-

solving work on an unfamiliar divisibility problem? The examples indicate three 

observations.  

First, online resources might be used as a source of information (e.g., definitions, rules, 

etc.) that feeds the problem-solving activity (e.g., S-H search online to find divisibility 

rules). Such resources become documents (Gueudet et al., 2014) for solvers and 

influence their approach to the problem. The accuracy of those resources, and whether 

such accuracy was checked by students, is not discussed in this paper. However, 

personal experience has indicated that uncritical use of information may mislead 

problem-solving activity. For example, one result of a Google search for what a 

polynomial is might be the inaccurate statement: “an expression of more than two 

algebraic terms, especially the sum of several terms that contain different powers of 

the same variable(s)”. 

Second, an online search may aim to identify responses to a problem provided by 

others; searching for answers to questions (Bosch & Winsløw, 2015). This is well 

connected to everyday practices of seeking responses to enquiries through a search to 

the web for what other people have done in a similar situation (e.g., Yeoman et al., 

2017). Finding what other solvers have done to a similar problem shifts the nature of 

problem-solving activity from explorative to confirmatory (e.g., S-A confirmed 

whether the number they found online meets the criteria instead of identifying such 

number). Solvers search with appropriate keywords, interpret a solution they have 

found and confirm that the proposed solution is right. Thus, exploratory routines of 

problem-solving activity – for example, conjecturing and testing – change to routines 
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such as: unpacking the problem for search purposes; interpreting others’ work; or, 

accepting the work of others, sometimes after verification or sometimes uncritically.  

Third, digital resources might facilitate hypothesis building or execution of time-

consuming procedures. This may lead to a less productive engagement with procedural 

performance of a repetitive task (e.g., pressing the button in a calculator) or to creative 

engagement with mathematical modelling (e.g., programming an algorithm that can 

produce and examine range of cases effectively). 

I note that the students worked on the problem for the purpose of summative 

assessment with the liberty of using any resource available to them. The examples 

discussed in this paper draw on students’ self-reported responses and not on the 

observation of students working on the problem. As a result, the examples reflect what 

students have chosen to report. For example, students might have found the right 

number through an online search and then constructed a narrative about the process 

through which they reached a solution retrospectively. Future research should draw on 

the observation of students’ actual activity with consideration of the resources that are 

available and the context in which this activity takes place (media-milieu interaction, 

Bosch & Winsløw, 2015). 

In conclusion, as the availability of digital resources impacts problem-solving activity, 

further research should provide more insight into such impact first, and then propose 

problem design that factors in this impact. It is plausible to assume that solvers will 

keep seeking help from digital resources and keep looking for what others have done 

in similar situations. A question is how we make sure that solvers are prepared to 

manage such abundance of resources productively and to their learning benefit.   
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Effective orchestration features of a project-based approach to 
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In this exploratory study, we examine the teaching of programming for mathematics 
investigation in an undergraduate project-based learning environment. Using 
instrumental orchestration as our theoretical framework, we explore the orchestration 
features that students consider to be the most effective for supporting their learning. A 
qualitative analysis of 43 students’ questionnaire responses led to the identification of 
such features, regrouped in 5 main themes (help and support, organization of the 
course, instructor interventions, instructor characteristics, and class atmosphere). 
Results suggest that students recognize the need for their instrumental geneses to be 
steered and highlight the importance of individualized interventions and a supportive 
learning environment. 
Keywords: Teachers’ and students’ practices at university level, digital and other 
resources in university mathematics education, instrumental orchestration, project-
based learning, programming   

INTRODUCTION  
Research has documented many affordances of programming for student learning of 
mathematics at the university level. Studies have shown how programming can support 
students’ activity and understanding in specific areas, such as calculus, abstract 
algebra, combinatorics, statistics, and probability (Buteau et al., in press). It has also 
been argued that programming activities can engage students in crucial mathematical 
disciplinary practices (Broley et al., 2017).  
In their recent call to the international community of research on university 
mathematics education, Lockwood and Mørken (2021) argue that much more needs to 
be investigated concerning the integration of programming, including effective 
instructional interventions, teaching practices, and didactic models:  

there are already varying models around the world for how computing is being integrated 
into mathematics classes and programs, and we see opportunities for systematically 
studying different ways for this integration to occur. […] the RUME community can 
explore what kinds of programs are effective and why. (p. 6) 

This paper addresses the above area of need by exploring effective features of a project-
based learning (PBL) model for integrating programming in university mathematics. 
As an integration approach, PBL engages students in actively constructing knowledge 
by working through an inquiry process that is structured by authentic and complex 
tasks (Shpeizer, 2019). PBL has been implemented in various academic institutions 
and fields, with the literature generally arguing for its positive effects on learning 
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outcomes (Thomas, 2000). In the context of programming-based math education, PBL 
has deep roots: it has been over 50 years since Seymour Papert pointed to the potential 
of engaging students in meaningful projects in which they construct (i.e., program) 
computer environments to learn and do mathematics like mathematicians do. Papert 
(1980) emphasized that such a “constructionist” approach requires a fundamental 
change to “traditional” teaching methods: from presenting mathematical ideas to 
students, to creating didactic conditions that foster students’ own pursuit of ideas.  
In the current study, we explore students’ perspectives on what those conditions might 
be: in particular, how university math instructors may support students’ learning to use 
programming for math investigations in a project-based approach. Our exploration 
takes place within a “natural constructionist environment” (Buteau et al., 2015) that 
has been implemented for 20 years at Brock University (Canada) and as part of a larger 
5-year (2017-2022) iterative design research that uses that environment to study how 
students learn to use programming in authentic pure or applied mathematics projects, 
if and how that use is sustained over time, and how instructors support that learning. 

THEORETICAL FRAMEWORK  
In our larger research, we have shown that the instrumental approach (Artigue, 2002) 
can be useful in studying the teaching and learning of using programming for math 
investigation projects at the university level. In Gueudet et al. (2020), we used the 
notion of instrumental genesis to better understand how students transform a 
programming language (an artefact) into a math investigation tool (an instrument for 
accomplishing the goals involved in math investigation projects) by developing 
instrumented action schemes. In this study, we are interested in looking at features of 
instructional practice that can support this instrumental genesis. Following Buteau et 
al. (in press), we frame our study using the notion of instrumental orchestration. 
Trouche (2004) introduced the notion of instrumental orchestration to highlight the 
necessity of an external steering of students’ individual and collective geneses and to 
describe the instructional decisions and actions involved. More precisely, 

an instrumental orchestration is defined as the teacher’s intentional and systematic 
organisation and use of the various artefacts available in a—in this case computerised—
learning environment in a given mathematical task situation, in order to guide students’ 
instrumental genesis (Trouche, 2004). (Drijvers et al., 2010, p. 214) 

Building on the work of Trouche (2004), who introduced “didactical configuration” 
and “exploitation mode” as two key components of an instrumental orchestration, 
Drijvers et al. (2010) introduced a third component, the “didactical performance,” and 
defined the three components as follows:  

A didactical configuration is an arrangement of artefacts in the environment, or, in other 
words, a configuration of the teaching setting and the artefacts involved in it. … 

An exploitation mode is the way the teacher decides to exploit a didactical configuration 
for the benefit of his or her didactical intentions. This includes decisions on the way a task 
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is introduced and worked through, on the possible roles of the artefacts to be played, and 
on the schemes and techniques to be developed and established by the students. … 

A didactical performance involves the ad hoc decisions taken while teaching on how to 
actually perform in the chosen didactic configuration and exploitation mode: what question 
to pose now, how to do justice to (or to set aside) any particular student input, how to deal 
with an unexpected aspect of the mathematical task or the technological tool, or other 
emerging goals. (p. 215) 

Studies in math education have employed the notion of instrumental orchestration with 
various technologies (graphing calculators, dynamic geometry software, spreadsheets, 
…), mainly at the school level. For instance, Drijvers et al. (2010) used the notion to 
study the use of applets with eighth-grade students and began cataloguing different 
orchestration types (e.g., Technical-demo and Explain-the-screen). At the time of 
writing this paper, we are unaware of other research on the orchestration of 
programming in investigation projects, i.e., in a PBL approach (Buteau et al., in press). 
PBL is an instructional model that organizes learning around projects. According to 
Thomas (2000), such projects, “as well as the activities, products, and performances 
that occupy [students’] time, must be orchestrated in the service of an important 
intellectual purpose” (p. 3). In terms of teaching, PBL redefines the traditional role of 
the teacher as one of collating sources, facilitating thinking, and inspiring students to 
impact the world, with class time used to probe students about their sense-making and 
skills acquisition (Prince & Felder, 2007). This changing role of the teacher is seen as 
a key challenge in successfully implementing PBL in the classroom (Shpeizer, 2019).  
In light of the framework outlined above, we pose the following research question: 
What are the features of an effective orchestration of programming for mathematics 
investigation in a project-based approach? 

METHODOLOGY  
Our study is situated in the context of three semester-long project-based math courses 
(MICA I-II-III) offered at Brock University. In these courses, math majors and co-
majors (including future math teachers) learn to use programming to investigate math 
concepts, theorems, conjectures, and real-world applications (Buteau et al., 2015).   
Our past work has examined the instrumental orchestration of programming in MICA 
courses primarily from the institution’s and instructors’ points of view (e.g., Buteau et 
al., in press). Using institutional documents and interviews with an experienced MICA 
instructor (who was also involved in the development of the MICA courses), key 
orchestration features were highlighted and discussed: e.g., the teaching format (part 
of the didactic configuration), which includes weekly 2-hour lectures (where the 
instructor introduces the math) and 2-hour labs (where the students work on projects); 
the assessment structure (part of the exploitation mode), the heart of which (70-80% of 
students’ grades) are 4-5 investigation projects developed by the instructor; and the 
kind of help (both individual and collective) given to students to support their work in 
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labs (part of the didactic performance). In this study, we complement this past work by 
examining key features of the orchestration from students’ points of view.  
Part of years 2-4 of our larger research included students being invited to voluntarily 
respond to questionnaires administered before (pre) and after (post) each MICA course. 
There were various sections featured in the questionnaire, including demographics, 
students’ perceptions of the importance of programming, confidence in programming, 
etc. The question we consider in this study is taken from the post-questionnaire, where 
students in years 3-4 were asked to indicate and elaborate on (by writing a text) what 
their instructors or teaching assistants (TAs) did that had the most impact on their 
assignment work or learning in any of the MICA courses they had taken so far.  
In this study, we analyzed the responses of 43 MICA students from years 3-4 (2019-
20) of the research (25 from MICA I, 5 from MICA II, and 13 from MICA III). 
Responses were coded independently by two coders and then codes were consolidated. 
Codes were then grouped into themes and sub-themes using an emerging theme 
approach. Finally, we reflected on our results using our theoretical framework. We note 
that some participants’ responses were coded with several codes, possibly within more 
than one sub-theme or theme. Also, our findings are representative of every 
participant’s voice: even if a sub-theme emerged from only one participant response, 
we considered it valuable to include it in our results since, in this initial study, we aim 
to identify possible features of an effective orchestration (from students’ points of 
view). Given the relatively small sample size and voluntary participation, we also note 
that participants are not necessarily representative of all MICA students.  

RESULTS: MOST IMPACTFUL ORCHESTRATION FEATURES  
After coding and consolidation, 5 main themes and 16 sub-themes emerged, as 
synthesized in Tables 1-5. These themes characterize orchestration features that, 
according to students, had the most impact on their assignment work and learning. 
Given the context in which we work (as described above), we interpret these as being 
features that may contribute to an effective orchestration of programming for 
mathematics investigation in a project-based approach. In the following, we describe 
the themes and sub-themes, including several illustrative quotes from students. 
Help and support  
Many students indicated the most impactful thing the instructors or TAs did included 
providing help and support (see Table 1, with sub-themes and descriptive quotes).  
Some students spoke in a general sense, simply highlighting that they were given (lots 
of) help, while some (also) specified the part of the course on which they received the 
help or support (assignments, programming, and/or mathematics).   
When mentioning “help with programming,” some students specified further the part 
of the programming process with which they received help (e.g., “I was able to … get 
some help debugging some minor errors”). Other students emphasized impactful 
approaches used by instructors or TAs to provide support for programming, including:  
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• giving one-on-one help with programming (“When I would come for help, the 
TAs would look through my program and then let me know where the error may 
be and would hint at how to fix it”); 

• providing additional coding information to the class, on-demand, just-in-time 
(“Some help hours TAs or instructors realized everyone was having the same 
issue and would provide some extra coding information to incorporate in the 
assignment that would help everyone understand the project further”);  

• displaying and explaining example codes (e.g., “It was very helpful when 
example code was displayed on the screen and explained. It helped to see how 
it could actually be used”); and 

• making example codes available (“I was able to download codes from lectures 
and play around with them and change things so that I was able to better 
understand how the different codes worked”). 

Sub-Themes Descriptive Quotes 
General help Helping me when I was stuck. 
Help on 
assignments  

With the help of the instructors/TAs I was able to understand the 
assignments better. 

Help with 
programming 

… they provided help for me when I was stuck and didn’t know 
what to do next while I was programming for an assignment. 

Help with 
math 

it is also helpful when … [they] know how to help you when you 
have a problem with both the mathematics and the programming. 

Table 1: Sub-themes and descriptive quotes for the Help and Support theme  

We interpret this theme as an implicit recognition by students that their instrumental 
genesis needs to be steered. The “help with programming” sub-theme highlights 
students’ views about different ways in which an effective steering may occur, 
including certain orchestration types: e.g., Discuss-the-screen is connected to 
displaying and explaining example codes. 
Organization of the course 
Some students' responses pointed to features associated with the format of the course; 
in particular, the different modes by which help was made available to them by the 
instructors or TAs, and the general organization of course content (see Table 2). 
Students explicitly mentioned several ways in which help was made available to them 
outside lectures, including labs, help hours, emails, and (extra) office hours.  
In terms of instrumental orchestration, we interpret this theme as mainly describing 
elements of the didactic configuration and exploitation mode. The various modes of 
making help available extends the opportunities for students to experience the same 
kinds of interventions as in a Work-and-walk-by (Drijvers, 2012) classroom 

596



  
orchestration. This suggests that students’ instrumental geneses require readily 
available individualized help/interaction with a mentor.  

Sub-Themes Descriptive Quotes 
Modes of 
making help 
available 

I really like the format of labs; it gave me a chance to talk to the 
instructor or TA about my assignment and also to get help if I 
needed it. 
Proving help hours so I didn’t have to struggle on my own. 
I was able to access help easily during help hours and reach my 
instructor through email. He gave very helpful tips even through 
email. 
They added extra office hours for assignments when needed… 

Organization 
of course 
material 

…the [online] course work was all nicely in one spot. It was easy 
to find and easy to understand what had to be done. The 
assignments were also nicely broken up into questions and parts of 
questions. It was just really organized, and I appreciate that. 

Table 2: Sub-themes and descriptive quotes for the Organization of the Course theme  

Instructor characteristics  
Another theme that emerged expresses students’ views on certain impactful “ways of 
being” of instructors or TAs: according to students, they were not only knowledgeable, 
but also available, kind, and supportive (see Table 3).  

Sub-Themes Descriptive Quotes 

Available Their anytime response to our doubts irrespective of their 
schedules. 

Knowledgeable It is also helpful when they're knowledgeable and actually know 
what they're talking about and know how to help you…   

Kind He was so incredibly kind. 
Supportive Programming was brand new to me in [MICA I] and it was 

extremely intimidating (still often is) so it is nice to have helpful 
and supportive instructors and TAs. 

Table 3: Sub-themes and descriptive quotes for the Instructor Characteristics theme  

Some of these instructor characteristics could be interpreted as linked to the 
exploitation mode. In particular, being available and supportive towards students aligns 
with the expectation that students will need a lot of individualized support. Instructors 
may plan these “ways of being” in order to offer this support.  
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Instructor interventions  
Some students also mentioned specific and effective (according to them) ways in which 
instructors or TAs facilitate their work or learning (See Table 4). 

Sub-Themes Descriptive Quotes 
Ways of 
providing 
help 

My TA would break the projects down for me to a level that I 
would understand. Which allowed me to be successful in the 
course. 

Feedback on 
assignments 

The TA and professor would let me know where I lost marks which 
made me improve those things for future assignments. 

Intervention 
for high-
achieving 
students 

I found that I was able to complete most assignments rather 
quickly. As such, the prof. would often give me ideas that would 
be difficult to implement and allowed me to brainstorm how I 
would implement these tasks … These difficult tasks allowed me 
to learn concepts and think outside the box far more than if I was 
to just complete assignments as they are written. 

Table 4: Sub-themes and descriptive quotes for the Instructor Interventions theme  

The “ways of providing help” sub-theme was associated to a rich collection of 
responses, which specified different methods that instructors or TAs used while 
offering them the help they needed. In addition to breaking down content to a student’s 
level of understanding (exemplified in Table 4), students described the following 
impactful ways of providing help:   

• re-explaining multiple times when needed (“taking the time to go through it with 
me multiple times when I didn't understand something”); 

• explaining what a student is doing wrong and why (“they would inform me what 
I was doing wrong and WHY it was wrong. By doing this, I can grow and learn 
from the experience”); 

• providing a full explanation (“The professor would always fully explain the 
issue rather then giving a half-hearted cryptic help response. Sometimes teachers 
try to give a little hint in hopes you’ll figure it out yourself. But I wouldn’t so 
getting a lesson about what went wrong is more helpful”); 

• guiding towards rather than telling the answer (e.g., “They never said ‘figure it 
out’ but they helped guide us to the correct answer without fully saying ‘here it 
is’”); and finally 

• giving meaningful answers (“they didn’t give vague answers, they truly did help 
you”). 

We interpret this theme as describing elements of the didactic performance. The “ways 
of providing help” sub-theme suggests effective (from students’ points of view) 
individualized interactions that may occur, for example, in the Work-and-walk-by 
orchestration during labs.  
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Class atmosphere 
Finally, some students’ responses pointed to the kind of environment created by the 
instructors or TAs to foster students’ learning (see Table 5). Students indicated that the 
class was a space where they felt safe to ask questions, encouraged to make 
contributions, and able to work on their own if they wanted. 
Sub-Themes Descriptive Quotes 
Safe to ask 
questions  

Everyone in the class knew they could ask [the TA or instructor] 
any question and receive a helpful and cheerful answer. They 
created an environment where students weren't afraid to ask 
questions and that is what was most needed to fully understand the 
content. 

Encouraged 
to contribute 

Instructor encouraged us to attempt to formulate our own 
theorems before resorting to finding a pre-existing one to study. 
Instructor took an interest in the fact that I had recently heard of 
steps towards cracking the Collatz conjecture. 

Can work on 
own if want 

I didn’t ask for a lot of help on assignments since I enjoy working 
things out myself and any time that I got stuck, I was able to get 
unstuck again. 

Table 5: Sub-themes and descriptive quotes for the Class Atmosphere theme  

We interpret this theme as being part of an instructor’s exploitation mode, which 
includes how they will present tasks, how students will work through the tasks, and the 
atmosphere that will surround that work. The fact that students need individualized 
support as they work through tasks appears to provide guiding principles to how the 
instructor creates the atmosphere (by explicitly inviting students to ask questions, 
responding to students’ questions in a “kind and cheerful” manner, etc.).  

DISCUSSION  
In this paper, we answer the call from Lockwood and Mørken (2021) for more research 
about effective instructional models for integrating computing in university math 
education by exploring features of an effective orchestration of programming for 
mathematics investigation in a project-based approach. Our study contributes to the 
literature involving the instrumental orchestration frame by (1) using it to examine 
PBL, a particular instructional approach that has not yet been examined using the frame 
(Buteau et al., in press); and (2) identifying most impactful features from students’ 
points of view, which, to our knowledge, has not been done. Our study also contributes 
to literature on PBL, in which there is a lack of studies specifying the required teacher’s 
role for a successful implementation (Shpeizer, 2019). Our results align with some key 
elements that have been identified: e.g., the creation of a safe learning environment, 
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the encouragement of students (including to ask questions), and the importance of 
formative and summative assessment (Pan et al., 2021).    
In this study, we analyzed questionnaire responses from 43 students using an emerging 
theme approach, which led to 16 sub-themes organized by 5 main themes: help and 
support, organization of the course, instructor interventions, instructor characteristics 
and class atmosphere. These themes characterize orchestration features that, according 
to students, had the most impact on their work and learning and, therefore, may be 
inferred to contribute to an effective orchestration of programming for math 
investigation in a PBL approach. Interpreting the themes using the instrumental 
orchestration frame points to features that were not made explicit in the description of 
its three components (Drijvers et al., 2010): e.g., “class atmosphere” as a feature of the 
“exploitation mode,” or “feedback on assignments” (ad hoc decisions occurring outside 
the classroom) as a feature of the “didactic performance.” Responses from students 
also highlight a need, specific to the university level, of considering TAs as additional 
players, who have orchestrations of their own, which are shaped by and situated within 
an instructor’s orchestration. Our interpretation of the identified themes also suggests 
some elements that may be specific to a PBL approach (in comparison to a “traditional” 
one): e.g., the “organization of the course” theme suggests that for a PBL instructor, it 
may not always be helpful to instruct the entire class based on one person’s issue (they 
may expect students to require individualized support). In relation to this, we propose 
a new orchestration type (Drijvers, 2012): Work-and-reach-out- when-needed. 
This initial exploratory study sets the ground for future work examining more deeply 
the impact (or effectiveness) of the different features we have identified. Some students 
elaborated on their perception of the impact of instructors’ or TAs’ actions on their 
learning or completion of projects: e.g., with respect to the creation of a learning 
environment where it is safe to ask questions, one student said that “that is what was 
most needed to fully understand the content.” Future work could look more 
systematically at the impacts of different orchestration features on students’ learning 
and project work. This could inform recommendations for practice, especially at a time 
when computing is becoming more integrated across mathematics education.   
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One approach to address the problem that in mathematics lectures students are often 

busy writing, and cannot pay attention to the instructor’s oral explanations might be 

the use of guided notes. These are a modified version of the instructor’s notes that 

contain blanks the students have to fill in during the lecture. However, the extent to 

which the use of guided notes actually supports students during their note-taking 

probably depends on the positions of the blanks. We investigated students’ perspectives 

on where to put the blanks by exploring in which elements of a mathematics lecture 

they appreciate blanks and why. The results yield some suggestions on where to put 

blanks and preprinted parts in a guided notes script, so that many students might 

benefit from guided notes for their note-taking in mathematics lectures.  

Keywords: students’ practices, novel approaches to teaching, note-taking, guided 

notes, mathematics lectures. 

INTRODUCTION AND EMBEDDING OF THE RESEARCH 

In traditional mathematics lectures, the instructor usually writes the definitions, 

theorems, and proofs on the board, and provides additional oral explanations 

(Artemeva & Fox, 2011). In such lectures, students are often busy copying everything 

correctly, and have trouble paying attention to the instructor’s explanations (Freitag, 

2020). This could make it hard for them to gain an understanding of the content during 

the lecture. However, making sense of the content after class solely on the basis of the 

notes taken is also a hurdle for many students, because they often only note down the 

definitions, theorems, and proofs the lecturer has written on the board, and not the 

additional oral explanations that are especially important for making sense of the 

content (Fukawa-Connelly et al., 2017), e.g., ideas behind the formal proofs.  

One approach to address these problems might be the use of guided notes. These are 

preprinted lecture notes with blanks at certain places that the students are required to 

fill in as the lecture progresses (Austin et al., 2004). There are some contributions in 

the mathematics education literature on the effect of guided notes on students’ note-

taking and their learning. Cardetti et al. (2010), for instance, investigated the effect of 

guided notes on students’ learning in a calculus course by comparing the exam results 

of the years 2006 and 2007. In 2006, the students had to take notes solely by 

themselves, while in 2007, they received parts of the instructor’s notes as a script, and 

only had to fill in blanks (the instructor was the same in both years). Cardetti et al. 

(2010) then found that the students in the guided notes group attained better results 

although they scored lower in the SAT entry test. Furthermore, students in this group 

particularly liked about the guided notes that they could follow the lecturer better, and 
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did not have to concentrate on writing exclusively. Similar results were found by 

Iannone and Miller (2019) who investigated students’ attitudes towards guided notes 

in a qualitative study. Furthermore, Iannone and Miller (2019) found that some students 

also noted down the instructor’s oral comments or added own comments, which can 

particularly help to recall and to make sense of the content covered later on the basis 

of the notes taken. We also confirmed these findings in a course with a larger sample 

in a study using a mixed-methods design (Feudel & Panse, 2022). Hence, overall, the 

literature suggests that guided notes can be on the one hand an aid for processing the 

information noted – the so-called encoding function of note-taking (Di Vesta & Gray, 

1972; Kiewra, 1989) – and for creating notes that are useful in a later review phase (the 

so-called storage function). 

The extent to which guided notes actually support students during their note-taking, 

however, possibly depends on the positions of blanks and preprinted parts. Instructors 

using guided notes, for instance, often leave blanks in examples or in problems students 

might be able to solve by themselves or with the help of a discussion in class (Alcock, 

2018; Cardetti et al., 2010; Feudel & Panse, 2022; Tonkes et al., 2009). This can foster 

students’ active engagement with the corresponding content, and help them process the 

information presented already during the lecture.  

But at which text modules of a guided notes script do students consider blanks as useful 

and why? Their opinions on this matter add an important further perspective on where 

to put blanks in a guided notes script, which can especially help to derive empirically 

grounded recommendations for the design of such a script. Research on this issue is, 

however, currently limited. In the study by Cardetti et al. (2010) mentioned above, one 

student appreciated that definitions had already been preprinted, and did not have to be 

written down. Further results on the question of where to put blanks were found by 

Tonkes et al. (2009). They explored to what extent students of a large first-year 

mathematics course appreciated blanks within a distributed script, by surveying them 

about the perceived usefulness of the blanks and about the extent to which the students 

actually filled in the blanks by themselves. The corresponding questionnaire especially 

contained Likert items asking whether blanks should be left in examples, definitions, 

or when introducing new mathematical techniques. While there was no clear preference 

about whether blanks should be left at the latter two positions, many students strongly 

agreed that blanks should be left in examples. However, the studies by Cardetti et al. 

(2010) and Tonkes et al. (2009) did not systematically investigate which parts of a 

mathematics lecture should be preprinted or left blank within a guided notes script. 

Furthermore, these studies did not provide reasons for students’ preferences that might 

help to find out why students consider blanks as helpful at certain positions for their 

note-taking. The research we present here attempts to fill these gaps.  

THEORETICAL FRAMEWORK  

For investigating why students might consider blanks or preprinted material at certain 

positions in a guided notes script as helpful for their note-taking, we used for our data 

analysis a theoretical framework that particularly considers students’ goals of note-
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taking: the college students’ theory of note-taking by Van Meter et al. (1994). On the 

basis of interviews with 252 students from different disciplines about their perceptions 

of the functions of note-taking, their regulations of note-taking, and their beliefs 

regarding factors that influence their note-taking, Van Meter et al. (1994) developed a 

framework describing different aspects of students’ note-taking behavior. According 

to them, students have the following goals of note-taking (p. 338):  

1) Increase attention,  

2) Increase comprehension and memory of the lecture content,  

3) Organize the material presented, 

4) Inform about the content of the exam, and  

5) Inform about solutions to practice problems and provide information relevant 

for written assignments. 

Although Van Meter et al. (1994) restricted the last point to homework assignments in 

their framework (they called it “homework aid”), we want to view the term “written 

assignment” broader as any assignment students are required to work on in a course – 

also in the exam. This also fits to the data Van Meter et al. (1994)  presented to goal 5, 

as the students they cited only mentioned that writing down worked examples helps to 

find solutions to similar problems, and did not refer to homework explicitly. 

Besides the goals of note-taking, Van Meter et al. (1994) describe further aspects of 

students’ note-taking in their framework: content-structure of students’ notes, 

contextual factors affecting students’ note-taking, and students’ post-class processing 

of the notes. Since in the study presented here, we wanted to investigate at which 

positions of a lecture students appreciate blanks or preprinted parts in a guided notes 

script, and tried to explore reasons for their choices, we particularly referred to the 

goals of note-taking when analyzing our data. Therefore, we refrain from describing 

the other three aspects of students’ note-taking in the framework by Van Meter et al. 

(1994) in detail here (for details, see Van Meter et al. (1994), p. 337). 

EXTERNAL SETTING OF THE STUDY 

The study took place in an introductory mathematics course called “Introduction to 

mathematical thinking and working” for teacher students in Germany, who will teach 

mathematics up to the end of secondary level. The course consisted of one 90-minute 

lecture and one 90-minute tutorial per week, and the students had to complete written 

assignments each week. The topics were elementary number theory (divisibility, prime 

factorization, residue classes, Euclidean algorithm), sets and relations, basic algebraic 

structures (groups, rings, fields), and the construction of the number systems. 

The instructor taught the course on the basis of a guided notes script following the idea 

of Alcock (2018). Before each session, she distributed a paper script with blanks at 

certain positions. A sample page can be seen in Fig. 1. 
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Figure 1: Sample page of the guided notes script used (see also Feudel and Panse, 2022, 

p. 15) 

The instructor made the decisions for the positions of the blanks on the basis of her 

teaching experience from former years, in which the course was taught traditionally. 

She especially left blanks at positions, 

1) at which she assumed that students could complete the blanks by themselves,  

2) at which she considered statements as particularly important, or 

3) at which she suspected particular problems in making sense of the content. 

During the lecture, she initiated activities at the blanks that involved the students, e.g., 

discussions about different options for filling the blanks (for further details see Feudel 

and Panse (2022)). After the lecture, she made the completed script available.  

METHODS USED IN THE STUDY 

For finding out at which positions students appreciate blanks and why, we surveyed 

the course participants during a lecture four weeks before the final exam. In this survey, 

we asked them to complete the following assignment:  
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The instructor of the course “Introduction to mathematical thinking and working” 

wants to use guided notes in the next semester. She informs you about this idea and 

adds that she is not sure about where to put the blanks. A mathematics lecture consists 

of different elements (definitions, theorems, proofs, explanations, and examples). 

Please give the instructor an advice on where to put the blanks on the basis of your 

experience with guided notes. Justify your advice. 

61 students took part in the survey. Four of these did not provide answers to the task, 

i.e., they either did not refer to guided notes at all, or just wrote something general 

about guided notes. We excluded these four from the further analysis. 

Our data analysis consisted of three steps. First, we categorized for each of the lecture 

elements mentioned above (definitions, theorems, proofs, explanations, and examples) 

if our participants appreciated blanks in this element or not. In a second step, we 

categorized the extent to which they appreciated blanks in the different lecture elements 

inductively. Hereby, we first developed the corresponding category system on the basis 

of the responses of the first ten cases. It was the same for each lecture element and is 

shown in Table 1. Then we coded the whole data with this system separately, compared 

the degree of agreement afterwards, and finally resolved disagreements in a discussion.  

Category Description of the category 

Leave the element fully 

blank 

A student mentions explicitly that the whole element (e.g., 

whole definitions) should be left blank.  

Leave blanks at some 

positions of the element 

A student mentions that parts of the lecture element should 

be left blank while other parts should be printed.  

Leave blanks in some 

elements of this type  

A student mentions that blanks should be left in some of 

the elements of a certain type (e.g., in some definitions). 

Print the element A student mentions that the element should be printed. 

Table 1: Categories for the extent the students appreciated blanks in the different 

lecture elements (definitions, theorems, proofs, explanations, examples) 

Finally, we searched within the answers for reasons why blanks in the different lecture 

elements were considered as helpful by the students for their note-taking. For this, we 

categorized their responses with content analysis (Mayring, 2015), and used the 

different parts of our theoretical framework (the different aspects of note-taking in the 

college students’ theory of note-taking, especially the goals of note-taking) as 

categories. Whenever a student referred to one of these aspects, e.g. a goal of note-

taking, we assigned the corresponding part of the response to the respective category. 

RESULTS OF THE STUDY 

Table 2 shows for each of the lecture elements mentioned in the survey if our 

participants appreciated blanks in it or not. The extent to which they appreciated the 

blanks in these elements (if they mentioned an extent) is shown in Table 3.  
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Element Definitions Theorems Proofs Examples Explanations 

Leave blanks 70.2% 66.7% 78.9% 71.9% 24.6% 

Print 22.8% 22.8% 10.5% 12,3% 40.4% 

No statement 7.0% 10.5% 10.5% 15.8% 35.1% 

Table 2: The share of our participants appreciating blanks in the different elements of 

a mathematics lecture (N = 57) 

Element Definitions Theorems Proofs Examples Explanations 

Leave fully blank 22.8% 8.8% 12.3% 8.8% 3.5% 

Leave blanks at some 

positions 

10.5% 24.6% 14.0% 7.0% 3.5% 

Leave blanks in some 

elements of this type 

12.3% 15.8% 24.6% 14.0% - 

Table 3: The extent to which our participants appreciated blanks in the different 

elements of a mathematics lecture – if mentioned (N = 57) 

We will now discuss the results for each element in detail, including possible reasons 

why the students appreciated blanks in the corresponding element. Since our focus lay 

on students’ perceptions towards blanks in the different elements of a mathematics 

lecture, we will especially present those reasons for which the students presented a 

clear connection to specific facets of the respective element in their responses. 

Definitions 

Table 2 indicates that the majority (over 70%) of our participants appreciated blanks 

in definitions. Table 3 shows that many of these even wished definitions to be left 

completely blank. The reason most often mentioned – namely by 14 students – was 

that blanks in definitions can be helpful for memorizing these (memorization is one of 

the students’ goals of note-taking), as the following quote shows:  

Definitions should be written for yourself, as students should memorize these. And if you 

write something for yourself, it better remains in your memory than if you only read it.  

The other aspect of the college students’ theory of note-taking many students referred 

to in their statements related to definitions was the note-taking goal “understanding”. 

Four students, for instance, argued that blanks help to gain an understanding because 

they are required to think when writing for themselves, as the following quote shows:  

Definitions are in my opinion suitable for blanks, because by writing for yourself, you are 

required to think more than if you only have to listen. 

Others argued that blanks in definitions provide opportunities for further explanations: 

In my opinion, blanks should be left in definitions, so that these are explained in more 

detail, and not just passed over. 
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13 students wished definitions to be fully preprinted. One important reason mentioned 

was that mistakes may occur during the writing process in the lecture. These might be 

especially problematic for definitions because definitions are some kind of basis, as the 

following quote indicates:  

Print definitions, because students still need to acquire the knowledge, and mistakes 

induced by writing can cause a chain reaction. 

Theorems 

Table 2 indicates that the majority also appreciated blanks in theorems (although the 

numbers might suggest that these were the same students as for definitions, this was 

not the case). However, Table 3 indicates that many of our participants (24.6%) wished 

blanks only in parts of a theorem, for instance in the claim, while the framing and the 

assumptions should be printed. Concerning reasons why blanks should be left in 

theorems, some students referred to the note-taking goal of memorization again, but 

much fewer than in the case of definitions (only 8 versus 14 students). Instead, in the 

case of theorems, the students more often referred to the goal of understanding. Besides 

the explanations how blanks might help to gain an understanding of the content that 

had been already mentioned in the case of the definitions, several students now argued 

that blanks provide opportunities for working with the theorems covered during the 

lecture. Six participants, for instance, pointed out that students might be able to deduce 

the claim of a theorem by themselves or together during the lecture:  

You should leave blanks for the core assertion of a theorem (a mathematical formula, a 

deduction, an equivalence, …), since with the help of the remaining part of the theorem, 

students could try to deduce this core, so that the idea behind it becomes tangible. 

13 students wanted theorems to be printed (not the same 13 students as for definitions), 

and these mentioned several reasons. For instance, one reason was again that mistakes 

might occur when having to write for yourself. Another one was that not having to 

write and being able to listen instead helps to make sense of the theorems covered.   

Proofs 

Table 2 shows that the majority of our participants also appreciated blanks in proofs. 

Besides the reason that writing for yourself encourages thinking that had already been 

mentioned for definitions and theorems, the following reason for blanks in proofs was 

mentioned by several participants (6 students): having to write proofs for yourself helps 

to practice or might be helpful for written assignments (informing about solutions 

relevant for written assignments is also one of the note-taking goals by Van Meter et 

al. (1994)). This was, for instance, expressed in the following quote: 

Perhaps, it [filling in the blanks during the lecture] helps for other assignments. You get 

used to proving because you never did this at school. 

Nevertheless, many students only wished blanks in parts of the proofs or in some proofs 

(see Table 3). Ten students, for instance, mentioned that long or complicated proofs 

should be printed or should contain only some blanks, as the following quote indicates:  
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It depends on the situation. Long and complicated proofs should be printed, but with blanks 

for additional comments. Small proofs that are also useful for practicing, and which are 

required by the students, should contain blanks/ be left blank. This helps to internalize the 

proof structure.  

The quote above also shows the aspect “writing for practicing” again. Other students 

argued that complicated proofs should be printed, so that one could work through them 

step by step during the lecture, or that one does not have to concentrate on writing 

exclusively. Those answers are again related to the note-taking goal “understanding”. 

Students who wanted proofs to be fully printed argued, for example, again that not 

having to write these allows them to be attentive towards the instructor’s explanations 

and to reflect on the proofs, which can help to gain an understanding of these. 

Examples 

Just like in the study by Tonkes et al. (2009), most of our participants also appreciated 

blanks in examples (see Table 2). Many of them argued again that the blanks encourage 

thinking and/or that these offer opportunities for working actively with them during the 

lecture, which can again help to reach the note-taking goal “understanding”. 

Furthermore, just as in the case of proofs, there were students who mentioned that 

blanks in examples provide opportunities for practice.   

Also in the case of examples, some students wished these to be already fully printed 

(7 students). The reasons mentioned in our survey were that examples would not 

require thorough thinking, that printing them allows the treatment of more examples, 

or again that having to write for yourself may lead to mistakes. However, one of these 

seven students wished an additional blank for own examples instead:  

Explanations and examples can be given. But afterward, there may be a blank for own 

examples.  

Hence, this student nevertheless wanted blank space for being able to adapt the content-

structure of the notes (this wish was also expressed in general by 8 students).  

Explanations 

40.4% of our participants wanted explanations to be preprinted, and 35.1% did not refer 

to this lecture element at all in the survey (see Table 2). Since over half of the ones 

who did not make a statement on the element “explanations” only referred in their 

survey responses to those lecture elements at which they appreciated blanks, it is 

probably even the majority who wanted explanations to be preprinted. Reasons 

mentioned were, for example, that the explanations given in the guided notes script of 

the course were understandable immediately, that explanations do not need extra 

attention, that writing them down requires too much time, or that students cannot be 

attentive towards the explanations if they also need to write these down. Overall, the 

reasons why our participants wished explanations to be printed were rather diverse. 
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SUMMARY AND DISCUSSION 

We investigated at which elements of a mathematics lecture students appreciate blanks 

in a guided notes script, and explored why students might consider blanks in these 

elements as helpful for their note-taking from the perspective of the college students’ 

theory of note-taking by Van Meter et al. (1994). This research especially specified 

perceived benefits of blanks and preprinted material in a guided notes script for 

students’ note-taking in a mathematics lecture (that have also been found in previous 

research, see section 1) for different elements of such a mathematics lecture.  

First, our data showed that the extent to which our participants appreciated blanks in a 

guided notes script differed for different elements of a mathematics lecture. Just like in 

the study by Tonkes et al. (2009), most of our participants appreciated blanks in 

examples. Reasons mentioned were that having to write these for yourself encourages 

thinking about the content, and that blanks provide opportunities for working with them 

actively during the lecture. Unlike in the study of Tonkes et al. (2009), our participants 

also mostly appreciated blanks in definitions, especially because having to write these 

helps to memorize them, as further content often builds upon the definitions.  

Our participants were more selective about whether blanks should be left in theorems 

and proofs. In theorems, several of our participants wished assertations to be printed, 

while claims should be left blank, as these could be conjectured by the students by 

themselves, which can help to make deeper sense of the theorems covered. Concerning 

proofs, our participants appreciated blanks especially in short proofs that they are also 

required to carry out in an exam, because the blanks provide opportunities for 

practicing, and because having to write encourages thinking about the proofs. But 

several students mentioned that long or complicated proofs should be printed, so that 

one could go through them step by step during the lecture. Finally, concerning 

explanations, the majority of our participants wished these to be printed. Reasons were, 

for example, that students could then be more attentive towards these explanations, or 

that writing these down would require too much time.  

Our findings finally also provide some practical consequences for the implementation 

of guided notes into mathematics lectures. First, our data yield some suggestions on 

where to put blanks and preprinted parts into a guided notes script, so that many 

students might benefit from guided notes for their note-taking. They especially suggest 

that leaving blanks in examples, definitions, partly in theorems, and in short proofs 

might be beneficial for many students, while it might be advisable to preprint parts of 

longer or more complicated proofs and additional explanations. But our data also 

indicate that there are students who prefer those elements of a mathematics lecture to 

be fully printed in which the majority of our participants appreciated blanks. Reasons 

found were that having to concentrate on writing can make it difficult to grasp the 

instructor’s explanatory comments, or that mistakes might occur during the writing 

process in the lecture. Hence, it might be advisable to also offer students the instructor’s 

full notes after the lecture. If one follows these suggestions, many students might 

benefit from the use of guided notes for their note-taking in mathematics lectures.  
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The institutional settings at universities offer students a lot of freedom to shape their 
own learning, which is also associated with many difficulties, especially in 
mathematics. From a self-regulated learning perspective and based on interviews with 
four students from two different countries, we qualitatively describe similarities and 
differences in students’ learning of mathematics at university who all shared the 
common goal of getting through the exam. Results show that despite this common goal, 
the self-regulated learning of mathematics of the four analysed students differed 
heavily. However, similarities could be found in the importance of exercise tasks as 
well as in social strategies. Especially the comparison of the two countries contributes 
to a discussion of possible impacts of pedagogical interventions.     
Keywords: Teachers’ and students’ practices at university level, assessment practices 
in university mathematics education, self-regulated learning. 
STUDENTS SELF-REGULATED LEARNING IN THE TRANSITION FROM 
SCHOOL TO UNIVERSITY MATHEMATICS  
According to Finnish and German study regulations of mathematics study 
programmes, about two thirds of the time scheduled for mathematics modules is 
assigned to students’ self-study. However, there is remarkably low evidence on how 
mathematics students self-regulate their learning in such self-study phases. In light of 
students’ difficulties in transitioning from school to university in mathematics 
(Gueudet & Thomas, 2020), universities have developed various support measures and 
curricular adaptations to assist students’ mathematical learning and to reduce the 
transition difficulties (Biehler et al., 2021; Lawson et al., 2020; Rämö et al., 2021). 
There is evidence that such support structures have an influence on students’ self-
regulated learning (Lahdenperä et al., 2022). But still, “getting through the exam” 
seems to be a main and sometimes the only goal for some students – instead of 
understanding the mathematical content (Göller, 2022; Lahdenperä et al., 2021).  
In this paper, we qualitatively describe the learning of mathematics of four students, 
whose main goal was to “get through the exam”, in terms of Boekaerts’ (2011) dual 
processing model of self-regulated learning. In doing so we hope to understand how 
students could be supported in applying self-regulated learning in the undergraduate 
mathematics context. 
THEORETICAL BACKGOUND 
Self-regulated learning can be defined as “an active, constructive process whereby 
learners set goals for their learning and then attempt to monitor, regulate, and control 
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their cognition, motivation, and behaviour, guided and constrained by their goals and 
the contextual features in the environment” (Pintrich, 2000, p. 453). This definition 
shows the importance of students’ goals as well as their strategies – which we define 
as goal-directed behaviours, thoughts, or activities – to achieve these goals in models 
of self-regulated learning. In terms of goals, we refer to the prominent distinction 
between learning goals which focus on increasing competence (e.g. understanding a 
specific proof), and performance goals which focus on the attainment of positive 
judgments (e.g. good grades, Pintrich, 2000). Self-regulated learning driven by 
learning and performance goals is positively linked to learning outcomes (for a meta-
analysis see Schneider & Preckel, 2017). Furthermore, it is central in building 
mathematical competence as it is essential in problem-solving (de Corte et al., 2011) 
and proof-based mathematics (Talbert, 2015). With regard to students who aim at “just 
getting through the exam”, Boekaerts’ (2011) model which additionally takes the goal 
to prevent threat to well-being into account seems a promising theoretical approach 
and will be introduced in the following. 
Boekaerts’ dual processing model of self-regulated learning 
The dual processing self-regulation model of Boekaerts (2011) identifies three 
purposes of self-regulation: (a) expanding knowledge and skills, (b) preventing threat 
to the self, and (c) protecting one’s commitment. This model theorizes that learners 
constantly appraise learning situations and tasks for their congruence with their 
personal goals, values, and needs. If a student appraises the learning situation to be 
congruent with their personal goals, values, and needs, characterized by trust, 
confidence, and interest towards the learning task, they will be encouraged to commit 
to the task and to activate strategies that ensure the expansion of knowledge and skills. 
Students’ learning on this mastery pathway can be guided by learning as well as by 
performance goals. 
If a student appraises the learning situation as not being congruent with their personal 
goals, values, and needs, the learning situation poses a (potential) threat to well-being. 
Such a mismatch with the learning environment can occur if a task is perceived as too 
difficult, ambiguous, or as impairing autonomy. Accordingly, the task will be seen as 
an obstacle to achieving important goals such as performance or well-being and the 
student might activate strategies (e.g., avoidance, denial, giving up, distraction) to 
prevent threat and harm to the self and try to restore well-being (well-being pathway). 
Students’ constant appraisals of the learning environment can reroute their pathways. 
Students may be (e.g., at first) committed to a learning task and (afterwards) experience 
obstacles that threaten their well-being e.g., by causing a loss of confidence or interest. 
Negative emotions, such as disappointment, worry, stress, anticipated embarrassment, 
or hopelessness will direct them towards the well-being pathway, however, they may 
activate strategies (e.g., suppressing these emotions, increasing effort, working harder, 
re-appraising the situation, focusing on the positive, seeking social support) to protect 
their commitment to the task and switch (back) on the mastery pathway (see Boekaerts, 
2011, for a more detailed presentation of the model). 
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Research questions 
This paper aims at qualitatively reconstructing mathematics students’ self-regulated 
learning in terms of Boekaerts’ (2011) dual processing self-regulation model in 
different social and cultural contexts. We thus pose the following research questions: 
RQ 1: Which goals guide or constrain students’ learning of mathematics? 
RQ 2: Which (appraised) threats, obstacles, or mismatches in the learning environment 
to the achievement of these goals can be identified? 
RQ 3: Which strategies do students use to achieve their goals? 
While addressing these three questions, we hope to provide some ideas on how to 
support students in learning the skills needed in self-regulated learning and shifting 
from the well-being pathway to the mastery pathway (cf. Boekaerts, 2011). 
METHODS 
To answer these questions, we analyse interview data of four different students from 
two different universities (one in Finland, one in Germany) from three different 
research projects (Göller, 2020; Lahdenperä et al., 2021; Liebendörfer, 2018) all of 
whom have explicitly stated the goal of “surviving the course” or “getting through the 
exams” (no matter how well). The interviews had different foci and a length of 
approximately one hour. At the time of the interviews all four students had already 
participated in at least one math exam at university. To analyse the data we used 
qualitative content analysis (Kuckartz, 2019) with “goals”, “threats”, “obstacles”, 
“mismatches”, and “strategies” as concept-driven (‘deductive’) categories, which were 
then data-driven (‘inductively’) further developed. We report here the ‘case-oriented 
analysis’ (for details see Kuckartz, 2019). The given quotations were translated from 
Finnish or German by the authors. We shortly introduce the four students and the 
institutional settings they studied in.  
Kim and Luca (all names changed; we use gender-neutral names, as gender is not the 
focus here) were higher secondary (Gymnasium) pre-service teachers at a German 
university with mathematics as one of two (compulsory) subjects. In line with the 
proposed curriculum, Kim attended two five-credits mathematics modules (elementary 
linear algebra, introduction to mathematical reasoning) together with mathematics 
majors in their first semester. Luca, who studied two years above Kim, attended two 
nine-credits mathematics modules (linear algebra, analysis; also in line with the 
proposed curriculum) together with mathematics majors in their first semester. At the 
time of the analysed interview in their second semester, both attended a nine-credits 
proof-based linear algebra (Kim) respectively analysis (Luca) course together with 
mathematics majors as well as a five-credits course on elementary geometry for 
preservice teachers (for details see Göller, 2020). All these modules consisted of 
lectures, where mathematical theory was introduced (i.e., definitions, examples, 
theorems and their proofs were presented) and exercises were handed out weekly. 
Students had to work on these exercises in self-study and submit their solutions which 
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then were corrected, graded, and discussed in a separate lesson. To pass such a module, 
50 % of all exercises must have been solved correctly and a written exam had to be 
passed. In their first semester, Kim was among the best 10 % of those who reached 
points for the exercises, and an average grade in the written exams. Luca reached the 
50 % of the points for the exercises in linear algebra and analysis but failed both exams. 
One year after the interview was conducted, Luca was no longer enrolled in 
mathematics.  
Kuura is a mathematics major, and Tuisku is a statistics major studying a compulsory 
minor subject in mathematics, both studying in the Finnish university. They are both 
first-year students who attended a five-credit proof-based linear algebra and matrices 
course with mathematical content such as general vector spaces, subspaces, linear 
mappings, and scalar products (for more details see Lahdenperä et al., 2022). The 
course was implemented with Extreme Apprenticeship combining inquiry-based 
mathematics education with a flipped learning approach (see Rämö et al., 2021). The 
students started to study a new topic by solving introductory tasks. After submitting 
them, they attended lectures that were based on student discussions and focused on the 
main contents and their connections. After the lectures, the students solved more 
challenging problems and a new set of introductory tasks. To support students to solve 
the problems, they were offered guidance in an open learning space for several hours 
a day. Students received bonus points from completing the tasks. In Finland, exams are 
low stakes as students can retake them as many times as they want. Both Kuura and 
Tuisku received the maximum amount of bonus points (≥ 90 % of tasks completed) 
and got the grade 3 (out of 5, ‘good’) from the course exam.     
RESULTS 
In the following, we describe the four students’ self-regulated learning of mathematics 
at university in terms of their goals (RQ 1), their perceived threats, obstacles, or 
mismatches (RQ 2), and their strategies (RQ 3) for achieving those goals. 
The case of Kim 
Kim wanted to become a teacher (RQ 1). They wanted to pass the exams, wanted to 
“get through” (RQ 1, performance goals). They wanted to understand content which 
they appraised useful for them as a teacher (RQ 1, learning goal). Linear Algebra and 
especially proofs were not appraised as useful. 

In elementary geometry I notice now at least that there is some content that I can actually 

use for school. And there I want to get ahead somehow. Because then I realize that I will 

really need it at some point. With linear algebra it’s more like, I deal with it as much as I 

can, and try to pass the exam somehow, but I honestly don’t care how quickly I forget it, 

as long as I don’t need it again for the later modules. Because I’m just interested in my 

profession and not really in any proofs that I’ll never need again. 

Consequently, there was a mismatch between Kim’s perception of what they needed 
as a teacher and the contents of the linear algebra course, especially its emphasis on 
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proofs (RQ 2). They sometimes tried to understand the proofs of the lecture, but “failed 
with every proof that was longer than half a page” (RQ 2). There were several obstacles 
for Kim in the mathematics contents (“there are things that I can look at the definitions 
ten times and still don’t get anywhere”) and exercises of the linear algebra course (RQ 
2). They sometimes tried to solve single exercises by themselves, but most of the work 
on them they did with their “math crew” of four students (RQ 3). Together they could 
solve less than half of the exercises (RQ 2). There were always tasks where they 
“haven’t found any approach at all on [their] own”, or “don’t know how to write it 
down.” When writing proofs, Kim was “never really sure if they’re correct”, and “with 
some tasks [they] don’t even understand the task.” So, before submission deadline they 
exchanged solutions with other students and eventually copied them (RQ 3). 
These strategies were on the one hand a response to the requirements of the extent of 
the exercises that in their “opinion, it’s just too much time that’s required” (RQ 2): 

If I wanted to solve the exercises completely by myself, let’s say the present one, I would 

probably need 15 hours. And I would say that’s true for 80 percent of my fellow students. 

And that’s just time that you can’t spend in a week like that.  

On the other hand, these obstacles and strategies were not appraised as a threat for their 
goal to pass the exam: From their experience of their first exams, they concluded that 
they rather needed to comprehend the solutions of the exercises than to solve them:  

it’s really not so necessary that you bring the knowledge to solve all the exercise sheets 

yourself, depending on what aspiration you have. But if you just want to get through like I 

do and you have the right people or the right ambition to kind of try to solve the exercise 

sheets, you can kind of get through. 

In summary, although Kim experienced mismatches of the learning environment and 
their own goals, values, and needs as well as obstacles especially regarding proofs and 
proofing, they managed to stay committed to their long-time performance goals and 
found a way to participate in university mathematics which they were yet rather not 
interested in. 
The case of Luca 
Luca wanted to pass the exams to become a teacher (RQ 1, performance goal), 
describing mathematics at university as “necessary evil”. They thus needed “to get the 
points” (RQ 1, performance goal) on the exercises to participate in the exam. While 
Luca did not struggle to get these points (“Not that I get to my percentages, so that’s 
not a problem”), because they could rely on peers (“Someone always has something 
for the exercises”), their learning goals were less clear. They first described “I had 
planned to rework the exercises (…) and try to understand them” but experienced 
struggle and too much effort on doing so (RQ 2). Instead of deep understanding, Luca 
thus tried to understand “how to do things”, to pass the exam (RQ 1):  

But now, with regard to the next exam, I definitely think that I have to practice, learn, and 

repeat a lot more tasks. […] I learn for example how to calculate a path integral. [...] that 
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is in principle, simply for different equations yes always the same. So, I’m just looking for 

any patterns, because you need something, where you can hold on somehow.  

Their most important strategy therefore was focusing the “how to” exercises and 
cutting out the proofs (RQ 3) which they appraised as being less relevant for the exam, 
for their understanding of theorems, and for their future goal of becoming a teacher: 

It’s always like that on the exercise sheet anyway. So, one task you can always cross out 

directly, that’s the proof. Then there are three more tasks that you can solve. These are then 

mostly calculations and there is also usually an example somewhere.  

Still facing struggle with this, Luca learned together with peers (RQ 3), what – however 
– mostly did not help them to better understand things (RQ 2):  

So, we exchange information and also discuss with each other how we would do it. Or also 

explain things to each other when one has understood something that the other has not. But 

most of the time no one understands it anyways. 

Experiencing frustration while learning, Luca also reported strategies that aimed at 
well-being: 

I had moments where I said: now you’re not in the mood anymore. Uh, then I just left it 

there and then at some point later I sat down to it again. […] After two hours we just went 

to the canteen. Sometimes we did something afterwards. But we did something for two 

hours and then it was enough for us.  

Following this, Luca was rarely on the mastery path i.e., the learning environment at 
university was mostly not congruent with their goals, values, and needs. However, the 
future goal of becoming a teacher led to a commitment by them to some tasks (mainly 
non-proof, calculation), within the bounds of compatibility with their well-being goals.  
The case of Kuura 
Kuura’s goal for the course was to “see how it goes, as long as I pass, that’s the thing” 
(RQ 1). However, this performance goal can be part of their first-year experience, as 
they later explained that “it has been very difficult to set any goals because I have […] 
never studied at university before”.  
Kuura’s main strategy to meet their performance goal was solving the weekly tasks 
(RQ 3). They explained: 

Solving the problems, that’s it, like if you don’t do them, nothing will work out. You need 

to work on the tasks. 

They found the bonus points received from solving the tasks motivating, as they 
relieved performance stress in the exam and “pushed you to work hard on the tasks” 
found essential in passing the course. With their peers, Kuura made a weekly schedule 
for working on the tasks in all courses. Kuura skipped about half of the lectures (the 
ones in the morning) but worked actively on the tasks in the open learning space with 
peers and often asked help from the tutors. Kuura found the guidance supportive, as “it 
was easy to ask for help […] and you didn’t have to be alone with your problems”. 
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Interestingly, despite stating only performance goals explicitly, Kuura reported on 
guidance preferences that supported learning (RQ 1): 

It was very important that the tutors don’t give you the ready answers but more like guide 

you to the right direction, like show where one could start thinking […] or so. 

Later, Kuura continued: 
In mathematics, you need to truly understand what’s going on. And if you readily get an 

answer to a task then you haven’t necessarily understood what was happening in the […] 

proof […]. So, it doesn’t develop your own competence at all. And it is of utmost […] on 

first-year courses, to you get some kind of basic knowledge and develop your mathematical 

thinking. And it doesn’t develop through ready-made answers. 

To conclude, Kuura had challenges in setting concrete learning goals, but within their 
performance goals, reported on activities that indicate shifting towards the mastery 
pathway. This is supported by the fact that Kuura reported that there was nothing 
hindering their studying and learning in the course. Furthermore, they described: 

I got [‘needs fixing’ feedback] from a task and I looked at the it and I had missed one small 

but very central assumption […]. And somehow, I became aware of how very important it 

is to do the things properly, […] like I started to realise why mathematical proofs are just 

the way they are. 

These types of eureka moments can be central in constructing the way towards setting 
learning goals and reaching the mastery pathway. 
The case of Tuisku 
Tuisku acknowledged that there is a possibility for setting learning goals, as they stated 
that “[this course] is compulsory for statistics students and it’s obviously compulsory 
for a reason”. However, they reported mainly performance goals, as “the aim was of 
course to pass the course”, and as they found collecting the bonus points motivating, 
they had set a goal for the percentage of completed tasks (RQ 1).  
In addition, engaging in social interaction can be considered Tuisku’s goal for the 
course and for their university studies in general (RQ 1). However, Tuisku’s general 
experience at the university was nothing but individualised (RQ 2). They stated that at 
university, “it feels like a student is just a person in an enormous mass that is just 
transferred through the courses”. For this reason, they greatly valued and engaged in 
social interaction while learning. For example, they said that “for me, it is important to 
work together with peers […] as after all, the studies provide very little sense of 
community”.  
On the one hand, their goal for engaging in social interaction supported certain 
strategies for achieving their performance goals: Tuisku found the tasks challenging 
(RQ 2) and relied on peers and tutors to solve them (RQ 3). They stated: 

We sat in the [open learning space with friends] and for almost every task, we asked help 

from the tutor. […] The tutors were really nice, […] and the atmosphere very supportive. 
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On the other hand, the goal for engaging in social interaction also hindered certain 
strategies for achieving their performance goals: For example, Tuisku had recognized 
the tasks as difficult, and they realised there was a need to attend the lectures. However, 
“when my closest friends didn’t attend them, I didn’t go either”. Also, Tuisku could 
have missed skills to work on the tasks individually, as “if you didn’t finish [the tasks 
in the open learning space], you didn’t get back to them so easily at home” (RQ 3). 
For reaching the goal of certain amount of bonus points, Tuisku was optimising their 
limited time. For example, they stated: 

The one point you get from a task is of different value in different tasks in terms of time. 

Like right away when you see that this is an easier but laborious task […], it gives you this 

feeling that timewise, this doesn’t pay off. 

To conclude, the performance goal for bonus points prevented them from learning as 
it was more convenient to optimize their time management and stay on the well-being 
pathway. In contrast, Tuisku’s performance goals for passing the course supported 
them in finding ways to complete the tasks perceived as difficult. This supported them 
in shifting from the well-being pathway to the mastery pathway. The goal for social 
interaction was acting in both directions; on the one hand, it had a central supportive 
role in learning as it helped Tuisku in solving the tasks, and on the other, a central role 
in hindering learning as they sometimes chose peers over what could have been more 
beneficial for their own learning. Overall, Tuisku was on the well-being pathway trying 
to shift to the mastery pathway. It can be hypothesised that they were eventually 
successful in shifting as they already here recognised that “perhaps my way of going 
through the things was in the end not optimal”. 
DISCUSSION 
In order to qualitatively describe mathematics students’ self-regulated learning, we 
analysed interviews with four students from two different institutional settings in 
Finland and Germany. A central result of this analysis is that, although we focused on 
four students who share the (seemingly similar) common goal of simply getting 
through the exams, the self-regulated learning of the analysed students differed in many 
ways. Kim’s and Luca’s primary goal was to become a teacher. Both experienced 
mismatches in the learning environment with their personal goals (proofs, appraised 
usefulness of the content for schoolteachers). However, while Kim’s ambition helped 
them to stay committed to their long-time performance goals and to (at least partly) 
participate in university mathematics, Luca did not seem to get beyond the goal and 
strategy of looking for patterns of “how to do things”. Kuura valued strategies aimed 
at deeper learning and (possibly therefore) seemed to experience less mismatches in 
the learning environment with their personal goals, values, and needs. For Tuisku, the 
goal for engaging in social interaction was central which supported strategies that 
involved collaboration with peers and tutors, but also hindered them to engage in 
strategies with less social interaction. In summary, these examples highlight the 
importance of the orchestration of different goals, individually appraised mismatches, 
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and activated strategies (beyond the shared performance goal of passing the exam) for 
the qualitative details of self-regulated learning of mathematics at university which are 
anticipated in Boekaerts’ (2011) model, but not specified in such detail. 
Beneath these differences, there were some commonalities found which apply to all 
four students: Firstly, the exercise tasks take the most prominent part in the regulation 
of students’ learning of mathematics (cf. Göller, 2022). In particular, it can be observed 
that some students select specific tasks in accordance with their performance goals, 
which underlines the importance of exam tasks for self-regulated learning processes. 
Secondly, all four students worked with others to solve the exercises. However, while 
it seems that in the Finnish setting it was rather easy to find suitable (institutionalised) 
support from tutors and peers to overcome obstacles in the tasks, the two students in 
the German setting mostly relied on peers who often could not help. 
Implications, limitations, and outlook  
Even though the self-regulated learning perspective – which we took here – focuses on 
individual learning processes, the influence of contextual features on students’ self-
regulated learning is obvious from the data (cf. Lahdenperä et al., 2022). For example, 
this is evident in the already discussed importance of exercise tasks which thus entail 
the practical potential to guide and scaffold students’ learning of mathematics. On the 
other hand, considering the shown differences in students’ self-regulated learning, 
especially their differences in appraised obstacles and mismatches which were found 
on the cognitive but also the motivational and behavioural level, institutionalised 
individual support structures (e.g. Lawson et al., 2020) seem a promising approach to 
support students’ learning of mathematics. They seem even more promising if they do 
not only address students’ cognitive but also their motivational and behavioural 
obstacles (for hints see Göller, 2020) and enable students to co-create their learning 
environment in a way, they appraise to be congruent with their goals, values, and needs. 
When interpreting the results, it must be kept in mind that only four students with a 
common goal were considered here, who studied in specific contexts which influenced 
their self-regulated learning. However, the results show the potential of qualitative 
comparisons of different institutional (and cultural) settings to reveal similarities and 
differences in students’ self-regulated learning, also allowing insights into the potential 
impact of pedagogical interventions.  
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Abstract: In mathematics-related university study programmes, self-study has a special 
importance. This gives rise to individual and self-directed learning situations that 
trigger phases of informal learning within the formal learning contexts of mathematics 
studies. For a differentiated description of such learning situations, an analysis 
framework is presented that enables an analysis of the subphases of individual learning 
actions in a gradual spectrum between formal and informal. Using an exemplary 
learning situation, the framework presented allows a detailed view of independent 
learning in mathematics studies and is intended to identify starting points for the 
promotion of individual, self-directed learning processes.   
Keywords: Teachers' and students' practices at university level, Transition to, across 
and from university mathematics, digital and other resources in university 
mathematics, informal learning, analysis framework.  
INTRODUCTION  
In the formal context of university mathematics, self-study takes on a special 
significance, whereby various parts of student learning actions take place in individual 
and self-designed learning situations, both within and outside of curricular and didactic 
frameworks (Liebendörfer, 2018). Such learning situations are often referred to as 
informal learning. According to Jadin et al. (2008) this term describes individual, self-
initiated and self-regulated acquisition of knowledge, which is generally distinguished 
from formal learning. The latter designates institutionalised and structured learning 
that takes place within the framework of educational institutions and leads to 
certification.ii  
In recent decades, the benefits of informal learning contexts for sustainable knowledge 
acquisition have been repeatedly demonstrated empirically (e.g. BMBF, 2001; 
Cedefop, 2003; Chrishol et al., 2005). However, it remains unclear how specific 
learning situations (such as the understanding of a certain mathematical concept) are 
formed within different learning contexts (such as lectures, tutorials, study groups) 
(Jadin et al., 2008, p. 170). Moreover, recent publications express that the dichotomous 
view on formal vs. informal learning, as described above, is “less informative than the 
differentiated analysis of the various dimensions in which learning activities vary”. 
(Callanan et al., 2011, p. 648, author's transl.). In this sense, concepts have been 
proposed which describe the tension between formal and informal as gradual and do 
not refer macroscopically to entire learning contexts, but rather to individual learning 
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situations and their specific learning actions (e.g. Arnold, 2016; Callanan et al., 2011; 
Jadin et al., 2008). 
Aiming towards analysing such individual, mathematics-related learning situations and 
the inherent informal learning, it’s necessary to classify independent learning actions 
of mathematics students in the field of tension between formal and informal. With the 
help of a differentiation between learning contexts (macro-level) and individual 
learning situations embedded in them (micro-level), an analysis framework will be 
presented in the following. It looks at learning situations and their sub-phases and 
enables a classification of those within a gradual spectrum between formal and 
informal. Such an analysis can reveal new, individual starting points for support 
measures. This approach ties in with recent publications that highlight educational 
successes as well as positive social and personal developments through the promotion 
of informal learning in formal contexts (Peeters et al., 2014). 
Derived from the primary research concern three subordinate questions arise: How can 
learning contexts and learning situations be distinguished from each other? In which 
sub-phases do learning situations proceed (especially in mathematics studies)? Which 
gradual spectrum describes the field of tension between formal and informal learning 
in a useful way? 
Based on this line of thought, in the following chapters a gradual spectrum between 
informal and formal learning in the context of expansive learning processes will be 
discussed before a subdivision of learning situations into analysable sub-phases is 
proposed. Afterwards the application of the proposed framework will be exemplary 
presented and possible implications for support measures in mathematics-related 
studies will be discussed. 
INFORMAL LEARNING 
Proceeding from the first description by Dewey in 1899 (cf. Archambault, 1966), over 
the last century numerous definitions of and perspectives on formal and informal 
learning were stated. The development of the terms and their interrelationship has 
already been described in several review articles (e.g. Harring et al., 2018; Rohs, 2016), 
although there is still no general and comprehensive definition (Jadin et al., 2008). 
However, Jadin et al. (2008) summarise the demarcation as follows: 

“Formal learning is institutional, highly structured, takes place within the framework of 
educational institutions and is concluded with a certificate. [...] Informal learning can [...] 
take place in institutions but is characterised by low structuring and does not lead to a 
certificate of completion. The initiative and control of learning is not dependent on an 
institution, but lies in the hands of the learners themselves.” (Jadin et al., 2008, pp. 170-
171, author's transl.) 

Depending on the discipline, the descriptions of the terms are more open- or closed-
ended and the used terminologies vary. These differences can usually be explained by 
the diverse contexts of application within the disciplines and refer primarily to the 
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inclusion or exclusion of the following characteristics: Intentionality, structure and 
structuredness, institutional dependency, learning for certification, self-direction as 
well as randomness of learning (cf. e.g. Livingstone, 1999; Molzberger & Overwien, 
2004; Münchhausen & Seidel, 2016; Rohs, 2016; for informal learning in the context 
of mathematics learning see e.g. Pattison et al., 2016). Nevertheless, the definitions 
have a conceptual dichotomy between formal and informal in common, which can be 
traced back to the focus on learning contexts. These are understood as the overarching, 
macroscopic frameworks and environments of learning, e.g. university studies 
themselves, lectures, tutorials, student interactions or exercises (see below, Jadin et al., 
2008). 
LEARNING CONTEXTS AND SITUATIONS IN MATHEMATICS STUDIES   
Studying mathematics, whether as a stand-alone course or as a (sub)module of another, 
is fundamentally different to the forms of teaching and learning in school. In addition 
to participation in curricular courses (e.g. lectures, seminars, exercise sheets, 
examinations), university students are required to learn in “substantial self-study” 
(Liebendörfer, 2018, p. 342). Its intensity and scope differs considerably from 
preparation and follow-up work in school (e.g. homework), since it includes not only 
the training of familiar procedures, but rather independent problem-solving and special 
precision through formalism and abstraction (Hochmuth et al., 2021; Liebendörfer, 
2018). In addition, the high complexity and barriers of comprehension make 
independent learning university mathematics indispensable (Liebendörfer, 2018; 
Pritchard, 2015). 
However, the self-study of mathematics often does not proceed in an unproblematic 
and straight forward manner. Due to the large amounts of complex and formalised 
subject content and methods, learning meanders between extrinsic and intrinsic 
motivation (Bauer et al., 2020). From the perspective of a subject-scientific theory of 
learning, such learning actions can be described as expansive and defensive. Defensive 
learning is “primarily externally controlled and [...] fact-bound” (Marvakis & 
Schraube, 2016, p. 212) and focussed on the achievement of an extrinsic goal (e.g. 
successful examination performance). In expansive learning the learning problem and 
thus the learning object are in the foreground of the learning action (Holzkamp, 1993). 
At the same time, expansive learning is at least indirectly influenced by interaction 
between teachers and learners. Marvakis and Schraube (2016) refer to this as the 
fluidity of learning:  

“The learning process of individual subjects is always a social process and situated in 
relation to others, unfolding as a constant back-and-forth between learning and teaching in 
and between persons. This fluidity of learning and teaching forms a basic element of 
expansive learning and the nucleus of a productive and lively learning practice.” (Marvakis  
& Schraube, 2016, author's transl.)  
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If such an understanding of learning – from the perspective of the individual – is 
assumed, it is not sufficient to consider only its learning contexts for the detailed 
analysis of mathematics learning. Rather, individual learning situations, which as 
emergent processes contain the concrete moments of learning within those contexts, 
would have to be analysed in more detail: Solving a single problem, understanding a 
practice task or an unknown concept, getting stuck in a proof… Furthermore, the 
analysis would have to be done from the perspective of the individual (cf. Göller, 2020; 
Jadin et al., 2008). 
Inspired by models of inquiry-based and self-regulated learning in the study of 
mathematics (Göller, 2020; Roth & Weigand, 2014; Wildt, 2009; Zimmerman, 2000) 
six inherent sub-phases of a concrete learning situation can be described: learning 
occasion, goal, (subject-related) content, methodology, feedback and reflection. Based 
on Holzkamp's “learning problem” (1993) the learning occasion describes the trigger, 
the problem, the call to action of a learning situation, e.g. concrete contents of a course, 
an exercise or a statement by a teacher or a peer. It leads to a learning objective, which 
names the desired gain of knowledge or the final state of the learning situation. The 
learning action, which can be expansive or defensive, can be divided into a content-
related and a methodological component. The subject content refers to all subject-
mathematical terms and procedures that are needed during the learning action to 
achieve the objective. The strategies used for this are summarised within the 
methodology. This includes conscious and unconscious, independent and group-based 
as well as assimilated, accumulated and acquired methods. Feedback is any kind of 
response to the four previous sub-phases by teachers, peers, media, experience or 
oneself (Hattie and Timperley, 2007, p. 81; cf. Pepin, 2014). Finally, reflection is the 
personal metacognitive perception, discussion and, if necessary, future adaptation of 
the learning process and/or its individual sub-phases. 
Although the learning contexts of mathematics studies can be usefully described by a 
dichotomous demarcation of formal and informal learning, this is not possible with 
learning situations and their inherent subphases as described above: They move 
between defensive and expansive phases of learning, on the one hand through 
individual motivations and actions, on the other open to fluid interaction with learners 
and teachers inside and outside courses and sometimes have more, sometimes less, 
sometimes no reference to certification. Therefore, the analysis of learning situations 
requires less rigid, dichotomous criteria, but more “gradual characteristics” (Jadin et 
al., 2008, p. 171) in a field of tension between formal and informal. Besides Decius et 
al. (2021), Jadin et al. (2008) and Callanan et al. (2011) also describes Arnold (2016) 
such a scale. 
DIFFERENTIATED ANALYSIS OF LEARNING SITUATIONS  
In reference to Holzkamp (1993) Arnold describes informal learning as “the self-
organised, often accidental biographical learning in which the person intentionally 

625



  5  

strives for the transformative search for new and more functional solutions” (Arnold, 
2016, p. 483) and differentiates it into three intertwined degrees of informalisation:  
Implicit learning describes unconscious and inherent learning. It takes place in 
everyday situations as well as interactions between people. In this sense, it is the least 
self-determined, rather accidental and unavoidable learning. Reactive learning 
describes a conscious learning process that is experienced by the individual in response 
to a new problem or challenge. Finally, there is metacognitive reflective learning “in 
the aftermath or in preparation of experiences and actions” (Arnold, 2016, p. 486), 
which is aimed at optimising one's own behaviour. It  represents the transition between 
informal and formal learning and can be observed in both (Arnold, 2016). 
Together with the sub-phases described above and supplemented by the perspective on 
formal learning of Jadin et al. (2008), these degrees of informalisation create a possible 
basis for the differentiated analysis of individual learning situations in mathematics 
studies. Independent of the assignment of the superordinate learning context, concrete 
learning situations can thus be described in their subphases between formal, reflexive 
informal, reactive informal and implicit informal. 
APPLICATION TO A MATHEMATICAL LEARNING SITUATION  
In the following, the proposed analysis framework will be applied to a real learning 
situation in the context of university mathematics studies. Since empirical studies based 
on this framework will not be conducted until the winter semester 2022/2023, a 
sufficiently described situation from a study conducted by Heinrich and Hattermann 
(2021) will be used here as an example to enable an authentic and realistic application.   
In the learning context observed by Heinrich and Hattermann, two fellow students deal 
with descriptive statistics by means of instructional texts and tasks in the digital 
learning environment Moodle as part of an assessed study and examination 
performance. Firstly, the arithmetic and harmonic means were introduced through 
definitions and explanations. The learners now work on application tasks, of which 
they only enter the solution into the digital learning environment and receive a binary 
evaluation (“correct”/”incorrect”). They have several attempts to solve the tasks.   
In the learning situation relevant to this paper, one of the learners (L1) asks the fellow 
learner (L2) for support (Heinrich & Hattermann, 2021, pp. 182-183, author's transl.):  

L1:  But why do I need the harmonic mean and the arithmetic mean? I don't 
understand that.   

L2:  There [pointing to the screen] he always drives the same time and there 
[pointing to the other example] he always drives the same distance but takes 
different lengths of time.  

Based on this information L1 looks at the definitions and explanations in the learning 
environment and tries to establish a connection between the means and the clues 
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received. L1 starts a new attempt to solve, the result of which is marked as “correct” 
by the digital learning environment. L1 makes notes.  
Based on Jadin et al. (2008) the learning context can be described as formal, since the 
learners work on a task given by the teacher in connection with a curricular course, 
which is relevant for completing the course itself (part of the course work and content-
related preparation for examination work), but consequently also relevant for the 
success of studying mathematics on university level. 
Nevertheless, characteristics of informal learning are also recognisable: By 
implementing the tasks in a digital learning environment, the duration, pace, and 
location of learning as well as the process and methodology of knowledge acquisition 
are determined by the learners or the learning group. Self-organised learning or self-
study is thus initiated. Within this framework, the two learners L1 and L2 decide to 
learn and work on the given contents and tasks at a common place and at the same time.   
Based on this, the learning situation that arose between L1 and L2 will be classified in 
the following within the field of tension between formal-informal based on an 
interpretation of the speech acts using the proposed analysis framework.   
The learning situation begins with L1's speech act. It can be assumed that it was 
preceded by a discussion about the task. In this, L2 seems to have assigned the 
arithmetic or harmonic mean to the two sub-elements of the task. This represents an 
incomprehensible step for L1, which can be classified as a learning occasion. Since, in 
summary, this is an affinitive, reactive and self-directed cognition on the part of L1, 
the occasion can be classified as reactively informal. 
It is important to note that the learning occasion in this particular situation does not 
arise from the task itself, but only from the non-understanding of the steps of L2. 
Nevertheless, understanding the application of the theory and subsequently solving the 
task is the learning goal. This can be seen on the one hand from the concrete work on 
the task itself, and on the other hand from the exclusive use of the given material. Since 
the learning objective is curricularly specified and didactically prepared in the context 
of the course and the digital learning environment, it can be described as formal.   
In order to achieve the goal based on the learning occasion, L1 first decides to enquire 
L2. This seems to be based on the situation analysed above, which also led to the 
learning occasion. The questioning here is L1's methodology to advance his learning. 
This is a self-directed reaction to the learning occasion and can be assigned to the 
reactive-informal. 
However, the technical content chosen for comprehension is no longer controlled by 
L1. It is the speech act or the answer of L2 that determines what the content focus of 
L1 is directed to, here: The relationship between time, distance and the two means. 
This dimension is externally controlled – in relation to the prepared task – and can be 
described as formal with regard to L1. 
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From L1's reaction to L2's speech act, an indirect conclusion can be drawn regarding 
the dimensions feedback and reflection: Since L1 does not focus on the solution of the 
task after L2 has answered, but again looks at the technical contents of the digital 
learning environment, L2's explanations do not seem to have been sufficient to solve 
L1's difficulties in understanding. It can be assumed that intrinsic feedback (e.g. “I still 
haven't understood what he means.”) led to the reflection to turn to the subject content 
again. Both steps can be understood as a follow-up to the first learning action, leading 
to an attempt at optimisation and are thus reflexive-informal actions. 
Which intrinsic process is taking place in L1 can only be extracted indirectly from the 
example. Based on his action, it is reasonable to assume that L1 enters a secondary 
learning action and tries to link L2's statement about the dependence of the means on 
time and distance with the given subject content. Subphases can be derived from this, 
which on the one hand describe their own learning situation, but at the same time try 
to achieve the original learning goal. 
Consequently, the secondary reactive-informal learning occasion just described arises 
as well as the secondary reflexive-informal learning goal of wanting to precisely 
establish this link to achieve the primary learning goal. The learning methodology, the 
multiple reading of the given learning material and the independent testing of 
knowledge on the task, represents a reactive-informal action, whereby further 
processes, which cannot be read from the situation description, may be running 
internally here. Since L1 refers exclusively to the digitally given materials and L2's 
statements, the subject content is formal. Also, L1 does not seem to be convinced of 
his result by his own attempt to solve the problem, but only by the feedback from the 
learning platform. Therefore, this sub-phase can also be described as formal. Based on 
L1's action of taking notes after the feedback, a reflexive-informal process seems to 
take place.   
RÈSUMÉ  
Based on the high significance of self-study and independent learning actions in 
mathematics-related study programmes, an analytical approach was presented in this 
paper that classifies the different subphases of individual learning situations in a 
gradual spectrum between formal and informal learning. Based on a subject-scientific 
approach, learning in mathematics studies was seen as an interplay between internal, 
intrinsic processes, interactions with learners and teachers as well as learning 
dispositions and materials.   
The exemplary application based on a concrete learning situation shows the potential 
of such a detailed framework. Through its step-by-step breakdown, learning actions 
and the strategies applied in the process can be worked out and considered in a 
differentiated and detailed way. This enables a deeper understanding of learning 
strategies in dealing with subject content, methodologies, obstacles, and coping 
strategies. Based on this, new or adapted teaching-learning settings as well as indirect 
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support possibilities for independent learning, e.g. through strategies of research-based 
learning, can be developed. A possible starting point would be, for example, the 
primary learning occasion of L1, by looking more closely at the reason for L1's hurdle 
or comprehension problem. As a result, the learning material could be adapted to either 
be more detailed or to offer opportunities for independent research.  
However, the application also highlights the need for a sufficiently detailed description 
of the situation and the effort required for the proposed hermeneutic approach. The 
planned empirical application will thus also be used to optimise and validate the 
framework as well as to elaborate an analysis methodology.   
REFERENCES  
Archambault, R. D. H. (1966). Lectures in the philosophy of education. 1899 by John 

Dewey. Random House.  
Arnold, R. (2016). „Didaktik“ informellen Lernens. In M. Rohs (Ed.), Handbuch 

Informelles Lernen (pp. 483-494). Springer.  
Bauer, T., Müller-Hill, E., & Weber, R. (2020). Diskontinuitäten zwischen 

Schulmathematik und Hochschulmathematik. In N. Meister, U. Hericks, R. 
Kreyer, & R. Laging (Eds.), Zur Sache. Die Rolle des Faches in der 
universitären Lehrerbildung: Das Fach im Diskurs zwischen Fachwissenschaft, 
Fachdidaktik und Bildungswissenschaft (pp. 127-145). Springer Fachmedien 
Wiesbaden. https://doi.org/10.1007/978-3-658-29194-5_8  

BMBF. (2001). Das informelle Lernen – Die internationale Erschließung einer bisher 
vernachlässigten Grundform menschlichen Lernens für das lebenslange Lernen 
aller. Untersuchungsbericht des Bundesministeriums für Bildung und 
Forschung.  

Callanan, M., Cervantes, C., & Loomis, M. (2011). Informal learning. WIREs 
Cognitive Science, 2(6), 646-655. https://doi.org/10.1002/wcs.143  

Cedefop. (2003). Lebenslanges Lernen: die Einstellungen der Bürger. Amt für 
amtliche Veröffentlichungen der Europäischen Gemeinschaften.  

Chrishol, L., Larson, A., & Mossoux, A.-F. (2005). Lebenslanges Lernen: Die 
Einstellungen der Bürger in Nahaufnahme. Ergebnisse einer Eurobarometer-
Umfrage. Amt für amtliche Veröffentlichungen der Europäischen 
Gemeinschaften. https://www.cedefop.europa.eu/files/4038_de.pdf  

Decius, J., Dannowsky, J., & Schaper, N. (2021). Die Studierenden im Mittelpunkt. 
Personale Unterschiede beim informellen und formalen Lernen in Zeiten 
virtueller Lehre.  

Göller, R. (2020). Selbstreguliertes Lernen im Mathematikstudium. In. Springer 
Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-28681-1_4  

Harring, M., Witte, M. D., & Burger, T. (2018). Handbuch informelles Lernen. 
Interdisziplinäre und internationale Perspektiven. Beltz Juventa.  

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational 
Research, 77, 81-112.  

629



  9  

Heinrich, D. C., & Hattermann, M. (2021). Kommunikationsverhalten von Dyaden und 
der Einfluss auf den Lernerfolg in kollaborativen Lernsituationen. In A. Salle, 
S. Schumacher, & M. Hattermann (Eds.), Mathematiklernen mit digitalen 
Medien an der Hochschule: Konzepte, Umsetzungen und Ergebnisse aus dem 
Projekt mamdim (pp. 171-195). Springer Fachmedien Wiesbaden. 
https://doi.org/10.1007/978-3-658-33636-3_9  

Hochmuth, R., Broley, L., & Nardi, E. (2021). Transitions to, across and beyond 
university. In V. Durand-Guerrier, R. Hochmuth, E. Nardi, & C. Winsløw (Eds.), 
Research and Development in University Mathematics Education (pp. 191-215). 
Routledge.  

Holzkamp, K. (1993). Lernen: Subjektwissenschaftliche Grundlegung. Campus-
Verlag.  

Jadin, T., Richter, C., & Zöserl, E. (2008). Formelle und informelle Lernsituationen 
aus Sicht österreichischer Studierender.  

Liebendörfer, M. (2018). Motivationsentwicklung im Mathematikstudium. Springer.  
Livingstone, D. W. (1999). Informelles Lernen in der Wissensgesellschaft. Erste 

kanadische Erhebung über informelles Lernverhalten. In Arbeitsgemeinschaft 
Qualifikations-Entwicklungs-Management (Ed.), Kompetenz für Europa - 
Wandel durch Lernen - Lernen im Wandel (pp. 65-91).  

Marvakis, A., & Schraube, E. (2016). Lebensführung statt Lebensvollzug: Technik und 
die Fluidität von Lernen und Lehren. In Alltägliche Lebensführung (pp. 194-
233).  

Molzberger, G., & Overwien, B. (2004). Studien und empirische Untersuchungen zum 
informellen Lernen. In B. Hungerland & B. Overwien (Eds.), 
Kompetenzentwicklung im Wandel: Auf dem Weg zu einer informellen 
Lernkultur? (pp. 69-85). VS Verlag für Sozialwissenschaften. 
https://doi.org/10.1007/978-3-531-90162-6_4  

Münchhausen, G., & Seidel, S. (2016). Anerkennung informell erworbener 
Kompetenzen. In M. Rohs (Ed.), Handbuch Informelles Lernen (pp. 587-607). 
Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-05953-
8_31  

Pattison, S., Rubin, A., & Wright, T. (2016). Mathematics in informal learning 
environments: A summary of the literature. Institute for Learning Innovation. 
Math in the Making Project.  

Peeters, J., De Backer, F., Buffel, T., Kindekens, A., Struyven, K., Zhu, C., & 
Lombaerts, K. (2014). Adult Learners’ Informal Learning Experiences in 
Formal Education Setting. Journal of Adult Development, 21(3), 181-192. 
https://doi.org/10.1007/s10804-014-9190-1  

Pepin, B. (2014). Student transition to university mathematics education: 
transformations of people, tools and practices. In S. Rezat, M. Hattermann, & A. 
Peter-Koop (Eds.), Transformation - a Fundamental Idea of Mathematics 
Education (pp. 65-83). Springer.  

630



  10  

Pritchard, D. (2015). Lectures and transition: from bottles to bonfires? In M. Grove, T. 
Croft, J. Kyle, & D. Lawson (Eds.), Transitions in Undergraduate Mathematics 
Education. University of Birmingham.  

Rohs, M. (2016). Genese informellen Lernens. In M. Rohs (Ed.), Handbuch 
Informelles Lernen (pp. 3-38). Springer.  

Roth, J., & Weigand, H.-G. (2014). Forschendes Lernen. Mathematik lehren(184).  
Wildt, J. (2009). Forschendes Lernen: Lernen im „Format“ der Forschung. Journal 

Hochschuldidaktik, 20 Jg. Nr. 2, 4-7.  
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In 

Handbook of self-regulation (pp. 13-39). Academic Press.  
  

i Website of the Research Training Group LernMINT: https://lernmint.org (last visited: July 1st 2022)  
ii In this article, the discussion of formal and informal learning does not include non-formal learning processes, primarily 
because this term can contribute little to the learning situations considered here. For a definition of the term and its 
classification in the context of (in)formal learning, please refer to Rohs (2016).  

631



  

Self-regulated learning in a mathematics course for engineers in the 

first semester: insights into students´ reported resource management 

and cognitive strategies 

Tim Kolbe1 and Lena Wessel1 

1Paderborn University, Institute for Mathematics, Germany, timkolbe@math.upb.de  

The secondary-tertiary transition still poses a lot of problems for students in 

mathematical courses. To gain insights what causes these problems, we used the 

methodological approach of ambulatory assessment and asked students (N=6) to 

report on their mathematical learning on a weekly basis and draw on the theoretical 

approach of self-regulated learning. The aim of our study is to better understand the 

learning behaviour of students along the semester. Our results show that students use 

a lot of non-course-related resources, such as Internet resources. Additionally, 

rehearsal strategies seem to be the dominant method to process the course contents. 

Keywords: Teachers´ and students´ practices at university level, Transition to, across 

and from university mathematics, Teaching and learning of mathematics for engineers. 

INTRODUCTION 

The transition from high-school mathematics to university mathematics still proves to 

be challenging for many students. We see this in high drop-out rates (up to 41%) in 

STEM-subjects in Germany, especially in study programs with high proportions of 

mathematics (Heublein & Schmelzer, 2018). Furthermore, in a national study from the 

U.S., almost half of the freshman students reported that they had a hard time 

understanding and solving complex mathematical problems (Noel-Levitz, 2015). 

One explanation for this could be that due to the different teaching structure at 

university more self-regulated learning is required in learning mathematics than it was 

at school. In contrast to mathematics learning at school, university mathematics 

requires students to work on topics more self-responsively in order to prepare well for 

exams or finish homework successfully (Göller, 2020). Additionally, there is also a lot 

more freedom for students, as most lectures, tutorials, etc. are voluntary. Students 

decide which parts they attend and how much time they allow for them in their own 

learning.  

University students have to organize their learning by setting goals, using learning 

strategies and evaluating the learning process. Especially, situations where complex 

tasks have to be mastered on their own are seen as demanding in terms of self-

regulation (Dresel et al., 2015). This is particularly evident in mathematics courses at 

the university, since more than half of the scheduled study time is allocated to self-

study (Liebendörfer et al., 2022). In consequence, self-regulated learning becomes 

even more important for mathematics students’ learning.  
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SELF-REGULATED LEARNING 

The theoretical foundation of this study is the model of self-regulated learning which 

has already been conceptualized by several authors with different foci. However, most 

self-regulated learning models have one commonality: they are conceptualized as 

cyclic processes that encompass three phases: 1. Pre-Action phase, 2. Action phase, 3. 

Post-action Phase (Zimmermann & Moylan, 2009). 

In the pre-action phase (forethought phase in Zimmermann & Moylan, 2009) the 

learner analyses situational and task demands, sets goals and plans how to reach those 

goals. It also contains motivational beliefs, which for example have influence on the 

activation on learning strategies. The action phase (performance phase, ibid.) is 

divided into two processes, self-control and self-observation. Self-control ensures that 

the learning strategies used are in line with the previously set goals, which also benefits 

motivation and goal-oriented use of (cognitive) resources. Self-observation is used to 

metacognitively monitor learning strategies, perceive emotional reactions and maintain 

motivation as well as positive emotions. The post-action phase (self-reflection phase, 

ibid.) can again be divided into two processes, self-judgement and self-reaction. The 

learner uses self-judgement to evaluate their performance by comparing the achieved 

performance with the previously set goals. Reasons and causes are sought which can 

be attributed to one`s own performance. Self-reaction refers to the affective evaluation 

of learning success and conclusions for one`s own learning, for example adapting 

learning strategies in the following learning cycle. 

The focus of these process models is the coordination, control and regulation of 

cognitive, meta-cognitive and motivational processes in the consecutive phases of 

learning (Dresel et al., 2015). These process models of self-regulated learning are 

complemented by the component models (e.g. Pintrich & Garcia, 1994), which identify 

the types of strategies that are involved in self-regulated learning – they include 

cognitive strategies that regulate the process of knowledge acquisition, metacognitive 

strategies that control and monitor cognitive strategies and the resource management 

strategies, which are understood as self-management activities to organise learning 

actions. They are divided into internal (e.g. time investment, effort) and external (e.g. 

peer learning, literature) strategies. The components are understood as the learner´s 

characteristics for learning, regardless of the phases of the learning process they can 

occur in (Wirth & Leutner, 2008).  

It has been shown that self-regulated learning and their underlying components are a 

prerequisite for successful studying in higher education (e.g. meta-analysis by Robbins 

et al., 2004). For example, looking at cognitive strategies, we know that deep 

processing strategies (e.g. elaboration) are more useful than surface strategies for 

learning and have positive correlations to grades per average (Karagiannopoulou 

Milienos & Athanasopoulos, 2018). 
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Specificities of mathematical self-regulated learning 

University mathematics has some specificities which differentiate them from other 

subjects. That is for example conceptual understanding in form of the multifaceted role 

of proof (Weber, 2014), the role of procedural knowledge, e.g. in performing 

calculations (Bergsten, Engelbrecht & Kågesten, 2017) and requires a high level of 

time commitment. These specifics also have an influence on self-regulated learning. 

In German mathematics courses it is quite common that students have to complete 

weekly homework assignments in addition to taking part in lectures, working on 

exercises for and in tutorials. The successful completion of these homework 

assignments is usually required for taking the final course exam. Therefore, students 

have to deal with the current mathematical content every week in order to complete the 

assignments successfully (Göller, 2020). Furthermore, weekly assignments are a good 

way to monitor learning and also provide a regular opportunity to review your own 

learning. Afterwards, the learning process can be evaluated and adjusted for the next 

week, if necessary. According to the self-regulated learning theory of Zimmerman & 

Moylan (2009), every week in itself can be a self-regulated learning cycle. 

There also has been some research on self-regulated learning and their underlying 

components in undergraduate mathematics, but it mainly focuses on the relationship to 

performance in exams (e.g. Liebendörfer et al., 2022 Johns, 2020). Johns (2020) 

observed differences in self-regulation strategies between under and over achievers as 

well as low and high achievers in a calculus course. From this, he concluded that self-

regulation strategies do play a role in students´ performance in the exam. Liebendörfer 

et al. (2022) also support that some strategies, for example practicing certain types of 

tasks, help performance in exams in mathematics course for engineers. They concluded 

that cognitive strategies within mathematics need to be assessed subject-specifically, 

since (among other specificities) in mathematics with regard e.g. to rehearsal, some 

strategies seem to have positive (practicing) as well as negative (repeating) links to 

learning. In addition, external resources are also an important factor for learning 

mathematics, as the majority of students have a study group or study partner for 

learning undergraduate mathematics (Alcock, Hernandez-Martinez, Godwin Patel & 

Sirl, 2020).   

Weekly learning of mathematics is an important element for deepening and applying 

the learning content. Due to the importance of homework assignments and exercises as 

well as the high proportion of self-allocated study time (e.g. working on these weekly 

tasks), it is particularly interesting to better understand which actions students take for 

their everyday learning. This information would help lecturers at university to 

understand what students typically do in their learning and e.g. might redirect students 

from using weaker to more useful strategies to achieve the intended learning goals.  

Due to the high self-study time in mathematics courses, strategies from the action phase 

are rather important. We believe that strategies in the action phase are important factors 

for students’ learning, however in this paper we are focussing on cognitive and external 

resource management strategies. Referring to cognitive strategies, it is interesting to 
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see how students integrate and process the contents from the course and referring 

external resource management strategies as well as to see what materials and other help 

students seek for during their learning.  

RESEARCH QUESTIONS 

For the purpose of this paper, we are focussing on external resource management and 

cognitive strategies (elaboration and rehearsal) in the action phase of self-regulated 

learning. This leads us to the following research questions: 

RQ1 Which external resources reported by students in the action phase can be 

reconstructed in their learning for a mathematics course for engineers? 

RQ2 Which elaboration and rehearsal strategies reported by students in the action 

phase can be reconstructed in their learning for a mathematics course for engineers? 

METHOD 

In order to answer the research questions, students’ self-regulated learning was 

assessed through self-reports. In general, self-report instruments are very well-suited 

for assessing learner’s intended cognitive, meta-cognitive, motivational as well as 

resource management strategy use. In addition, self-report instruments are an 

appropriate tool for higher education (Roth, Ogrin & Schmitz, 2016).  

Ambulatory Assessment 

To be more specific, we used the method of ambulatory assessment, whereby this type 

of methodological approach is also known under different names, for example 

experience sampling or diary methods (Conner & Mehl, 2015). 

At their core, these methods allow researchers to study individuals (1) in their natural 

settings, (2) in real time (or close to real-time), and (3) on repeated occasions (Conner & 

Mehl, 2015, p. 5f).  

This approach is suitable for the above research questions since they focus on a better 

understanding of the individual student’s self-regulated learning (1) in a natural setting 

(learning mathematics in a first semester course), (2) in real-time (in this study: close 

to real-time) and (3) on repeated occasions (weekly insights). Boekaerts and Corno 

(2005) also concluded that these types of methodological approaches lead students to 

be more open than in other forms of assessment for self-regulated learning. 

The mathematics for engineers I (Mathematik für Maschinenbau I) course, in which 

we conducted our study, already provides a weekly structure with lectures, exercises 

and tutorials, all of which were carried out in face-to-face teaching. In addition, there 

are weekly homework assignments that students can complete on their own to gain 

some extra points for the exam. The focus of the lecture was providing the theoretical 

mathematical background, while the homework assignments and exercises were 

mainly application-oriented. We also know that mathematics majors base their learning 

around weekly homework assignments (Göller, 2020). Although homework 

assignments do not have the same importance in mathematics for engineers as in 
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mathematic major modules, we still believe that weekly insights are important and also 

reflect the natural situation of the learning. Students were asked to submit the weekly 

report after they submitted the homework assignment. 

The structure of our self-report is reminiscent of a learning diary. We chose a more 

structured approach, because studies using structured diaries indicate a higher validity 

for documenting students’ self-regulated learning (Roth et al., 2016). The typical 

structure of the self-report instrument consists of five parts: 

- Part 1 and Part 5 deal with students’ goals, first from a retrospective perspective 

(“looking back at last week”) and last from a prospective perspective (“looking 

forward to next week”) 

- Part 2 focuses on what happened during the preceding week, for example, which 

teaching opportunities students took advantage of and how exactly they went 

about doing mathematics 

- Part 3 addresses different aspects of self-regulated learning (e.g. motivation, 

independent study time, self-efficacy, satisfaction), which should be answered 

on a scale from 1-10 accompanied by a short explanation of their classification  

- In part 4, we asked students about their emotions and feelings in the preceding 

week in specific learning situations 

We analysed all five parts, and in terms of external resource management and cognitive 

strategies we were able to reconstruct the most strategies from the second part, although 

the other parts also provided useful information. 

We started to hand out the self-reports regarding self-regulated learning to students 

(N=6; 2 females, 4 males) in the 4th-6th week of the semester and it ended just one week 

before the exam. In total, we received 56 self-reports divided between 9-11 self-reports 

from each participant.  

Audio diary 

Students were asked to submit their self-reports as an audio file. Those so-called audio 

diaries create richer and more natural reporting compared to written submissions 

(Williamson, Leeming, Lyttle & Johnson, 2015). One disadvantage compared to 

interviews is that you cannot follow up on students´ statements directly.  With the 

weekly insights we were able to change small details of our structure for each 

participant so that possible follow-up questions could be asked, though only one week 

later. 

Overall, the audio files were between 1:41 minutes and 13:27 minutes long with an 

average of 5:50 minutes. Participation in the study was remunerated with 30 euro.  

Coding the data 

The self-reports were transcribed shortly after they were sent to us. For the purpose of 

categorization, we used a hierarchical model with three levels. The top two levels were 

developed deductively from self-regulated learning theory. The top level consists of 

cognitive learning strategies, and resource management strategies (Pintrich & Garcia, 
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1994). On the second level these two categories were subdivided, again based on the 

literature. Within cognitive strategies and resource management strategies, we used the 

subdivisions from the LimSt (Questionnaire on learning strategies in mathematical 

studies) questionnaire (Liebendörfer et al., 2022): Cognitive strategies differentiate 

between rehearsal and elaboration strategies while resource management strategies 

differentiate internal and external resources. Further subcategories on the third level 

were created inductively from the data material.  

Inter-rater agreement was ensured by training both coders with data coding. To 

estimate the inter-rater agreement, a random sample of 10% of the self-reports was 

coded twice with maxQDA. MaxQDA`s analysis tool allowed us to check both coders 

work for consistency. For that purpose, we used the function ´code overlaps on 

segments´ with an overlap interval of 95%, resulting in a Cohen´s kappa of .59. After 

reviewing, we realised that we often assigned the same codes, but the overlap interval 

of specific coding segments was often smaller than 95%. We then looked at these 

inconsistencies and revised them, finally achieving a Cohen`s kappa of .91. 

RESULTS 

With our procedure of coding the data, we found that students reported various 

strategies of their weekly self-regulated learning in their action phase. This is why we 

focus on that phase in particular in the following.   

External resource management strategies 

Regarding external resource management strategies (RQ1), we differentiated between 

course-related, non-course-related, working on homework assignments and exercises, 

and no (additional) external resources (see Table 1). Although students reported, with 

the exception of one, that they worked on almost every homework assignment and 

exercise, they reported making very little use of the course-related materials (e.g. 

lecture script/notes, tutors, professor), but instead using a lot of non-course-related 

resources, especially YouTube videos 

Jonas: There are often tutorials by Daniel Jung [German YouTuber] on YouTube, 

for example, where he better explains how it works, and usually in a much 

shorter time and much better than the professor ever could. So, I found that 

incredibly good. 

and the Google search function to help them solve those problems. 

Milena: I did a Google search and typed in radius of convergence example problems 

and Cauchy sequence. I wanted to look at example problems and see if they 

were similar to the homework in order to solve them in the same way or to 

understand how it works. And yes, the Cauchy sequence, I looked at things 

on Google. 

Non-course-related resources were not only reported to be used for working on 

exercises or homework assignments, but were also very popular for better 

understanding the topics presented in the lectures.  
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Luca: As far as theory is concerned, I am most likely to go to YouTube for it, 

because just reading mathematical theorems is rather difficult for me if it is 

a topic I am not yet familiar with. 

Another aspect reported at higher priority was learning with classmates, as this was 

mentioned in almost half (25 of 56) of the self-reports. In most cases (19 of 25), 

classmates are then called-in when one got stuck with working on tasks oneself or 

needs an advice. 

In a few cases, students reported that no (additional) external resources were used while 

working on exercises or homework assignments to create an exam-like situation. 

Tom: For the homework assignments, I tried to solve them without looking at the 

script and doing as little research as possible on the internet so that it was a 

bit more like exam preparation […], because you can not look at the script in 

the exam. 

External resource management strategies  Frequency of code 

Non-course related 126 (in 45 self-reports) 

Course-related 12 (in 11 self-reports) 

Homework assignments and/or exercises 65 (in 39 self-reports) 

No (additional) resources 3 (in 3 self-reports) 

Table 1: Frequency of codes for external resource management strategies 

Elaboration and rehearsal strategies 

With regard to elaboration and rehearsal strategies (RQ2), we could identify only a few 

reports of elaboration strategies, while the focus was on rehearsal (see Table 2). 

Except for one student, everyone reported having used elaboration strategies (18 of 56) 

every so often. And if so, they were mainly used when they were related to the 

completion of homework or exercises 

Tom: So, for example, when it comes to convergence, you try the different methods 

and think about it, go through the different criteria in your head and see if 

you can find any similarities to previously solved tasks or examples in the 

lecture. And then, if you find something, you try it and then it often works. 

and rarely to understand mathematical concepts.  

For rehearsal strategies we identified different patterns throughout the semester. 

Firstly, rehearsal was the main strategy for students to process the content presented in 

the course. We identified in 39 of the 56 weekly self-reports some kind of rehearsal 

strategy. Secondly, students focussed on rehearsing the contents of the course 

differently. In this context, students reported three different main patterns: 

1. Focus on the content which was presented in the lecture  
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2. Focus on repeating and practicing the tasks from the homework assignments or 

exercises  

3. Weekly focus on repeating either the lecture notes or the exercises and 

homework assignments  

However, when students reported about repeating or reworking, they often did not go 

into detail about how exactly they were doing that. Regarding the exercises and 

homework assignments, students reported that they mostly just solved the tasks once 

again or compared their own work with the sample solution which the course provided. 

Luca: And now I am always solving exercises and homework assignments once 

again, so I do not have to think, so to speak, and I immediately recognise 

patterns and my hand just sort of writes away. 

Although students rarely reported using the script as a resource, they still described 

detailed strategies, for example memorization, reading lecture notes (multiple times) 

and writing down the lecture again.  

Cognitive strategies  Frequency of code 

Elaboration strategies 39 (in 18 self-reports) 

Rehearsal strategies 93 (in 39 self-reports) 

Table 2: Frequency of codes for cognitive strategies 

DISCUSSION 

This paper aims at giving a deeper insight into the strategies that students report making 

use of in their action phase of self-regulated learning.  

The results indicate that the students in this study prefer to use non-course-related 

resources which seems counter-intuitive, since the course usually provides lots of 

material for working on exercises and homework assignments and later on for 

preparing for exams. Instead, we have seen that non-course-related resources were 

rather popular and were frequently addressed when referring to homework 

assignments, exercises, to understand certain topics or to rework contents from the 

lecture. Although the study was conducted during the return to face-to-face teaching, 

this could possibly be due to the previous online semesters, which naturally promoted 

digital learning. In a similar study, Kempen & Liebendörfer (2021) observed during a 

digital semester that Linear Algebra students rated the usefulness of traditional 

resources, such as tutorials, lecture and lecture notes slightly higher than digital 

resources, such as videos or webpages from the Internet. We did not assess students’ 

ratings on the usefulness of resources in our study, but the reported frequencies show 

a tendency towards non-course related resources in our context. The high use of non-

course-related resources raises the question of why students use them more often than 

the course-related resources. Videos in particular seem to play a big role in this, 

possibly because students can work through the videos at their own liking and speed. 

Thus, the use of self-produced videos adapted to one´s own course could offer further 
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potential for teaching mathematics. Additionally, it might be important to reflect with 

students about the use of external digital resources, such as critical thinking and 

questioning the resources as well as compare them with the course-related material. 

The results also show that students hardly report any use of elaboration strategies 

during the semester to process the content of the course and prefer to use rehearsal 

strategies. Here, one would expect that especially during the semester, elaboration 

strategies would predominate in order to understand the new content. Due to our more 

general and not specific content-related questioning of the strategies, it could also be 

that students had difficulties reporting elaboration, which was also noticed in the study 

by Göller (2020). It may be that students do use elaboration strategies while learning 

mathematics, but they may lack the skills to express them in the self-reports. However, 

this claim needs further investigation. Otherwise, mathematics courses for engineers 

are often focused more deeply on applying and executing mathematical methods. 

Rehearsal strategies like practicing and repeating exercises or homework assignments 

exactly do this, consolidate such mathematical methods which also might prepare 

students better for the exams (Liebendörfer et al., 2022). 

In future research, it might be useful to take a closer look, which is directly involved 

in the learning processes of students, e.g. when repeating or working on the homework 

assignments and exercises or the lecture. This way, more information can be gained on 

students self-regulated learning of mathematics. 
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“exponential” as just “another word” to say “fast”:                                      

When colloquial discourse tells only part of a story 
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As part of a research and development programme that examines intra- and extra- 

mathematical visibility of mathematics especially for students enrolled on a Bachelor’s 

in Education, most of whom will soon train as primary teachers, I made “exponential 

growth” the focus of one part of the summative, portfolio-based assessment in a 

Mathematics Education course. Commognitive analyses of students’ portfolio entries 

revealed a significant majority of student narratives about “exponential” as roughly 

synonymous to “very fast”. Here, I show evidence of how students navigate across 

literate and colloquial narratives about exponential growth, and I discuss how intra-

mathematical deficits in these narratives may play out adversely in the students’ 

capacity to recognise and engage with its manifestations in colloquial situations.  

Keywords: Mathematics Education courses, social significance of Mathematics, 

commognition, exponential growth, literate and colloquial discourses 

“If you look at the number of in-patients […] on 7 September there were 536 cases. By the 

time you get to the beginning of October, it is over 2,500. As of today, it has breached 

10,000 people in hospital. You do not need too much modelling to tell you that you are on 

an exponential upward curve of beds.”1; “it’s amazing how many clever people don’t know 

what exponential growth means”2 Chris Whitty, Chief Medical Officer for England 

INTRODUCTION 

Throughout the pandemic, public discourse about Covid-19 – in the UK, led primarily 

by daily, televised conferences of the Government’s Chief Medical Officer and his 

Deputy as well as the Chief Scientific Adviser – brimmed with mathematical 

references. Amongst those was the abundantly used reference to “exponential growth”. 

As debates raged about whether and how to convince the public of the utter necessity 

for the personal, social and economic sacrifices that tackling the virus implied, a stark 

realisation started to emerge: that many of these references may not have the impact 

that the scientists who were making them were hoping to achieve. In tandem with 

findings from research that indicated how invisible mathematicians and mathematics 

often seem to be (Yeoman, Bowater & Nardi, 2017; Nardi, in press), I conjectured that 

relentless exposure of the public to said mathematical references may make some 

difference. To explore this conjecture, I made “exponential growth” one focus of the 

summative assessment in a Mathematics Education course I teach to final year BA 

Education students. Here, I report analyses of data I collected during this assessment.  

 
1 Prof. Whitty’s evidence to Parliamentary Committee, 3 November 2020: transcript at https://t.co/PjjRQBlT3L  
2 Plenary at LGA/ADPH Annual Public Health Conference 2021: Rising to the challenge parts 1 and 2, 23 March 2021 

| Local Government Association,   
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In what follows, I discuss the background and rationale of the research and 

development work I am conducting in the context of the course’s design, 

implementation and evaluation. I then outline the commognitive underpinnings of this 

work – with a focus particularly on pertinent constructs such as literate (as in, e.g., 

mathematical) and colloquial (as in everyday, public) discourses (Sfard, 2008; p.118). 

I then introduce the context, participants and data collection methods I use in this work. 

Subsequently, I present data and analysis relating to students’ narratives about 

exponential growth as they emerged from aforementioned summative assessment. I 

conclude with reflections on what this analysis may imply for university mathematics 

pedagogy, especially for students on the cusp of entering the teaching profession. 

INTRA- AND EXTRA- MATHEMATICAL VISIBILITY OF MATHEMATICS 

Visibility of mathematics and mathematicians – whether, for example, in popular 

culture (Nardi, 2017) or in the narratives of secondary school students (Yeoman et al., 

2017) – is becoming a focus for mathematics education researchers as well as science 

communication scholars. “What does a mathematician do?” was one question that 

Yeoman et al. (2017) asked during focused group interviews with secondary students 

in a study that investigated student narratives about how research in various disciplines 

is conceived, conducted – and where its utility and significance lie. Evidence from the 

study (group interviews with 100 students aged 11-19, questionnaire responses from 

2634 students) on whether “Mathematicians do a lot of research” – and examples of 

said research – was alarmingly scarce: examples of research in mathematics which 

participants considered worthwhile elicited zero responses (Nardi, in press).  

Yeoman et al. (2017)’s evidence corroborates the claim that mathematics and 

mathematicians are relatively invisible and that public narratives about mathematics 

(including those of young people still in their schooling years) remain poor (Nardi, 

2017). These findings also resonate with my experience as the faculty member in 

charge of Children, teachers and mathematics: Changing public discourses about 

mathematics, an introductory, optional course in Research in Mathematics Education 

(RME), to final-year BA Education students that I designed and have been delivering 

since 2012. The course aims to welcome Education undergraduates (of whom about 

three quarters will soon enter primary teacher preparation courses) into RME. 

Particularly, the course aims to trigger revisiting the students’ own, often traumatic 

experiences of learning mathematics and to help them overcome their reticence about 

their mathematical ability. Over the years, from a relatively narrow exercise in tackling 

disaffection with the subject, the course has evolved into a platform on which student 

narratives about what mathematics is and what it is for are regularly challenged. The 

course is assessed through a portfolio of learning outcomes (see Course section of this 

paper): this invites responses to ten tasks that include biographical accounts of their 

mathematical experiences, responses to mathtasks (Nardi & Biza, in press) and “maths 

pitches”, snappy narratives which present an important piece of mathematics briefly 

and clearly to a member of the general public. 
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With Research Ethics Committee permission and student consent, student portfolio 

responses are analysed via a frame consisting of a typology of four characteristics 

informed by the Theory of Commognition (see next section of this paper). 

As reported in (Nardi, in press), over the years, I observed that students’ choices of 

topic for their “maths pitch” invariably focused on classical topics from mathematics 

created in the distant past. Consequently, I started requesting two pitches, one entitled 

“mathematics over time” and one entitled “mathematics today”. In the dataset collected 

from the first student cohort with which I trialled the request for a dual pitch, the vast 

majority, over 80%, ignored the “today” in the brief and simply presented a bit of 

ancient mathematics, sometimes disguised as having contemporary relevance (say, 

Pythagoras’ Theorem in the construction of buildings). This, I label a “fossil” narrative 

about mathematics. And, I label the few concretely described uses of mathematics in 

engineering, environmental science, economics, medicine and technology evidenced 

in a handful of portfolio entries a “fuel” narrative about mathematics.  

What this, and other, portfolio evidence suggests resonates with Yeoman et al.’s (2017) 

conclusion that, to these undergraduates – now at the cusp of university graduation and 

entering the world of work, including the world of the classroom – mathematics 

remains largely invisible. I concur on this matter with (Herbst et al., 2021) in 

wondering: should we not, as university mathematics educators, do better at enriching 

these professionals-soon-to-be narratives about what mathematics is, and what it is for? 

Spurred on by the aforementioned omni-presence of references to “exponential 

growth” in pandemic-related public announcements, I invited students’ “pitches” on 

this quintessential mathematical object in one recent portfolio task. I did so in 

awareness of research findings that alert us to documented student difficulties with this 

topic. For example, Ellis et al. (2016) recap findings about: university students’ 

struggle with rules of exponentiation and with connecting these to rules for logarithms; 

and, about secondary students’ struggle with the transition from linear to exponential 

representations and with identifying what makes data exponential. They also report 

that teachers find instruction about exponential growth challenging, particularly of how 

exponential growth as repeated multiplication connects with the closed-form equation.  

Crucially to the focus of this paper, Ellis et al. (2016) also include in these challenges 

the recognition of growth as exponential in nature and the generalization of rules such 

as the multiplication and power properties of exponents. Overall, however, the bulk of 

prior research into the challenges posed by the learning and teaching about 

exponentiation has an intra-mathematical focus. The focus of the discussion I propose 

in this paper is on the boundaries of intra/extra-mathematical consideration of the 

mathematical object “exponential growth”: how may manifestations of exponential 

growth feature in colloquial situations? How may students / teachers / members of the 

public navigate across literate and colloquial narratives about exponential growth? 

And, how may intra-mathematical deficits in narratives about exponential growth play 

out adversely in our capacity to recognise and engage with its manifestations in said 

colloquial situations?  
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COMMOGNITION, MathTASK AND FOUR CHARACTERISTICS 

The theoretical perspective of this work is discursive and draws on the commognitive 

framework (Sfard, 2008) that sees Mathematics, Education and Mathematics 

Education as distinctive discourses and learning as communication acts within these 

discourses. In resonance with this discursive lens, the design of the Mathematics 

Education course that is the focus of this paper aims, inter alia: to attend to discursive 

differences, and potential conflicts, between Mathematics and colloquial discourses 

that students may experience; and, to assist students towards smooth navigation across 

these discourses.   

A further, also commogntively-informed, element of the theoretical perspective of this 

work comes from the pre- and in- service mathematics teachers focussed MathTASK 

programme. In MathTASK, we engage teachers with fictional but realistic classroom 

situations, which we call mathtasks (Biza et al., 2018). Mathtasks are presented to 

teachers as short narratives that comprise a classroom situation where a teacher and 

students deal with a mathematical problem and a conundrum that may arise from the 

different responses to the problem put forward by different students.  

Towards the analysis of student data collected during the delivery of the course, I 

deploy a typology of four interrelated characteristics that emerged from themes 

identified in prior MathTASK research (see detailed rationale, definitions and 

examples in Biza et al., 2018; Nardi & Biza, in press) and is tailored to aforementioned 

commognitive underpinnings: consistency; specificity; reification of RME discourse; 

reification of mathematical discourse. This typology is the basis for the assessment 

frame deployed towards the formative and summative assessment of the students’ work 

during the course. Each one of the typology’s four characteristics encapsulates features 

that can be traced firmly and concretely in the students’ writing. So, for example, for 

reification of mathematics discourse, I scrutinize student portfolio entries in terms of 

how specific, relevant, reliable and accurate the use of mathematical terminology is. I 

ask questions such as: are mathematical terms used accurately? Is there direct relevance 

of a mathematical utterance to the claim being made? Is the utterance consistent with 

mathematical theory? Is the link between the utterance and the overall claim made 

explicit? Are any credible sources for the mathematical utterance quoted? Etc. 

Seeking such evidence in the students’ responses not only secures a verifiable (by 

course moderators and external examiners) route to a student’s course mark; it also 

paves the way for identifying which student narratives about the teaching and learning 

of mathematics (and RME) subsequent versions of the course (and research thereof) 

need to challenge, and, hopefully, change. As part of my larger investigation into the 

visibility of mathematics in extra-mathematical situations, the portfolio item (the 

mathtask in Figure 1) and the analysis of corresponding portfolio entries that are the 

focus of this paper aimed to trace how students navigate colloquial and literate 

narratives on one mathematical object, “exponential growth”, and whether, and how, 

students recognise mathematics in colloquial situations.  
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COURSE, PARTICIPANTS AND PORTFOLIO-BASED DATA COLLECTION  

The course is part of the BA Education (BEd) programme’s suite of optional courses. 

Contact time is four hours per week (two for lectures and two for seminars) for a period 

of twelve weeks. Lectures are teacher-led and partly interactive. Seminars are student-

led. As about three quarters of the programme’s graduates continue into training to 

become primary teachers, the course is designed to address directly the widely reported 

reticence of those students towards mathematics and their generally low self-esteem in 

mathematics. Its aim is to equip these students with the means to tackle the disaffection 

that often tantalises the relationship with mathematics experienced by themselves as 

well as the young people many of them will soon be preparing to teach (Nardi, 2017).  

The inception of the course stems from acknowledging that the preparation of teachers 

rarely equips them for this complex task – and its twelve weeks of lectures and seminars 

are organized to address in-school (curriculum, classroom) and out-of-school (media, 

popular culture, arts) discourses on mathematics. In the Portfolio of Learning 

Outcomes, the course’s single item of summative assessment, students are asked to: 

return to ten activities they prepared for in the weekly seminars; study the materials 

accumulated during the twelve weeks of the course; and, compose a revised 

contribution to each one of the ten activities, written in the light of what they learnt 

during those twelve weeks. The headings of the ten activities are:  

1. Mathematics and I: A biographical account of your relationship with mathematics 2. 

Mathematics in the media: A brief analysis of a mathematics-related media excerpt (paper 

press or online) 3. School mathematics and I: Reflections on one aspect of the primary or 

secondary mathematics curriculum 4. Mathematics over time: A 2-minute Maths Pitch 

from the history of mathematics 5. Mathematics today: A 2-minute Maths Pitch on a 

contemporary application of mathematics 6. Mathematics in the classroom: A brief 

analysis of a classroom incident (with mathematical, social, affective, meta-mathematical 

elements) 7. Mathematics in art and popular culture: A brief analysis of a mathematics-

related art or popular culture excerpt (film, TV, theatre, literature, arts, music) 8. 

Mathematical ability on film: A brief analysis of the portrayal of a mathematically able 

character on film 9. Myths about maths: A brief essay, with evidence, debunking myths 

about maths (such as Innate, Male, Introvert, Burn Out, Uncreative) 10. Mathematics 

lesson plan: A plan for a mathematics lesson on a topic (of each student’s own choice). 

Students are asked to deploy RME theoretical constructs introduced during the course: 

see (Nardi & Biza, in press) for examples of these across developmental, sociocultural, 

anthropological, embodied and discursive theories. They are also expected to refer to 

a small number of research papers (and, where needed, other publications such as 

policy documents, reports or media excerpts) in each part. An example of a mathtask 

students were asked to respond to in Part 6 of a recent portfolio is in Figure 1. In this 

paper, I focus on student responses to question 1, mainly the “exponential growth” part. 
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Ms Jones is about to start a mathematics lesson in a Year 6 class (student age 10-11). As 

she walks into class, she notices two students arguing about whether wearing a mask 

during the pandemic makes sense. One of the students, Neil, complains as follows: 

Neil: Ms, I hate these! Why do we even care? Only one percent of people will end up in 

hospital anyway. Let's do the maths! One percent is almost nothing! 

Ms Jones: Ok, Neil, yes, let's do the maths. [to the class] Any ideas anyone? 

Anna: Well, I never liked percentages. They are so vague. Ok, here is my bag of crisps 

[she takes a Kettle© chips 30 gr bag out of her backpack]. And here is the one my dad 

asked me to bring him on my way back from school for tonight's game on TV [takes 

Kettle© chips bag of 150gr out of her backpack]. I will take one percent of this bag 

[rattles 150gr bag], any day, Neil!  

Barack: Yeah, ok, unless the big one is almost empty and the little one is sealed and full 

[laughs]. And, Neil said let's do the maths. He didn't say let's talk about crisps ... Neil, 

you know what? In her silly crisps and the like kind of way, Anna has a point. One 

percent of what? If one hundred people get infected, then one person will go to hospital. 

We can sort of deal with that, right? [writes 1 on his whiteboard]. If one hundred thou-

sand people get infected, then one thousand people go to hospital [writes 100,000 and 

1,000 on his whiteboard]. Hm... and if one million people get infected [writes 1,000,000 

on his whiteboard] … You see where I am going? Oh, plus infections are doubling every 

day... I heard my big sister say something about a thing called expo. ... something growth, 

sounded like a tumour ... Scary. I am telling you. If we don't do something, we are 

doomed to be stuck with these masks and all for ever! 

Clive: OMG, Barack! You and your depressing speeches! Too many zeros are giving me 

a headache by the way. I just want to ask Anna: do you really think this big bag of crisps 

in your backpack will still be there by lunchtime!? 

[The class erupts with laughter.] 

You are the teacher and you just heard what Neil, Anna, Barack and Clive said…. 

1. Here is a sentence that sounds like ones that we have been hearing in the news in the 

last twenty months or so: "About 1% of infected people will need hospitalisation and 

the growth of infections is exponential". How do you explain this sentence to some-

one who does not know what "percentage" and "exponential growth" mean? 

2. How would you respond to Anna? 

3. How would you respond to Barack? 

4. How would you respond to Clive? 

5. How would you respond to the whole class – also in the light of Neil’s initial com-

ment – and conclude the lesson? 

Figure 4. The Percentages, exponential growth and masks mathtask from a Portfolio of 

Learning Outcomes. The focus of this paper is on Question 1. 
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“PLAIN” AND “FASTER” NARRATIVES ON EXPONENTIAL GROWTH  

The focus of this paper is on 25 student entries (2 were non-responses). I grouped the 

students’ narratives on exponential growth in the remaining 23 as follows (Table 1). 

“plain growth” narratives (5 entries). In these entries, exponential growth is described 

as “a quantity increasing as time goes by” or as “something [that] constantly increases 

over time”. 3 entries contextualise the response in the case of a virus, noting that 

exponential growth indicates “the growing rates in infections” (with 2 specifying “over 

time”). Entries in this group tend to be low in specificity: none, bar one, includes 

reference to a particular numerical example, dataset or graph. The one that does (“…it 

is a growth rate that becomes larger in relation to the total growing number (a), [my 

emphasis] […] 1% become infected and this percentage is growing every day (b) as 

the rate is exponential (c)”) sets out with two promising utterances – a and b – but is 

let down by a circular warrant, c, where the term “exponential” is used to define itself.  

‘faster and faster growth” narratives were discerned in the remaining 18 entries: 15 

were solely verbal; and, 3 were reliant on closely connected graphical and verbal 

realisations of “exponential growth”. Amongst the 15, there were 5 consisting of 

exclusively general statements and 10 included specific examples. Entries in each 

category (of 5 and 10) were differentiated as per type of growth each described. 

‘faster and faster growth” narratives (verbal, general: 5 entries) sometimes stand on 

an ambiguous boundary with “plain growth” narratives. For example, in “[t]he number 

of infected people will increase (a), as they will likely pass the infection to several 

people (a), leading to a faster and faster increase (b) in case numbers”, I see (a) as 

alluding to a “plain” and (b) to a “faster and faster” narrative. Another student quotes 

the Organisation for Economic Co-operation and Development (OECD)’s glossary (“a 

circumstance in which growth compounds continuously at every instant of time”) but 

concludes their sentence with the “plain growth” utterance “meaning rates of infection 

are continuously growing”. Another student, even though in principle she would set 

out from asking her interlocutors for examples of “when we see [exponential growth] 

in everyday life” and she would “provide a definition and examples”, she then simply 

quotes the Centre for Evidence-Based Medicine’s glossary (“when the speed of growth 

is proportional to the size of the population”) and qualifies no further. A similar, if 

convoluted, attempt is in another student’s “…a specific way (a) that numbers can 

increase over time. Described as a function, a quantity that undergoes exponential 

growth is an exponential function of time (b), that is, the variable representing time is 

exponential (in contrast to other types of growth, such as quadratic growth) (a).”: I see 

(a) as worthy attempts to highlight that exponential growth is not just any growth let 

down by (b)’s circular reasoning. All, bar one of these five entries, make no reference 

to any other realisations of “exponential growth”. The one that does (“… when the rate 

of increase becomes faster as the population increases (a). The more people with covid 

(b) the faster the rate of infection therefore a sharp curve would be seen on a graph 

(c).”) includes: a verbal, but of low specificity, reference to a graph (c); an attempt to 

capture the speed of increase (a); and, an attempt at contextualising (b). 
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‘faster and faster growth” narratives (verbal, example-based: 10 entries) were a 

significant majority. Most of these 10 entries evidence a narrative that exponential 

growth is a particular type of growth (“another word which can be used to describe 

something that is fast. More so, it describes how something can grow more quickly 

over time”). I saw variable attempts to locate this particularity. In “…when an event 

increases more and more so the increase gets faster over time”, the student captures the 

difference of speed in the increase as “increasing at a faster rate than time is passing” 

and “the speed it will infect people will get faster” (two other students wrote similarly). 

These efforts are however followed by examples such as: “that on day 1 one person is 

in hospital day 2, two more people are in hospital and on day 3 ten more people are in 

hospital”; or, “if 5 people were reported as infected today and tomorrow 10 people 

were infected”. Such responses are quite far from identifying the exponential by which 

the growth takes place (noted in 4 of the 10 entries). What kind of increase exponential 

growth means is captured a bit more in another student’s entry who notes that 

“exponential growth refers to the power of the epidemic” and specifies with the 

example “[w]hen there are two people infected, then the number of infected people is 

no longer 2 but 4 people”. Other attempts at capturing “exponential” include: the 

syntactically challenged – and potentially conflating quadratic and exponential growth  

–  “if the factor were n² starting at 2, value 1 would be 4 (2²,) value 2 would be 16 (4²,) 

value 3 would be 256 (16²,) etc.”; and, the elegant “say at the beginning of the 

pandemic we had an increase of 2 cases per day for the first week, but then the second 

week it is 4 per day, the third week it is 8, and so on”. Explicitly differentiating from 

other types of growth, another student writes: “if 1 person was infected, the next day 

that one person could infect maybe around 5 more. The next day those 5 people could 

infect 25 more, then 125 then 625 then 3,125 then 15,625 so you see that the more 

people get infected the more it spreads. It does not just go from 1 to 2, it has larger gaps 

between each jump”.  

“plain” (5) “faster and faster” (18) 

general (4) general (5) 
verbal only (4) 

verbal with reference to graph (1) 

specific (1) specific (13) 

verbal only (10) 

imprecise (5) 

ambiguous (3) 

precise (2) 

verbal with graph 

(3) 

graph illustrative 

yet generic (1) 

graph illustrative, 

informative (2)  

Table 1: “plain” and “faster” narratives on exponential growth in portfolio entries 
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Finally, 3 entries evidenced ‘faster and faster growth” narratives (verbal, with graph) 

in which a graphical realisation of exponential growth has significance that varies from 

minimal (“…growing or increasing really fast and is often shown in a graph as a really 

steep gradient or line. Like in the graph below”, Figure 1a) to quite substantial (Figures 

1b, 1c). The student entry that corresponds to Figure 1b 

“[…] speed of growth proportional to the population. I would first explain linear growth 

(1 more person is infected each day, so 1 on day1, 2 on day2, 3 on day3, 4 on day4 etc). 

Then use doubling and compare to exponential growth (1 person is infected on day1, then 

2 on day2, 4 on day3, 8 on day4 etc. A simple graph would help highlight the difference 

between exponential growth and linear growth.” 

is purposefully embedded into a “doubling” example of exponential growth (f(n)=2n-1) 

as distinct from linear growth (f(n)=n). Figure 1b captures the difference between the 

two with the annotation “disruption”. The student entry that corresponds to Figure 1c 

(“Something doubling each day […] something becoming more and more rapid […] a 

process that increases quantity over time […] a relatively small number can become 

very large very quickly […]) evokes a different but also helpfully transparent 

realisation of “exponential growth”. 

   

Fig.  1a Fig. 1b Fig. 1c 

Figure 1: “exponential growth” images in 3 portfolio entries.  

LOSING URGENCY OF “EXPONENTIAL” IN COLLOQUIAL DISCOURSE 

Missing the exponential nature of the virus’ transmission proved to be a key casualty 

of governmental policy – and its endorsement by the public – during the pandemic in 

the UK. The bulk of the student portfolio entries discussed in this paper equate 

“exponential” more or less with “very fast”:  this equating obfuscates the urgency of 

the exact sort of “fast” that exponentiality carries (as Professor Whitty’s quotations at 

the start of this paper amply demonstrate). While mathematics education research into 

the learning and teaching of exponentials has mainly focused on its intra-mathematical 

significance and precision, its extra-mathematical relevance and importance has been 

left as a matter to be dealt with outside the classroom: see, for example, Chapter 1 in 

Yates (2021) for a lucid demonstration of exponential growth in the context of algal 

bloom and nuclear reactions; or, the Centre for Evidence-Based Medicine’s nutshell 

account in the context of viral transmission. In “picturing a crisis” mathematics is here 

to help with “formatting solutions” (Skovsmose, 2021; p. 371) to it – crucially though, 

this can only happen in tandem with civic appreciation for mathematics. In preparing 

citizens for the workplace, especially long-term influencers such as teachers, our role 

in fostering this appreciation as university mathematics educators is key.  
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The goal of this paper is to better understand the experiences of multilingual students 

in undergraduate math courses, particularly when active learning is used. Despite 

significant advances at the K-12 level, little research at the post-secondary level has 

examined language in mathematics education. To address this, this paper analyzes 

survey data from undergraduate students in introductory math courses. Using a 

quantitative critical lens, the analysis focuses on identifying salient features of 

students’ identities that impacted their course experiences, particularly their comfort 

speaking in class, comfort being oneself in class, and recognition by others as being 

good at mathematics. In addition, the analysis examines the effect of different 

frequencies of active learning on these outcomes.    

Keywords: curricular and institutional issues concerning the teaching of mathematics 

at university level, students’ practices at university level, multilingual mathematics 

classrooms, active learning 

INTRODUCTION 

At the post-secondary level, math classrooms are becoming more reflective of the 

multicultural landscape that we live in. Because of political and economic global shifts, 

college mathematics classrooms serve increasingly more students whose home 

language differs from the language of instruction (Durand et al., 2016). It is becoming 

more common for college math classrooms to be rich, multilingual spaces where 

students use different cultural, linguistic, and experiential knowledge to make sense of 

mathematics.  

At the same time, language is often over-looked in mathematics education because of 

the common viewpoint that math is a universal language. However, research at the K-

12 level has shown that students’ linguistic and cultural backgrounds significantly 

shape how students learn math (Planas & Civil, 2013). Furthermore, language is not 

neutral, as some languages – like English – are assigned higher social status over others 

– like Spanish. The literature on K-12 math education has documented examples of 

how multilingual students (whose home language differed from the language of 

instruction) experienced less access to classroom participation (Planas & Civil, 2013) 

and were less likely to be positioned as mathematically competent (Takeuchi, 2016). 

Despite significant advances at the K-12 level, little research at the post-secondary 
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level has focused on better understanding multilingual students’ classroom learning 

experiences and best practices for supporting equity in language diverse classrooms.  

Active learning 

Active learning is becoming more commonly implemented in post-secondary 

mathematics classrooms and the literature has generally considered active learning to 

be an equitable teaching approach. Some scholars, however, have demonstrated that 

not all students experience active learning in the same way (Henning et al. 2019; Voigt 

et al., 2022). For example, Henning et al. (2019) examined the different facets of 

students’ identities (like race, gender, socioeconomic status, etc.) that were most 

significant in shaping their classroom participation, STEM self-efficacy, and sense of 

belonging in active learning introductory college biology courses. For instances, 

findings indicated that black students reported “higher pressure to conform to the views 

of their peers” during active learning (p. 7). In introductory college math courses, Voigt 

et al. (2022) found that women and Indigenous students experienced a larger decrease 

in their mathematics identity over the course of the semester compared to white male 

students.  

Multilingual students may also have differential experiences with active learning. 

Active learning is a talk-intensive pedagogy and participating in active learning 

generally requires students to communicate verbally, engage in interpersonal 

interactions, and make sense of mathematics collectively. Given that these practices 

are all mediated by language, language becomes a more visible tool for learning and 

participating in active learning settings. More research is needed to better understand 

multilingual students’ experiences in undergraduate mathematics courses, particularly 

those which utilize active learning pedagogies.  

Research Question 

Using critical quantitative methods, this paper seeks to answer the following research 

question: How does active learning and different aspects of multilingual students’ 

identities influence their perceived experiences in undergraduate math courses?  

THEORETICAL FRAMEWORK 

Sociopolitical Theory 

This paper draws from sociopolitical theory (Gutiérrez, 2013), by foregrounding issues 

of identity and power in the classroom. Particularly in active learning spaces, students’ 

identities become more visible as they negotiate social interactions (Henning et al., 

2019). Furthermore, students’ identities can impact classroom power and participation 

structures (Takeuchi, 2016). For example, given the high status that English is often 

afforded in the college classroom, students’ language identities can shape how others 

perceive their mathematical abilities (Rios, 2022).  

In this study, sociopolitical perspectives were used to identify significant aspects of 

student experiences. Instead of analyzing students’ classroom experiences from a 

normative lens (i.e., examining access or achievement), this study focuses on 
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understanding them using a critical lens that centralizes issues of power and identity in 

the classroom (Gutiérrez, 2013). For instance, focusing on students’ comfort speaking 

and comfort being themselves in the classroom can inform whether multilingual 

students’ identities were affirmed by classroom practices (Henning et al, 2019). 

Similarly, examining whether students were positioned as being good at mathematics 

by their peers can inform how power and participation were distributed in classroom 

discourses (Takeuchi, 2016).       

QuantCrit Theory 

QuantCrit is an emerging field in education research which applies the core tenets of 

critical race theory (CRT) to traditional quantitative methods (Garcia, López, & Vélez, 

2018). QuantCrit studies often use statistical modeling to explore the impact of 

discrimination (e.g., racism or sexism) on outcomes (e.g., shifts in math identity), by 

including social markers like race and gender as explanatory variables (e.g., Voigt et 

al., 2022). Garcia, López, & Vélez (2018) discuss the five main tenets of QauntCrit 

theory: (1) the centrality of racism in society and that racism is difficult to capture using 

quantitative methods, (2) numbers are not neutral and can be used to perpetuate deficit 

narratives, (3) human categories are often socially constructed and require a critical 

interpretation, (4) data cannot speak for itself and must be informed by experiential 

knowledge, and (5) results from statistical analyses are not valuable unless they are 

used to promote social justice.  

A situated interpretation of data is fundamental to QuantCrit analysis (Garcia, López, 

& Vélez, 2018). For instance, variables that capture social makers like race or gender 

must be viewed as measuring the impact of racism (not race) or sexism (not sex) on 

outcomes. Similarly, variables encompassing language identities should be viewed as 

capturing the impact of language bias on students’ experiences. Furthermore, Van 

Dusen and Nissen (2019) argue that by using p-values as sole indicators of significance, 

statistical models can ignore potentially meaningful effects that pertain to 

underrepresented groups. Instead, they advocate for the use of other metrics like 

including standard errors and confidence intervals to indicate significance. Finally, 

quantitative findings should be supplemented with rich qualitative data that capture 

students’ voices and lived experiences (Garcia, López, & Vélez, 2018). 

METHODS 

Data Source 

The data presented in this paper is part of a larger, mixed-methods study which explores 

the experiences of multilingual students in undergraduate pre-calculus and calculus 

courses. This study took place at a large, public, research university in the United States 

that has been designated as a Hispanic-Serving Institution. The qualitative portion of 

this study consisted of semi-structured interviews with twenty-eight multilingual 

undergraduate students. The data for this paper stemmed from the quantitative portion 

of this study. In this phase of the study, students from 45 sections of pre-calculus, 

calculus I, calculus II, and calculus III were surveyed about their experiences in their 
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math courses (𝑛 = 579). The survey included several existing instruments from the 

literature which measured critical aspects of students’ course experiences, like comfort 

speaking in class (Henning et al., 2019), comfort being oneself in class (Eddy et al., 

2015), mathematics identity (Cass et al., 2011), and recognition, which is defined as 

“perceived recognition by others as being a good mathematics student” (Cass et al., 

2011, p. 2). The survey also included student demographic questions about their 

race/ethnicity, gender identity, and language identity.  

The also survey gauged the frequency that active learning was used in students’ math 

courses. Although active learning can encompass many different approaches, at the 

university where this study was conducted, the most common approach for 

implementing active learning was using group work. Therefore, this study, 

operationalizes active learning to mean classroom learning that takes place through 

peer collaborations. To measure the frequency of this, the survey included the student 

interaction and collaboration scale (Walker & Fraser, 2005).  

Data Analysis 

General linear and logistic regression models were used for the preliminary analysis of 

survey data. All analyses were done using the R statistical software package. Any 

incomplete surveys were omitted, leaving 𝑛 = 464 surveys that were analyzed.  

To operationalize facets of students’ course experiences from a Sociopolitical lens, 

which considers power and identity, numerous variables were included in the survey. 

These variables assessed students’ comfort in class, sense of belonging, and 

mathematics identity. Findings from the study’s qualitative analysis of student 

interviews were then used to inform the selection of a subset of explanatory and 

response variables to be included in the regression models. The explanatory variables 

that were selected included: comfort speaking in class, mathematics identity, course 

level and frequency of active learning. Social markers were also included such as race, 

gender, international student status, first generation status. Language identity markers 

included students’ home language and the language students’ felt most comfortable 

doing math in. Confirmatory factor analysis was used to assess the fit of instruments 

from the survey by examining how well items loaded. 

General linear regression models 

Two general linear regression models were fit to the data. The first model had comfort 

being oneself in class as the response variable and the second model had recognition 

as a good mathematics student as the response variable. The same explanatory 

variables described in the previous section were included in both models. Following 

the recommendation of QuantCrit scholars (Van Dusen & Nissen, 2019), AICc was 

used to perform model selection. The best-fit model for each response variable is 

shown in equation (1) and (2) respectively.    

comfort being 

oneself  
= 

 

intercept + course level + math identity 

+ active learning × comfort speaking 

(1) 
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recognition 

as a good 

math student 

 

= 

intercept + course level + math identity + 

race + comfort speaking  

+ active learning × home language 

(2) 

 

Logistic regression model 

The explanatory variable comfort speaking during class was retained in both linear 

regression models and was a main theme in the qualitative analysis. Therefore, a 

separate analysis of this variable seemed warranted. A logistic regression model was 

fit to the data, using comfort speaking during class as the response variable with the 

same explanatory variables used in the previous models. AICc was also used for model 

selection and the best-fit model is shown in equation (3).   

comfort 

speaking 

in class 

 

= 

intercept + course level + math identity + 

active learning + gender + language 

preference for doing math 

(3) 

 

RESULTS 

This section will first discuss the results of the logistic regression model fitted to predict 

comfort speaking in class and then provide results from the linear regression models 

for predicting comfort being oneself in class and recognition as a good math student. 

These variables represent critical aspects of students’ classroom experiences.  

Logistic regression model: comfort speaking in class 

The factor variable for comfort speaking in class had four levels: very uncomfortable, 

uncomfortable, comfortable, and very comfortable. Table 1 provides the model’s 

logistic regression estimates, expressed in odds ratios. The model suggests that students 

who preferred doing mathematics in a language other than English were on average, 

almost half as likely (OR = 0.44) to report feeling comfortable speaking during class 

(95%CI [0.20, 0.95]), while holding all other predictors constant. This suggests that 

classroom learning environments may have privileged students who previously learned 

mathematics in English, allowing them to feel more comfortable communicating.    

Women were also less likely to report feeling comfortable speaking in class compared 

to men (OR = 0.59, 95%CI [0.40, 0.88]). Drawing from QuantCrit theory, this result 

demonstrates the impact of sexism in undergraduate mathematics classrooms, and its 

impact on women students’ comfort speaking during class.  

Active learning was associated with a higher probability of students’ reporting to be 

comfortable speaking in class (OR = 1.46, 95%CI [1.18, 1.81]). The OR estimate 

indicates that when the frequency of active learning was increased by one unit, students 

were on average approximately one and half times more likely to report feeling 

comfortable speaking in class, while holding all other predictors constant.   
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Estimates:  Confidence 

intervals 

  

 Odds ratio 

estimate 

2.5% 97.5% SE p-value 

Course features      

     Calculus I 0.86 0.53 1.38 0.24 0.53 

     Calculus II-III 0.52 0.31 0.87 0.26 <0.01 

     Frequency of active        

     Learning 
1.46 1.18 1.81 0.11 <0.001 

Social markers      

     Cis woman 0.59 0.40 0.88 0.20 <0.01 

     Gender non-    

     Conforming 

0.88 0.22 3.80 0.72 0.86 

Math identity markers       

     Preferring to do  

     math in a language  

     other than English 

0.44 0.20 0.95 0.39 <0.05 

     Math identity 4.06 2.81 5.93 0.19 <0.001 

Table 1: Logistic regression estimates for comfort speaking in class, in odds ratios 

with confidence intervals  

In addition, the model suggests that students in Calculus II, and III were less likely to 

report feeling comfortable speaking during class, compared to students in pre-calculus 

(OR = 0.52, 95%CI [0.31, 0.87]). Mathematical identity was also strongly associated 

with a higher probability of reported comfort speaking in class (OR = 4.06, 95%CI 

[2.81, 5.93]) For instance, when students’ math identities increased by one unit, they 

were four times more likely to feel comfortable speaking.  

Linear regression models: measuring other aspects of students’ experiences  

Comfort being oneself in class 

The continuous response variable comfort being oneself in class ranged from [0, 4], 

where scores greater than two reflect positive comfort being oneself in class. The 

intercept estimate (𝛽 = 2.72, 95%CI [1.92, 2.67]) suggests that on average monolingual 

students who were very comfortable speaking in class and were not exposed to active 

learning reported having slightly positive comfort being oneself in class.  

Being comfortable speaking was a salient predictor of comfort being oneself in class. 

For example, students who reported being very uncomfortable speaking, on average 
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scored 1.05 units lower on the comfort being oneself scale than students who reported 

being very comfortable (𝛽 = -1.05, 95%CI [-1.37, -0.73]).  

Figure 1 shows the interaction effects for active learning and comfort speaking in class. 

For students who reported being very comfortable, comfortable, and uncomfortable 

speaking, the slope estimates are positive. Therefore, students in these groups 

experienced an average increase in their comfort being oneself score when the 

frequency of active learning increased. On the other hand, students who reported being 

very uncomfortable speaking in class experienced a further decrease in their comfort 

being oneself score when active learning was used (𝛽 = 0.10−0.25= -0.15, 95%CI  

[-0.34, 0.05].    

Estimates:  Confidence 

intervals 

  

 Coefficients 2.5% 97.5% SE p-value 

(intercept) 2.72 2.47 2.99 0.13 <0.001 

Course features      

     Calculus I -0.10 -0.2 0.006 0.06 <0.1 

     Calculus II-III -0.23 -0.35 -0.11 0.06 <0.001 

     Frequency of active        

     Learning 
0.10 0.003 0.21 0.05 <0.05 

Comfort speaking      

     Comfortable -0.41 -0.64 -0.19 0.11 <0.05 

     Uncomfortable -0.79 -1.04 -0.54 0.13 <0.001 

     Very uncomfortable -1.05 -1.37 -0.73 0.16 <0.01 

Math identity markers       

     Math identity 0.33 0.24 0.41 0.04 <0.001 

Interactions      

     Active learning ×  

     comfortable 

-0.03 -0.14 0.09 0.06 0.62 

     Active learning ×  

     uncomfortable 

-0.05 -0.18 0.91 0.07 0.51 

     Active learning ×    

     very uncomfortable 

-0.25 -0.47 -0.02 0.11 <0.05 

Table 2: Regression estimates for comfort being oneself in class with confidence 

intervals 
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Figure 1: Interaction effects of active learning and comfort speaking during class 

on predicting comfort being oneself 

 

Recognition as a good math student  

The continuous response variable recognition as a good math student ranged from [0, 

4], where scores greater than 2 reflect positive recognition by others. Students who 

reported having a home language other than English were less likely to report feeling 

like their peers recognized them as being good at math (𝛽 = -0.23, 95%CI [-0.42,  

-0.04]). As expect, math identity was also strongly correlated with higher recognition 

scores (𝛽 = 1.02, 95%CI [0.90, 1.13]). Students that identified as being middle eastern 

or Asian also on average reported being less likely to be recognized by others as a good 

math student, holding all other variables, like math identity, constant. This was most 

significant for Middle Eastern students (𝛽 = -0.50, 95%CI [-0.81, -0.18]). 

 

Estimates:  

(significant only)  

 Confidence 

intervals 

  

 Coefficients 2.5% 97.5% SE p-value 

(intercept) 0.03 -0.19 0.25 0.11 0.80 
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Course features      

     Calculus I 0.17 0.004 0.33 0.08 <0.05 

     Calculus II-III 0.36 0.17 0.50 0.08 <0.001 

Math identity markers       

     Math identity 1.02 0.90 1.13 0.06 <0.0001 

Language identity      

     Home language other     

     than English  

-0.23 -0.42 -0.04 0.09 <0.01 

Social markers      

     Asian -0.20 -0.40 0.01 0.10 <0.1 

     Middle Eastern -0.50 -0.81 -0.15 0.16 <0.05 

Table 3: Regression estimates for recognition as a good math student with 

confidence intervals (only significant estimates are included) 

DISCUSSION 

Using a QuantCrit approach, this study examines the experiences of students in 

undergraduate math courses, focusing on their comfort speaking in class, comfort being 

themselves in class, and recognition by peers as being good mathematics students. The 

study sought to identify aspects of students’ identities that shaped their experiences in 

the classroom, particularly students’ language identities. Findings indicate that students 

who preferred to do math in a language other than English were less likely to feel 

comfortable speaking in class. Additionally, students’ whose home languages were not 

English felt less likely to be identified by peers as being good at mathematics. These 

findings suggest that classroom language biases can impact students’ comfort in the 

classroom and access to being positioned as mathematically competent.  

Active learning also influenced students’ experiences. On average, higher frequencies 

of active learning were associated with students reporting that they feel more 

comfortable communicating in the classroom. However, the model indicates that 

students who reported being very uncomfortable speaking in the classroom, felt even 

less comfortable when active learning was used. This suggests that speaking is a 

significant part of navigating the active learning classroom and that students 

experienced active learning differently based on their comfort speaking during class. 

Further analysis is needed to investigate multilingual undergraduate mathematics 

classrooms and best practices for implementing active learning in these spaces to affirm 

and support all students.  
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This contribution is based on a phenomenon that is well known in the research 

community: An initial impression that in research interviews mathematics is not talked 

about at all, that specific subject content is not addressed, or at a bare minimum in a 

quite superficial manner. The contribution traces what such superficial thematisation 

of mathematical content can tell us about learning barriers that are specific to 

mathematics teacher education. This theoretical reflection takes descriptions of my 

interview partner Anna as a starting point and analyses them using the vocabulary of 

the subject-scientific approach. The focus is on dynamic learning barriers which are 

characterised by the simultaneity of wanting and not wanting to learn.  

Keywords: curricular and institutional issues concerning the teaching of mathematics 

at university level, teachers’ and students’ practices at university level, subject-

scientific approach, learning barriers. 

THE PHENOMENON OF NON-THEMATISATION OF MATHEMATICS 

In an interview study on the learning experiences of pre-service mathematics teachers 

at university, I came across a phenomenon that is well known in the research 

community, which I will refer to in the following as “non-thematisation of 

mathematics”: When reading the interview texts, the initial impression is that 

mathematics is not talked about at all, that specific subject content is not addressed, or 

at a bare minimum in a quite superficial manner. Mathematics seems to take a 

secondary place to pedagogical concerns or the thematisation of specific teaching-

learning arrangements. I was assured by colleagues, that this observation at the surface 

level is not specific to the interviews for my research work and similar observations 

are reported on a regular basis. On the part of the teacher educators and also researchers 

within the field, a lack of or only superficial thematisation of mathematics is interpreted 

as a motivational issue: A lack of interest in the subject matter. However, solid analyses 

of this phenomenon are rare.    

Brown & McNamara (2011) share their experiences made in interviews with 

prospective teachers: They describe that it was difficult for the prospective teachers to 

talk explicitly and exclusively about mathematical content, or the nature of the subject 

(ibid., p. 11). Understandings of and experiences with mathematics were articulated by 

the prospective teachers primarily in affective terms (ibid., 2011, p. 25) and school 

mathematics experiences, mostly, could not be named concretely with reference to the 

mathematical content (ibid., p.121/122). If “teaching mathematics” was addressed, it 

was mainly pedagogical materials that stood in for mathematics - the mathematical 

ideas behind the material were not presented -, or mathematics was subsumed into the 

articulation of teaching practices and addressed through an administrative lens, such as 

classroom management (ibid., p. 25). Their analysis is based on a psychoanalytic 
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perspective and focuses on the concurrence of negative experiences and affect with a 

local reform initiative in mathematics education.   

Furthermore, the non-thematisation poses a challenge when it comes to generating data 

about learning at universities and typical hurdles that are specific to mathematics. This 

leads researchers, among other things, to use methodical techniques to create situations 

in which respondents have to talk about mathematics more explicitly. However, even 

in these situations, it is sometimes difficult to talk about mathematics and learning 

mathematics with the respondents. Bibby (2002) reports that talking about mathematics 

and learning mathematics can be a shame-related topic for student-teachers, or adult 

learners in general. It is worth mentioning, that the prospective teachers in both studies 

did not explicitly choose to study mathematics as a subject, but needed to do so to 

become a teacher.  

This contribution takes up this challenge and traces what even a superficial 

thematisation in interview texts can tell us about learning barriers that are specific to 

mathematics teacher education. 

Situating the theoretical reflection on the phenomenon of non-thematisation 

The following theoretical reflection is situated within the field of mathematics teacher 

education and focuses on its university part. The role that the university should play as 

an institution in mathematics teacher education is certainly contested. There is 

agreement that it should offer learning opportunities that go beyond the acquisition of 

mathematical knowledge, but it is debated what defines this “beyond”. A possible 

“beyond” that the institution university can offer to teacher education is not only to 

provide specialist knowledge but also to offer a space for reflection that is relieved 

from the burden of practice (Wenzl et al., 2018), resp. the necessity of immediate 

action. Within such a space for reflection alternative approaches to current practices 

are open for debate. This includes, among other things, approaching mathematical 

knowledge from different angles and in its interconnections, e.g. to be able to discuss 

alternatives to current curricula. 

Situated within this specific context and stance towards mathematics teacher education, 

the focus of my research work is on the learning experiences of student-teachers that 

are associated with the socialisation into the academic field of mathematics education 

– and, therefore, not on a specific mathematical topic or domain. As outlined in Ruge 

(in press), socialisation is understood as a reciprocal task, not a one-way affair. It 

involves not only an acquisition of current or desired practices but also participation in 

the formation of the field. 

In contrast to other international studies focusing on student-teachers (e.g. Brown & 

McNamara, 2011; Bibby, 2002), all my interview partners choose to study mathematics 

as one of two school subjects they want to teach in the future, - so mathematics was 

not a subject imposed on them to pursue a career as a teacher. They explicitly but not 

exclusively chose mathematics. Furthermore, most of my interview partners did not 

describe school mathematics as having been a thoroughly negative experience for them 
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and reported positive experiences and, partially, confidence in their mathematical 

ability. 

In the following, I will, first, introduce my theoretical background – the subject-

scientific-approach – with a focus on learning theory and categories to articulate 

obstacles to learning and learning barriers. Second, I provide an example of the non-

thematisation of mathematics in interview texts by referring to the account of my 

interview partner Anna. Her account also makes it possible to contextualise the 

phenomenon within her learning experiences. Third, I will present a theoretical 

reflection on what can be learned from Anna's accounts. In the discussion, I will, fourth, 

contrast my findings with the above-mentioned studies and perspectives within the 

field of university mathematics education.      

THEORETICAL LENSE 

The theoretical reflection presented in the following follows Hochmuth’s (2018) 

demand to take up the subject-scientific approach for the further development of 

mathematics education theory. The subject-scientific approach provides analytical 

categories that allow explicating current and persisting restrictions within societal and 

institutional arrangements (Holzkamp, 1995, 1985), e.g. university teacher education 

programmes. It will be apparent in the following that the subject-scientific approach is 

not a mathematics-specific theory development. This contribution thus also addresses 

the lack of research that relates to mathematical learning in general and in university 

in particular (Hochmuth, 2018, p. 517/518) within the strand.  

Within the subject-scientific approach the relation between individuals and social 

conditions – which includes institutional arrangements - is regarded as being dialectical 

(Holzkamp, 1985). Therefore, human actions are societal-mediated and not determined 

by the structure of society, or immediate circumstances. Furthermore, it is 

acknowledged and conceptualised as a central characteristic of human actions that 

these comprise a twofold possibility [doppelte Möglichkeit] to either reproduce 

restrictive conditions or the possibility to extend established practices and alter 

obstructive conditions. 

The object being studied is approached starting from the standpoint of the subject, and 

the research endeavour does not aim to classify nor evaluate individuals but to gain an 

understanding of their actions from their specific standpoint - e.g. as learners (Ruge, 

in press). The analyses thus concern the characteristics of the learning process and the 

embeddedness of the learning object in the social/societal context on the one hand and 

in concrete teaching-learning arrangements on the other - i.e. situating the object at 

stake. The approach makes it possible to explore all varieties of learning - also 

ambivalent, recalcitrant, restrained or fractured learning processes.  

Directionality of the learning process 

The twofold possibility is also reflected in the learning theory and is theoretically 

captured in its categories. A distinction is made on the basis of the directionality of the 
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learning process (Holzkamp, 1987, 1985): Defensive learning is grounded in trying to 

avert an experienced or anticipated threat, which leads to primarily directing one’s 

learning process towards dealing with this threat and not towards a deep understanding 

of the subject matter (Ruge, in press). It does not lead to a complete refusal of learning, 

rather a contradictory brokenness of the learning process is characteristic. This can 

appear in many different forms: e.g. as reticence, lack of commitment, or half-

heartedness - sometimes with corresponding rationalisations as to why it is “not worth 

it” to be more committed, or backing off because of anticipated social isolation (e.g. 

by being considered a swot). But also, the strict following of a pre-given path can be a 

technique of the learner to deal with the threat of e.g. continual monitoring and 

assessment of outcomes. The occurrence of such defensive strategies is quite common 

in educational institutions and should not be pathologised. Analysing such learning 

processes from a situated perspective, these strategies rather point to a contradictory 

constellation of interests that manifest themselves, among other things, in contradictory 

demands of educational institutions (for a comprehensive analysis, see Holzkamp 

1995, chp. 4). The learning object, resp. knowledge is considered in its societal-

mediatedness and situatedness in a specific context. Thus, the learning object is not 

just an entity for itself but can be regarded as a shared object of/ within practice (Nissen, 

2012). Approaching an object thus also means (re-)connecting the object with social 

practices (Nissen, 2012), which always entails tackling its reference to the ambiguous, 

conflictual and contradictory nature of social/societal reality (Marvakis & Schraube, 

2016, p. 205) and the broader field of connected meanings. This situated perspective 

on knowledge is reflected in the characteristics of expansive learning: 

 Expansive learning (…) is characterised by a deeper processing of the object of 

 learning, which transcends one's own immediate experience and looks beyond the 

 superficial appearance of a phenomenon (or empirical observation), trying to 

 understand it in its societal-mediatedness. (Ruge, in press). 

This distinction provides information about resistances to learning. It allows to situate 

learning resistances and thus to investigate what they might ground on. The 

identification of learning barriers – points at which learning processes come to a 

standstill - can then in turn be the starting point for didactic considerations on how to 

address them. 

Learning barriers 

Holzkamp (1987) makes an analytical distinction between structural learning barriers 

and a dynamic self-restrainment of the learning process [in short: dynamic learning 

barrier] (pp. 23/24). Both barriers are closely interrelated. If learners get stuck at a 

certain point in the learning process because they still lack specific knowledge 

components, or necessary learning principles to progress independently, it is termed a 

structural learning barrier. The task of mathematics education would not be to eradicate 

structural barriers to learning but to address them. An example of how structural 

learning barriers are addressed in a university mathematics course is discussed in 

Specovius-Neugebauer et al. (2022). Also, an ATD analysis of the subject matter (cf. 
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Hochmuth, 2018) can be informative for approaching structural learning barriers. It is 

noteworthy, that overcoming structural learning barriers requires so-called affinitive 

phases in which the focus of the learning process is not only exclusively on the object 

to be learned, but also the broader field of connected meanings (objects, techniques, 

areas of application, contested interpretations etc.) is explored to grasp the object 

(Holzkamp, 1995, pp. 324-337; Specovius-Neugebauer et al., 2022). 

Such affinitive phases can be quite precarious, especially in educational institutions 

(Holzkamp, 1995, pp. 324-337). The mastering of the respective learning problem must 

be anticipatable for the learner so that s/he can engage in the necessary learning 

process. Following a pre-given path might seem to reconcile time pressure with the 

insecurity within a learning process, while this path might not fit or are even counter 

to the foreground and interests towards the subject matter of the respective learner.  

It is characteristic of dynamic learning barriers that the learner wants to learn and does 

not want to learn at the same time, and it is precisely this simultaneity of wanting and 

not-wanting that leads to a learner not being able to pursue the learning endeavour 

further or in a more profound manner (Holzkamp, 1987). The continuation of a learning 

process is interrupted because aspects of the learning object or its embeddedness 

emerge during learning and discourage the learner from wanting to learn this learning 

object - as it presents itself. Generally, this is not a complete rejection of the learning 

object. The question for mathematics education theory is: What discourages learners 

from wanting to progress in their learning process? What could be the reasons that 

prevent a prospective mathematics teacher from pursuing mathematical content in 

more depth? 

ANNA’S ACCOUNT OF HER LEARNING 

The account of my interview partner Anna serves as a basis for my further theoretical 

reflections, which will lead us beyond her case. There was a good atmosphere during 

the interview, both interviewee and interviewer were laughing. She reports positive 

experiences with mathematics at the school level and displays confidence in her 

abilities to become a mathematics teacher. Mathematical content is only scratched at 

best and in some cases, there is a rather offhand reference (e.g.: “such strange interest 

rate percentages” (Quote 1)) in her descriptions. 

Anna: ... And I think that in maths it's actually (...) not difficult if you can explain it 

well. So if the teacher makes an effort to explain it well and present it in a 

comprehensible way, then (..) even such strange interest rate percentages and 

who knows what else are so difficult for many people in the seventh or eighth 

grade, um, actually simple (Quote 1, translated by the author) 

The statements become more specific when it comes to mathematics-specific teaching-

learning arrangements. Here it is striking that her descriptions, in which she refers to 

mathematics-specific forms of teaching and assessment (for further analyses see Ruge 

& Hochmuth (2017)), are quite ambivalent. Anna positions herself against passively 

being taught mathematics (e.g. “only get heard the new material” (Quote, 2)) and 
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emphasises that mathematics must actively be understood. The adoption of this 

position is demonstrated with reference to the didactic arrangement of the exercise 

sheet and the common assessment form of the written exam:  

Anna: Um, I have to say that in the course of my studies I also learned to let things 

go a bit. (.) And (sighs) for example, I also copied out the exercise sheets or 

let my partner do it, so to speak. (...) Because I was already very EXTREME, 

so I ALWAYS did it and ALWAYS did everything and on the other hand, 

um (.) there/ so, especially in maths you always have these exercise sheets. 

And just because of that, I think it's good that they exist, because you always 

have to work on them. Because if you only get heard the new material (.) and 

then wrote an exam at the end of your studies, I think many exams would 

have been much worse because you didn't really work on it, because, as I 

said, you have to understand maths, and you can only do that if you work on 

it more closely and can understand these ways and steps (Quote 2, translated 

by the author) 

She describes that examination phases can also trigger learning blockades for her and 

how she, together with her learning group, quite creatively constructs a “huge” memory 

game to break through this blockade - an attempt which is directed towards mastering 

the exam. In addition, she describes a quite structured approach to learning and the 

processing and safekeeping of the knowledge taught: 

Anna: For example, I have a folder from each semester with the description of the 

seminar. Then all the lectures and notes and such are in there. And at the front 

is my summary. So I (laughing) still have everything (Quote 3, translated by 

the author) 

Anna also voices her position on the structure of teacher training and formulates 

alternatives to the currently prevailing institutional design, but these are not formulated 

in relation to the subject of mathematics. 

In summary, Anna’s case has the following characteristics: 

- Rather offhand descriptions of mathematical content 

- Ambivalent valuation of mathematics-specific teaching-learning arrangements, 

which are described in relation to the examination system 

- Social resources and creativity in overcoming learning blockades 

- A structured approach to mastering learning requirements 

THEORETICAL REFLECTION 

The vocabulary of the subject-scientific approach makes it possible to conflate the 

above-mentioned characteristics with the phenomenon of non-thematisation, which is 

also present in Anna's account. What can be learnt from it about learning barriers 

specific to mathematics teacher education? 

The direction of following and staying within safe and existing pathways is 

characteristic of the learning process Anna describes. This is partly transcended 
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concerning education, where she reflects on the institutional design of the teacher 

education programme and expresses alternatives to the existing one. With regard to 

mathematics, the importance of dealing with the contents for understanding is 

emphasised. However, the engagement with the material provided seems to focus on 

the comprehension of the pre-given knowledge arrangement; existing curricular paths 

are not left behind. This learning approach seems to encounter a dynamic learning 

barrier. It is apparent that she wants to learn, that she wants to engage with the subject 

matter in more depth, but she struggles to do so: Her statement “I also learned to let 

things go a bit” (Quote, 2) reflects a dissatisfaction with not being able to move forward 

after a certain point, but she learned to deal with it during her studies. Her ways of 

dealing with the teaching-learning arrangement include aspects of self-activation and 

self-mobilisation (see Kaindl, 2006) - here she draws on social resources (her learning 

group)-, working through the given material and compiling folders. In these folders, 

knowledge is fixed as it is arranged in curricula. This safekeeping of knowledge 

certainly includes the option of postponing a renewed or even more extensive 

engagement with knowledge objects. Thus, there is no lack of interest in the subject 

matter as such, but this interest is not pursued in-depth.  

This brings us back to the following questions: What discourages learners from 

wanting to progress in their learning process? What could be the reasons that prevent 

a prospective mathematics teacher from pursuing mathematical content in more depth? 

Anna's account contains circumstantial indications that bring us closer to answering 

these questions. Striking is her reference to the relation between the teaching-learning 

arrangement and the examination system, which is in its specific formation (exercise 

sheets & written exams) quite specific to mathematics (see also Ruge & Hochmuth, 

2017). Her expressed ambivalence relates to “how” mathematics is learned. In her 

work, Skog (2014) looked at what is taken up as negotiable by student teachers within 

a mathematics teacher education programme and which discourses appear as non-

negotiable. If the discourse appears to be non-negotiable, the space for reflecting upon 

alternative horizons and pathways is foreclosed. Interestingly, her work also shows that 

the so-called “institutional discourse” - which refers to restrictions, rules and conditions 

within educational institutions - appears to be non-negotiable. Especially time 

restrictions and exams limit productive discussions about the respective mathematical 

content (ibid.). 

If one focuses on the “what”, it is noticeable that the engagement does not seem to go 

beyond a certain point, or is not worthy of thematisation within the interview. The 

described active engagement with the subject matter is oriented towards a 

recapitulation of required content. An engagement with the contents beyond the 

curricular paths does not seem to be conceivable in her learning process within the 

teacher education programme. This “beyond” – affinitive phases - always entails the 

risk, that distancing oneself from a pre-given path leads to a temporary loss of cohesion, 

which may not be manageable within the strict time schedule. The learning object then 
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does not appear to be masterable outside of the predefined pathway. Therefore, 

exploring alternative pathways and connections becomes a dangerous endeavour.  

This perspective also makes a non-thematisation or only superficial thematisation of 

mathematics intelligible: If it is obvious what is to be taught and learned, and it is more 

a question of “how”, then there is no reason to elaborate on the “what”. The possibility 

of change, resp. alterability of the established teaching-learning arrangement is 

ignored, and it is accepted as an existing fact. 

If one relates this to the context of teacher education, it is noticeable that the process 

of anticipation implicates a double barrier: The mastering of the subject matter has to 

be anticipated for oneself and, additionally, the extent to which this subject matter can 

be made accessible to others (e.g. the future pupils) is part of the anticipation process. 

Furthermore, the subject matter shall be made accessible to others, at least to a certain 

degree, within the scope of school mathematics, which in turn is a quite specific context 

that entails further possibilities and restrictions.  Thus, it is also about the “usefulness” 

of the respective subject matter, in the sense of the position of the mathematical subject 

matter within social reality and associated educational goals. A learning process that 

takes these anticipations into account requires maintaining familiar and well-

established perspectives on the subject matter from school, while at the same time it 

may be necessary to detach from them to be able to delve deeper into the subject matter. 

Situating the dynamic learning barrier reveals that dynamic aspects – such as an 

ambivalent affective-motivational positioning within an ongoing learning process – are 

more than just a mere personal irrationality, but is grounded in the institutional 

arrangement of university mathematics teacher education. From the perspective of 

student-teachers, it touches on the question of what formation of mathematics one shall 

identify with: Mathematics as it presents itself at university or school mathematics? 

And what formation of mathematics does the learner – as a prospective teacher – want 

to be identified with – as being a representative of mathematics at school? 

DISCUSSION 

Anna’s account and the subsequent theoretical reflection can be related to the existing 

discussions within the mathematics education community of a non- or only superficial 

thematisation of mathematics as follows. Brown & McNamara (2011) focus on 

negative experiences that can lead to obstacles to learning. They describe how reform 

discourses and the identity formation of student-teachers are pushed in a direction of 

an appropriation of reform discourses, which also serves to avoid having to deal with 

one’s own insecurities about the subject matter. This description provides insight into 

political and institutional constraints in addressing learning barriers, maybe even about 

an infusion of further layers of dynamic barriers by reform movements. Bibby's (2002) 

analysis points to a relevant social component of a dynamic learning barrier: social 

images of mathematics. Shame can be associated with the anticipation of not being an 

adequate representative of mathematics as it currently presents itself. In her analysis, 

an important point is the possible display of vulnerability in referring to mathematics. 
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Especially in examination phases, the disclosure of a vulnerability is a precarious 

aspect, but disclosure of vulnerability might also be undesirable if one anticipates being 

a representative of mathematics at school. 

Often the focus on affective-motivational aspects of mathematics education leads to a 

plea for motivating students to deepen their engagement with mathematics and 

suggestions on how students can be motivated and guided in their learning processes. 

A seemingly superficial account of the subject matter is mostly misjudged as a 

motivation problem on the part of the students. But, if we consider dynamic learning 

barriers, it is more than just a matter of motivating students for the mathematical 

content of their studies. It is more than just a problem of motivating students to delve 

into the subject matter in more depth because it is characteristic of such a learning 

barrier that learners want to learn. For the field of mathematics education, the question 

arises as to how this desire to learn can be taken up constructively without this being 

transferred in the direction of defensive strategies that are directed more towards 

passing exams than towards a more profound exploration of the subject matter and, 

thus, enable understanding:  

Certainly, it is not helpful to have an increasingly strict pre-structuring of learning 

processes. A situated approach promises more insight here. If one takes these situated 

approaches to knowledge and learning seriously, then growing into a community of 

practice, into the mathematics education community, also means participating in (co-

)constructing the field. In my interview with Anna, obstacles to this aspect of becoming 

involved in the (co-)construction became apparent concerning the structure of the 

mathematics teacher education programme: Concerning the institutional design she 

engages in its construction by voicing critique, however, with regard to mathematics, 

she seems to arrange herself with the given path, learns to adapt to it and follows it. 

Even though this arrangement is accompanied by dissatisfaction with her own progress 

in delving into the subject matter. The topics and learning paths pre-structured by the 

institution appear in her narrative as fixed and not alterable, alternatives to current 

practices and pathways seem to be non-negiotable. From this vantage point, the 

following questions arise: Why should mathematics be addressed at all when talking 

about learning? Why should specific characteristics and relations of the content be 

elaborated on if it is clear and predetermined what it is about anyway? Within such a 

non-negiotable discourse, there is only the question of “how” best to work through this 

and not the question of “what”. But, also the negotiation of the “what” is important, if 

teacher education shall provide a space for reflecting upon current practices and 

possible alternative approaches. Thus, the following question must be addressed: How 

can we create spaces within mathematics teacher education that allow student-teachers 

to (co-)construct the field of mathematics education and thus feel entitled to participate 

in the negotiation of the “what”? 
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MOTIVATION AND CONTEXT 
In the current post-pandemic situation, transition to university, for students coming 
from one to two years of distance learning, seems particularly worth consideration. 
Teachers’ informal observation during first-year university courses, confirmed by 
students’ achievement in exams, seem to suggest a portion of average-scoring students 
is struggling more than before. Our research aims in general to analyse the difficulties 
encountered during the first year of university and, more in details here, the role of self-
perception of mathematical ability in students. Also, is there a relationship between 
students’ self-efficacy beliefs entering university after secondary school studies and 
effective students’ achievement in first year exams? Does this self-perception change 
in the first months of university? 
LITERATURE 
In psychological literature, academic self-perception has been long studied (Bem, 
1972), also from a mathematics education perspective (Hannula et al., 2016). It has 
been documented that there can be a weak correlation between perceived performance 
and the one then assessed by teachers (i.e., exam results – e.g., Chemers et al., 2001). 
Self-efficacy beliefs are considered following Chemers et al.’ interpretation (2001). 
Students generally over-estimate their own ability (Falchikov & Boud, 1989). On the 
other hand, academic self-efficacy has been found to influence students’ persistence, 
self-regulated strategies, and effort in mathematics, and to be correlated with 
persistence (Hannula et al., 2016). 
RESEARCH AND METHOD 
Two long questionnaires were distributed among students: one in October, during the 
first week of the courses, and one in February, after the first two exam sessions. 
Students involved are enrolled in university in mathematics, physics or engineering. In 
this analysis, only students who filled in both questionnaires were considered. A couple 
questions of both questionnaires asked students to evaluate their general attitude and 
self-perception towards their path of studies (e.g., “evaluate the following sentence: I 
am convinced that I will achieve my goals in the chosen university path”). To avoid 
considering students whose motivation drastically changed, we choose to analyse here 
answers of students who did not change their self-evaluation about the above by more 
than one point (out of a 5-point Likert scale). Our final observation group consists of 
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144 first-year students. The sections of the questionnaires we are interested in, for the 
purpose of this presentation, were about students’ self-efficacy beliefs and usual 
behaviours during study time.  
OBSERVATION AND RESULTS 
Some preliminary facts about some of the questions are worth noticing. While there is 
a correlation between self-efficacy beliefs and exam results, there seems to be a self-
perception change during the first semester. Self-evaluation about the students’ general 
preparation in mathematics went from 3.12 out of 4 to 2.55 out of 4 (same question in 
pre- and post-course data collection, in a 4-point Likert scale). Another related question 
was to self asses the following: “I happen to think that I have understood a topic but 
then discover (at exams, ...) that it is not so” where the after-secondary-school answer 
was averaging at 2.21 while the after-the-first-semester answer arrived at an average 
of 2.57, in a 4-point Likert scale. In a direct question about the relation between 
expected and obtained results in the final Calculus exam, 47% of the students admit 
they were expecting a higher grade and, in a final question regarding obstacles 
encountered during the course, 32.9% point out that their initial preparation was not 
sufficient to properly face the course demands. There is also evidence of behavioral 
changes from the intended method (declared in the October questionnaire) and the 
review questionnaire, such as a need to implement new study methods, to quit “last 
minute” studying, to discuss more with peers and tutors and to rely on the teachers’ 
availability. Some first conclusions tell us that, even though not discouraged in going 
on with their STEM studies, students are faced in this first semester with more 
challenges than they expected and, during the semester, gain some deeper insight into 
self-evaluation and what is expected from them and intend to change some behaviors 
to better adapt to the new education level. Further research is expected in this direction, 
together with some proposal of activities to alleviate these obstacles and facilitate 
students’ transition to university, which we are working on in the present. 
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RESEARCH TOPIC 
The analysis of the use of digital media in informal learning situations is a part of the 
dissertation project "Using informal media to address knowledge gaps in basic 
mathematics " of the LernMINT doctoral program.  
The use of media by students has changed significantly in recent years, not least due to 
the Covid19 pandemic. Students do less research in the library than on YouTube or 
other learning offerings on the internet. (Steffens et al., 2017) 
For studying mathematics, the field of digital media has a diverse offer from 
explanatory videos on portals to internal university learning management systems and 
websites that present mathematical content online. The didactic as well as the 
professional quality of these digital support offerings for explaining mathematical 
content vary depending on the creator and content (Ehlers, 2004). 
The starting point of the analysis is the informal learning situations of students in basic 
mathematics. According to Arnold (2015), these situations are a search for functional 
solutions that are self-organised by the student. 
To support students in this self-organised study, the first step is an analysis of current 
student information gathering processes. Experience-based qualitative interviews with 
students from the Faculty of Mechanical Engineering in the 1st to 4th semesters will 
be conducted. They describe their individual experiences of research and information 
gathering, especially for mathematical questions. 
The interview guide for the qualitative research was constructed according to the SPSS 
method developed by Helfferich (2011). The analysis of the experience-based student 
interviews is carried out using the evaluation method of Mayring (2015). 
The first preliminary results of the analysis of qualitative student interviews show that 
the students develop and apply very individual research paths. These lead to 
qualitatively different information while searching with digital media, which is then 
used to solve mathematical questions. This first hypothesis will be verified through 
further interviews. 
Approaches to support the use of digital media in basic mathematics will be developed 
and tested based on the identified hypotheses. These new support offers should increase 
the students digital competences according to the DIGCOMP model by Vuorikari et al. 
(2022). 
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CONTENT PRESENTATION 
In the first step, the research topic and design are explained. Then the underlying theories 
of the different fields of competence in the context of informal learning processes with 
digital media in the field of university mathematics are visually linked. The second part 
of the poster is to present the results from the qualitative interviews. Hypotheses are 
formulated and explained using examples from the student interviews. The last section 
of the poster describes initial approaches of support services to improve the digital 
competences. 
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INTRODUCTION 

Carey et al. (2016) proposed the reciprocal theory of math anxiety and math 

performance. According to this theory, math anxiety decreases math performance and 

poor performance increases math anxiety. In this one-year longitudinal study, we 

examined the relationships between gender, course selection, math performance, non-

STEM students’ interest in each topic, and math anxiety. Based on the reciprocal theory, 

we hypothesized that (1) non-STEM university students in Japan had higher math 

anxiety, and (2) their math anxiety would increase by studying university-level 

mathematics. Math anxiety was measured with the abbreviated math anxiety scale 

(AMAS; Hopko et al., 2003), which had two subscales: learning math anxiety (LMA) 

and math evaluation anxiety (MEA). 

METHODS 

Participants 

The participants of this study were 129 first-year students (53 males, 68 females, and 

8 non-respondents; mean age 18.52 ± 1.48 years) majoring in social and human 

environment at a Japanese university. They had taken the course “Basic Math I” in the 

first semester, and 75 of them continued to take the advanced course “Basic Math II” 

in the second semester. Both are activity-oriented courses in mathematical modelling, 

developed for non-STEM students (Kawazoe & Okamoto, 2017). 

Measures 

The survey was conducted three times: at the beginning (T1), at the end (T2) of the 

first semester, and at the end of the second semester (T3). The AMAS, translated into 

Japanese for this study, was used to measure math anxiety. The participants responded 

to items on a five-point Likert scale ranging from 1 (low anxiety) to 5 (high anxiety) 

(T1, T2, T3). They also responded to questionnaires about their math scores in entrance 

examinations (T1), attitudes toward learning (T1, T3), as well as their understanding 

and interest in each content (T2, T3). We also collected the scores of the online 

exercises conducted almost every week during the semesters. All data were collected 

on a learning management system. 

RESULTS AND DISCUSSION 

As hypothesized, math anxiety in Japanese students (LMA: M = 12.9, SD = 4.9, MEA: 

M = 15.0, SD = 4.0 at T1) was higher than Italian students (LMA: M = 8.4, SD = 3.4, 
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MEA: M = 13.1, SD = 3.8; Primi et al., 2014), especially in LMA. 

  

Figure 1: Math anxiety (points/item) as a function of time, gender, and course-taking. 

Figure 1 presents the changes in math anxiety. A four-way ANOVA, 2 (gender: 

male/female) x 2 (course taking: Basic Math I/Basic Math I and II) x 2 (time: T1/T2) 

x 2 (math anxiety: LMA/MEA) indicated that the main effects of math anxiety (F (1, 99) 

= 254.08, p = 0.00, partial η2 = 0.72), gender (F (1, 99) = 7.77, p = 0.01, partial η2 = 0.07), 

course taking (F (1, 99) = 4.62, p = 0.03, partial η2 = 0.04), and time (F (1, 99) = 16.69, p = 

0.00, partial η2 = 0.14) were significant. All interactions were not significant. A three-

way ANOVA, which included anxiety, gender, and time (T1/T2/T3) for the 

participants who took Basic Math II, indicated significant main effects of anxiety and 

gender, and a marginally significant main effect of time (F (1.56, 85.88) = 2.86, p = 0.08, 

partial η2 = 0.05). A paired comparison for time revealed that math anxiety in T2 was 

lower than in T1 and other pairs were not significant. Our results revealed that the MEA 

was higher than the LMA, and in females, it was higher than in male university students, 

which was consistent with the findings of Hopko et al. (2003). Contrary to our 

hypothesis, math anxiety did not increase from T1 to T2. This result might be due to 

the features, activity-oriented and mathematical modeling, of the mathematics course. 
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Little research has been done on the interpersonal aspects of the learning process and 
particularly on how several aspects of mathematics learning impact the academic-
related emotions of students (Eligio, 2017). The emotions experienced in Linear 
Algebra courses are still underestimated (Stewart et. al, 2019); however, it seems that 
social factors, such as peer-perceived course difficulty, can impact students’ emotions 
experienced in Linear Algebra (Martinez-Sierra & Garcia-Gonzalez, 2016). Thus, it is 
important to further study the factors that influence students’ emotions in Linear 
Algebra, especially under the socio-educational context of Distance Education. 
THEORETICAL FRAMEWORK 
Thinking of education in a simplistic way, interaction underlies education. In a DE 
setting, due to the geographical and/or temporal distance between students and their 
teacher, how students interact can reflect the “psychological and communications 
space (that has) to be crossed, a space of potential misunderstanding between the 
inputs of instructor and those of the learner” (Moore, 1993, p.20) and is named 
'Transactional Distance' (TD). According to the Theory of Transactional Distance, a 
student’s perception of TD is measured by three types of interactions they have: 
learner-content (LC), learner-instructor (LI), and learner-learner (LL) interaction 
(also met as SC, ST, SS interaction correspondingly) (Moore, 1989). 
METHODOLOGY 
The survey was conducted online at a Greek university. A total of 97 (out of 832) 
undergraduates enrolled in an online Linear Algebra course participated voluntarily 
and anonymously. The course was based on video lectures for both the theory and the 
exercise-related hours. The online questionnaire was specially designed, consisting of 
two parts: in the first part student-perceived TD was measured by using the Revised 
Scale of Transactional Distance (Paul et al., 2015); in the second part students' positive 
and negative emotions experienced in the course were measured using a combination 
of the Achievement Emotions Questionnaire (Pekrun et al., 2011) and the Positive and 
Negative Affect Schedule Scale (Watson et al., 1988). Descriptive data analysis was 
conducted for identifying students' perceptions of TD and experienced emotions. 
Independent samples t-tests and correlation analyses were run in mean scores (STmean, 
SCmean, SSmean, Positivemean, Negativemean). Finally, two regression analyses were run to 
identify if STmean, SCmean and SSmean can be predictors of Positivemean and Negativemean. 
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RESULTS 
Overall, undergraduates in the sample felt TD at a fairly low level and experienced 
both positive and negative emotions at a moderate level. Also, all three types of 
interactions were positively correlated with positive emotions and negatively 
correlated with negative emotions. The most important predictor for both positive and 
negative emotions was identified to be the Student-Content interaction. 
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In our poster, we describe a new teaching model in undergraduate mathematics that 

combines an existing student-centred teaching model with co-operative learning 

facilitated by “primetime” meetings. We also analyse student reflections (n=63) on 

what supported their co-operation. 
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INTRODUCTION AND THEORETICAL BACKGROUND 

Teamwork and social skills are important working life skills that are rarely developed 

enough in university curricula. This has remained so, even though small-group co-

operative learning has shown its effectiveness in education from primary school to 

universities (Johnson & Johnson, 2009). In mathematics, meta-analyses by Springer et 

al. (1999) for undergraduate mathematics, and Capar and Tarim (2015) for all ages, 

show that small-group learning enhances mathematics achievement, mathematics self-

esteem and attitudes towards mathematics. 

In this report, we describe how we have introduced co-operative learning to an already 

established student-centred teaching model. We also analyse students’ perceptions of 

those aspects that have supported their group work. We base our analysis on the five 

criteria of effective co-operative learning by Johnson and Johnson (2009): positive 

interdependence, individual accountability, promotive interaction, appropriate use of 

social skills, and group processing. 

PRIMETIME-FACILITATED GROUP WORK 

The course investigated in this study is an undergraduate course in abstract algebra that 

was taught in a Finnish university in spring 2020. The course was taught on campus 

and had 83 students. The teaching practices of the course were built on a student-

centred model of Extreme Apprenticeship (Rämö et al., 2020), and co-operative 

learning was promoted using primetime learning (Koskinen et al., 2018). Individually, 

the students completed weekly tasks using the textbook and the help of tutors who 

taught in an open learning space. For co-operative learning, the students worked in 

groups of six people that completed two projects during the course. Promotive 

interaction was facilitated by requiring that the groups meet regularly to work on the 

projects and by giving feedback on their work process. Positive interdependence and 

appropriate use of social skills were built by making visible the roles of group work 
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and letting the students try out different roles in their group. Group processing was 

facilitated by giving the groups tasks which required reflecting on the group’s actions. 

Individual accountability was supported by creating an assessment system in which 

students’ individual achievements influenced the group’s grade. The teacher supported 

the groups’ working in primetime meetings, in which each group had a 15-minute one-

on-one meeting with the teacher. 

ANALYSIS AND RESULTS 

The data for this study consists of students’ reflections they wrote at the end of the 

course (n=63). The students were asked to describe what supported their group’s work, 

and their answers were analysed using qualitative content analysis based on the criteria 

for effective co-operative learning by Johnson and Johnson (2009). Of the dimensions 

in Johnson and Johnson’s framework, the most frequently mentioned were Promotive 

interaction (30 mentions, e.g., “Common meetings in which everyone participated”) 

and Appropriate use of social skills (21 mentions, e.g., “Open and supportive 

atmosphere”). A few instances of Group processing (4 mentions, e.g., “We needed an 

organised method for solving the tasks”) and Positive interdependence (4 mentions, 

e.g., “Different learners in the group noticed different things”) were found. Individual 

accountability was not identified in any of the answers. The results indicate that either 

the learning environment supported promotive interaction and appropriate use of social 

skills more than the other dimensions of effective co-operative learning, or 

alternatively, those dimensions were easier to identify for the students than other 

dimensions. 
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